1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep.

Maat: px
Weergave met pagina beginnen:

Download "1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep."

Transcriptie

1 1 Bewerkige met mtrices ivoere vi voorbeelde 11 -tlle e de bewerkige ( 1, 2, 3,, ) is ee -tl met i De verzmelig v reële -tlle otere we met Defiieer de som ls ( 1, 2, 3,, ) + (b 1,b 2,b 3,,b ) = ( 1 +b 1, 2 +b 2, 3 +b 3,, +b ) Het tegegesteld -tl is d (- 1,- 2,- 3,,- ) e het ulelemet: (0,0,0,,0) uitgerust met de som,, +, is ee commuttieve groep Defiieer de sclire vermeigvuldigig ls λ( 1, 2,, ) = ( λ1, λ2,, λ) met λ Tot slot ku je je fvrge hoe de vermeigvuldigig gedefiieerd k worde Neem ( 1, 2 ) e (b 1,b 2 ) 2 Defiiëer de vermeigvuldigig eve ls volgt: ( 1, 2 )(b 1,b 2 ) = ( 1 b 1, 2 b 2 ) met (1,1) ls eeheidselemet Met deze defiitie heb je ee probleem dt ee tl elemete gee iverse hebbe Neem bvoorbeeld (,0) We zoeke d (x,y) zodt (,0)(x,y) = (1,1) Volges de defiitie geldt dt (,0)(x,y) = (x,0y) = (1,1) x = 1 e 0y = 1 is vls Ee dere defiitie voor de vermeigvuldigig is geweze 12 Ivoere v mtrices Neem i {1,2,3,, m} e j {1,2,3,, } e de fbeeldig : (i,j) (i,j) = We schrve deze m beelde i ee tbel e oeme dit ee -mtrix A = m1 m2 m3 m met m re e kolomme Ee mtrix oemt met vierkt ls m = Het tl re oeme we de orde v de mtrix Bzodere vierkte mtrices: - NULMATRIX: lle elemete gelk ul - Digolmtrix: = 0 voor i j e voor i = j - SCALAIRE MATRIX: digolmtrix met gelke elemete op de hoofddigol Geboeid door wiskude e weteschppe Mtrices 1

2 De verzmelig v lle reële -mtrices otere we met Twee mtrices z gelk ls de overeekomstige elemete gelk z, mw voor AB, geldt dt A = B i {1,2,, m}, j {1,2, }: = b Twee mtrices gelksoortig ls ze dezelfde dimesie hebbe 13 Som v mtrices Ee herbergier heeft i z cfé ee voorrd v 2 bkke col e 3 bkke col light, 4 bkke fruitsp e 2 bkke clorie-rme fruitsp, 6 bkke pils e 1 bk lcoholvr bier Voor de kermis v zterdg vreest h ee tekort e h doet ee bkomede bestellig v 2 bkke col e 2 bkke col-light, 3 bkke fruitsp e 4 bkke clorie-rm fruitsp, 5 bkke pils e 2 bkke lcoholvr bier We pltse de voorrd i ee voorrdmtrix A e de bestellig i ee bestelligsmtrix B A = col 2 3 fruitsp 4 2 bier 6 1 B = Wt is u z ieuwe voorrd? col fruitsp bier bkke col e 5 bkke col-light, 7 bkke fruitsp e 6 bkke clorie-rm fruitsp, 11 bkke pils e 3 bkke lcoholvr bier Deze wrde schikke we weer i ee mtrix C: C = col fruitsp bier C bekom je door de overeekomstige elemete (elemete met ee zelfde rummer e eezelfde kolomummer) v A e B op te telle Me k llee gelksoortige mtrices optelle! Algemee defiitie Voor A= [ ] e B= [ b ] geldt A+ B= [ + b ] Voor ee mtrix A= [ ] oeme we de mtrix A= [ ] de tegegestelde mtrix Voor A= [ ] e B= [ b ] defiiëre we het verschil ls volgt: A B= A+ ( B) = [ b ] Geboeid door wiskude e weteschppe Mtrices 2

3 14 Sclire vermeigvuldigig Als de herbergier ee dubbel zo grote bestellig doet (de weersvoorspellige z heel gustig) d vrgt h 4 bkke col e 4 bkke col-light, 6 bkke fruitsp e 8 bkke clorierm fruitsp, 10 bkke pils e 4 bkke lcoholvr bier Het pltse v deze getlle i ee mtrix D geeft: D = col fruitsp bier Idie we lle elemete v de eerste bestelligsmtrix vermeigvuldige met 2, bekome we de mtrix D Algemee defiitie Voor k e A= [ ] is ka = [ k ] 15 De vermeigvuldigig Als we ee vermeigvuldigig defiiëre zols b -tlle, ( A B) = b, is dit ook u weer gee erg uttige vermeigvuldigig We voere drom de volgede vermeigvuldigig i UITGEWERKT VOORBEELD Alle oderstde getlle kome uit de voedigsmiddeletbelle v NUBEL (wwwubelcom) e geve wrde per 100g v het voedigsmiddel Ee otbt bestt uit chocoldemelk (hlfvol), croisst, volkorebrood e mger klkoebeleg Chocoldemelk 3,2 g eiwit 1,6 g vet 12,9 g koolhydrte 0 g vezels Croisst 9,2 g eiwit 26,3 g vet 503 g koolhydrte 2,3 g vezels Volkorebrood 11,1 g eiwit 2,3 g vet 44 g Koolhydrte 6,4 g vezels Klkoe 22,6 g eiwit 1,4 g vet 0,6 g koolhydrte 0 g vezels Ee otbt bestt uit grm chocoldemelk, b grm croisst, c grm volkorebrood e d grm klkoebeleg Hoeveel eiwit, vet, koolhydrte (KH) e vezels bevt dit otbt? We gebruike de cfers uit de bovestde tbel die omgereked worde r 1 g v het voedigsmiddel Eiwit: Vet: KH: Vezels: 0, ,092 b + 0,011 c + 0,226 d 0, ,263 b + 0,023 c + 0,014 d 0, ,503 b + 0,44 c + 0,006 d 0 + 0,023 b + 0,064 c + 0 d Telkes wordt voor elk bestddeel (eiwit, vet, KH, vezels) i de 4 voedigselemete v het otbt het product gemkt met de 4 gebruikte hoeveelhede, b, c e d Geboeid door wiskude e weteschppe Mtrices 3

4 We schikke de gegeves i ee mtrix A v 4 re e 4 kolomme A = E V KH Vez Ch Cr Vkbr Kb 0, 032 0, 092 0,111 0, 226 0,016 0,263 0,023 0,014 0,129 0,503 0, 44 0, , 023 0, Om het eiwit-, vet-, koolhydrte- e vezelgehlte i het volledige otbt te kee moete de 4 elemete op elke r vermeigvuldigd worde met de 4 hoeveelhede, b, c e d Deze 4 getlle schikke we i ee kolommtrix B B = b c d Ch Cr Vkbr Kb b c d is het product v de 4 elemete v de eerste r met de 4 elemete v de kolom Zo ook vermeigvuldige we de 4 elemete v de tweede, derde e vierde r met de 4 elemete v de kolom Deze 4 producte schikke we i ee kolommtrix C C = 0,32+ 0, 092b+ 0,111c+ 0, 226d 0,016 0,263b 0,023c 0,014d ,129+ 0,503b+ 0, 44c+ 0, 006d 0+ 0, 023b+ 0, 064c+ 0d C oeme we het product v A e B Op deze mier is de vermeigvuldigig v mtrices igevoerd Let voorl op de voorwrde dt het tl elemete v ee r v A gelk moet z het tl elemete v ee kolom v B of ders gezegd moet het tl kolomme v A gelk z het tl re v B (r-kolom regel) I os voorbeeld is A ee 4 x 4 mtrix e B ee 4 x 1 mtrix Voor C = A B is het tl re 4, het tl re v A e het tl kolomme 1, het tl kolomme v B Merk op dt gezie bovestde voorwrde B A omogelk is! Mw De vermeigvuldigig v mtrices is iet-commuttief Algemee defiitie p p Als A= [ ] e B = [ b ] is C = A B met c = i11 b j + i2b2 j + + ibj = ik bkj ( i {1,2,, m}, j {1,2, } ) k= 1 Geboeid door wiskude e weteschppe Mtrices 4

5 Opmerkig Voor de vermeigvuldigig v reële getlle, bvoorbeeld x e y, geldt de eigeschp dt idie x y = 0 dt ofwel x = 0 of dt y = 0 Voor de vermeigvuldigig v mtrices geldt deze eigeschp iet Als tegevoorbeeld beschouwe we de mtrices 0 0 A = 0 5 e 2 3 B 0 0 Duideljk geldt dt A 0 e B 0 mr toch geldt dt A B = 0 A e B omet me uldelers 16 Eeheidsmtrix e iverse mtrix 161 Eigeschppe i I is 1 het eeheidselemet voor de vermeigvuldigig dr 1= 1 = I heeft elk getl 0 ee iverse voor de vermeigvuldigig wt 1 = = = 1 = 1 (Let op de commuttiviteit!) I geldt voor 0 : x= b x= b x= 162 Aloge eigeschppe b mtrices 1 1 b De eeheidsmtrix I is ee vierkte mtrix die vermeigvuldigd met ee vierkte mtrix A v dezelfde dimesie terug die mtrix A oplevert A I = I A= A (Zie logie met de vermeigvuldigig i ) Uit de r-kolomregel e uit de commuttiviteitsvoorwrde volgt dt llee b de vermeigvuldigig v vierkte mtrices het zivol is te prte over ee eeheidsmtrix We beple de eeheidsmtrix v orde 2 b y b = y b x + bz = = cx + dz = c e y + bu = b cy + du = d Het oplosse v deze stelsels v 2 lieire vergelkige met 2 obekede geeft ls y 1 0 oplossig = Idie A ee iverse mtrix, A 1 1, heeft, moet A A = I = A A (Zie logie i ) I x heeft ekel 0 gee ivers elemet E wt i? Heeft ee iverse? E ? Geboeid door wiskude e weteschppe Mtrices 5

6 We beple de voorwrde opdt b A = ee ivers heeft b y 1 0 y b x + bz = 1 = = 0 1 cx + dz = 0 e y + bu = 0 cy + du = 1 Het oplosse v deze stelsels, ( x, yxu,, ) ifv ( bcd,,, ), geeft de volgede voorwrde om oplossige te hebbe: d bc 0 Vierkte mtrices die ee iverse mtrix hebbe, oeme we hete regulier e i het dere gevl sigulier Meetkudige iterprettie Elk stelsel stelt 2 rechte voor Beide stelsels hebbe éé oplossig voor elke obekede ls c de rechte sded z, mw ls de richtigscoëfficiëte verschilled z: b d 163 Toepssig Cryptologie is de leer v geheime codes e wordt gebruikt voor het otcfere v bkkrtcodes, pswoorde, METHODE VAN CAESAR De eevoudigste toepssig v substitutie-vercferig werd igevoerd door Julius Cesr Elke letter v het lfbet wordt vervge door de letter die 3 pltse verder stt i het lfbet Voorbeeld PUKKELPOP C: p p+ 3 SXNNHPSRS D: p p 3 b GEBRUIK VAN MATRICES Ee dere methode is het gebruik v mtrices b codere e decodere: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F Voorbeeld P U K K E L P O P Stp 1 Schrf de letters i 2x1 mtrices e zet om i getlle P K E P P U K L O Geboeid door wiskude e weteschppe Mtrices 6

7 Stp 2 - Coderig (ecryptie) Kies ee willekeurige vierkte mtrix v dimesie 2, = = = , e bereke: = De boodschp wordt: = Terug omgezet i letters geeft dit: U J K V L Q O D P Voor het terug omzette i letters trekke we voor getlle groter d 27 ee veelvoud v 27 f e voor getlle kleier d 1 telle we ee veelvoud v 27 b Bvoorbeeld: = 3 C = 15 O Stp 3 - Decodere of otcfere (decryptie) U J K V L Q O D P Diegee die de boodschp otvgt moet dit otcfere e de vermeigvuldigig met de 0 1 sleutel opheffe Dit komt er op eer ee mtrix te vide die weer de oorsprokelke getlle teruggeeft y = y = y = y = y 12 5 = We zoeke y zodt y y 1 0 = = 0 1 Geboeid door wiskude e weteschppe Mtrices 7

8 De r-kolomregel toepsse, geeft: 0x+ 1y = 1 x= 1 e 1x+ 1y = 0 y = 1 0z+ 1u = 0 u = 0 1z+ 1u = 1 z = 1 Volges de defiitie v de iverse mtrix, is dit de mtrix = Associtiviteit v de vermeigvuldigig We hereme os otbt e we wille het tl Kcl (eeheid v eergiewrde) kee (1 Joule = 42 Kcl) 1 g eiwit bevt 4 Kcl 1 g vet bevt 9 Kcl 1 g koolhydrte bevt 4 Kcl 1 g vezels bevt 0 Kcl Hoeveel Kcl is er i 100 g chocoldemelk? 100 g chocoldemelk bevt 3,2 g eiwit, 1,6 g vet, 12,9 g KH e 0 g vezels e zo 3, , , = 78,8 Kcl We beple ee ieuwe mtrix D met de eergiewrde v eiwit, vet, KH e vezels Vermits i het product 3,2; 1,6; 12,9; e 0 de getlle z op de eerste kolom v A e rekeig houded met de r-kolomregel zl D ee 1 x 4 mtrix moete z die we liks vermeigvuldige met A Noem D A= E met elemete e voor i = 1 e j {1, 2, 3, 4} Per grm geeft dit: Ch Cr Vkbr Kb 0, 032 0, 092 0,111 0, 226 0,016 0,263 0,023 0, = 0,129 0,503 0, 44 0, , 023 0, [ ] [ 4 0, , , e e e ] = [ 0,788 e e e ] e 11 geeft de eergiewrde i 1 g chocoldemelk (hlfvol) = 0,788 Kcl, e 12 geeft de eergiewrde i 1 g croisst = 4,747 Kcl, e 13 geeft de eergiewrde i 1 g volkorebrood = 2,411 Kcl, e geeft de eergiewrde i 1 g klkoe = 1,054 Kcl 14 Veroderstel dt os otbt ls volgt is smegesteld: = 250 g (chocolde), b = 35 g (croisst), c = 60 g (volkorebrood) e d = 50 g (klkoe) D = Geboeid door wiskude e weteschppe Mtrices 8

9 De eergiewrde i dit otbt bedrgt: 0, , , , = 560,505 Kcl [ 0,788 4,747 2,41,054 ] of kortweg: ( D A) B= E B= F = [ 560,505 ] = F We g of het verpltse v de hkjes, D ( A B) = D C = G, hetzelfde resultt oplevert We beple AB = C De mtriix C geeft os het eiwit, het vet, het KH e het vezelgehlte i het otbt 0, 032 0, 092 0,111 0, 226 0,016 0,263 0,023 0,014 C = 0,129 0,503 0, 44 0, , 023 0, = ,18 15, ,555 4,645 Eiwit Vet KH Vezels Om de totle eergiewrde te kee mke we het product: 4 29, , , ,645 = 571,305 Kcl I mtrixottie geeft dit: [ ] 29,18 15, ,555 4,645 = [ 560,505] = G We besluite dt ( D A) B= D ( A B) De ssocitiviteit v de vermeigvuldigig v mtrices k me formeel bewze Geboeid door wiskude e weteschppe Mtrices 9

Matrixrekening - Samenvatting

Matrixrekening - Samenvatting I. Ekele defiities Ee mtri is ee tel v getlle trirekeig - Smevttig = i m j i m ottie = ( De i-de r v estt uit: i i De j-de kolom v estt uit: j Het (i,j-de elemet v is het elemet o de i-de r e de j-de kolom:.

Nadere informatie

16.6 Opgaven hoofdstuk 7: Producten en combinatoriek

16.6 Opgaven hoofdstuk 7: Producten en combinatoriek 166 Opgve hoofdstu 7: Producte e combitorie 166 Opgve hoofdstu 7: Producte e combitorie Opgve 71 1 + x) 3 1 + x) 1 + x) 2 1 + x) 1 + 2x + x 2 ) 1 + 2x + x 2 + x + 2x 2 + x 3 1 + 3x + 3x 2 + x 3 Opgve 72

Nadere informatie

0 niet gedefinieerd is).

0 niet gedefinieerd is). Mchte 1) Mchte et gehele exoete Volgede defiities kee we l ekele jre,...... 1 fctore (erk o dt iet gedefiieerd is). 1, Je ket ook l ee hele tijd de ekede rekeregels,,.,,,,,,.,, ) Vierktswortels e -de chtswortels

Nadere informatie

0 niet gedefinieerd is).

0 niet gedefinieerd is). Mchte 1) Mchte et gehele exoete Volgede defiities kee we l ekele jre fctore R, N R (erk o dt iet gedefiieerd is) 1 1 R, N Je ket ook l ee hele tijd de ekede rekeregels R,, Z R,, Z R Z,,,, R Z, R, Z R )

Nadere informatie

Acdemi Press Dele Bij delig vermeigvuldigt me met het omgekeerde v de deler..3.5 Vereevoudige Het is goed mogelijk dt voorgde bewerkige iet de

Acdemi Press Dele Bij delig vermeigvuldigt me met het omgekeerde v de deler..3.5 Vereevoudige Het is goed mogelijk dt voorgde bewerkige iet de Acdemi Press 0 BIJLAGE Wiskudige opfrissig. Bewerkige bij vergelijkige Verdere v lid is omkere v de bewerkig, dus verderig v teke bij som of verschil y x+ b y b x vermeigvuldigig wordt delig e omgekeerd

Nadere informatie

1) Definitie, rekenkundige en meetkundige rijen

1) Definitie, rekenkundige en meetkundige rijen Rije ) Defiitie, reeudige e meetudige rije ) Defiitie e ottie Ee rij is ee fbeeldig v u : u, u, u,, u, N i R We otere ee rij ls ( ) 3 Hierbij zij u, u, u 3, de terme v die rij, e u is de lgemee term v

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

4 Differentierekening en reeksen

4 Differentierekening en reeksen WIS4 4 Differetierekeig e reekse 4. Delt Differeties Differetierekeig bestudeert de differetie-opertor, gedefiieerd door f(x) = f(x + ) f(x) Vergelijk dit met differetilrekeig: de fgeleide-opertor D is

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

Verloop van exponentiele en logaritmische functies

Verloop van exponentiele en logaritmische functies Verloop v epoetiele e loritmische fucties ) Herhli ) Defiitie e rfiek v epoetiële fucties Ee epoetiële fuctie is ee fuctie met voorschrift vk eoteerd ls ep Hierst st ekele rfieke v epoetiële fucties eteked

Nadere informatie

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11 84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

3 Meetkundige voorstelling van complexe getallen

3 Meetkundige voorstelling van complexe getallen 3 Meetkudige voorstellig va complexe getalle 31 Complexe getalle als pute va ee vlak Complexe getalle zij geïtroduceerd als pute va ee vlak tov ee orthoormaal assestelsel Ee dergelijk assestelsel is odig

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Polynomen groep 2. Trainingsweek, juni Complexe nulpunten. Een polynoom is van de vorm P (x) = n

Polynomen groep 2. Trainingsweek, juni Complexe nulpunten. Een polynoom is van de vorm P (x) = n Polyome groep 2 Traiigsweek, jui 2009 Complexe ulpute Ee polyoom is va de vorm P (x) = i=0 a ix i, met coëfficiëte a 0, a 1,..., a, die uit ee gegeve verzamelig kome (meestal Z of R). Als alle coëfficiëte

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Uitwerkingen huiswerk week 7

Uitwerkingen huiswerk week 7 Lieaire algebra ajaar 008 Uitwerkige huiswerk week 7 Opgave 5 Ee -matrix va de vorm 1 a 1 a 1 a 1 a a a A 1 a 3 a 3 a 1 a a a 1 a1 1 a 1 3 a3 1 a 1 heet ee Vadermode matrix Laat zie dat det A 1 i

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

Algebra. Dr. Caroline Danneels

Algebra. Dr. Caroline Danneels Algebr Dr. Crolie Deels 1 Reële getlle 1.1 Mchte v ee reëel getl met gehele expoet IR e IN :... ( fctore) IR : 1 0 0 0 1 ( ) ( ) 1 1 IR 0 e IN : Eigeschppe:, b IR e m, Z m m + m m ( ) b b b m ( ) b m (

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

OVERZICHT VAN DE FORMULES

OVERZICHT VAN DE FORMULES 80 OVERZIHT VN DE FORMULES Goioetrie Fucties op de goioetrische cirkel si² cos² si tg si cos tg cotg Relties Wrdes v veel voorkoede hoeke 0 0 45 60 90 si 0 cos 0 tg 0 - Goioetrische fucties i rechthoekige

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Continuïteit en Nulpunten

Continuïteit en Nulpunten Continuïteit en Nulpunten 1 1 Inleiding Continuïteit en Nulpunten In de wiskunde wordt heel vk gebruik gemkt vn begrippen ls functie, functievoorschrift, grfiek, Voor een gedetilleerde inleiding vn deze

Nadere informatie

Oplossingen extra oefeningen: rijen (leerstof RR, leerstof MR)

Oplossingen extra oefeningen: rijen (leerstof RR, leerstof MR) Oplossige extra oefeige: rije (leerstof RR, leerstof MR) Beschouw de rij ( u ) = 3,5,9,7,33, () Geef de volgede twee terme uit deze rij ( u e u 7) Defiieer deze rij (je mag kieze tusse ee expliciete of

Nadere informatie

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc) . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd

Nadere informatie

Uitwerkingen huiswerk week 7

Uitwerkingen huiswerk week 7 Lieaire algebra ajaar 009 Uitwerkige huiswerk week 7 Opgave 19. Ee -matrix va de vorm 1 a 1 a 1 a 1 a a a A = 1 a 3 a 3 a.... 1 a a a 1 a1 1 a 1 3 a3 1. a 1 heet ee Vadermode matrix. Laat zie dat det A

Nadere informatie

Deel D. Breuken en algebra n

Deel D. Breuken en algebra n Deel D Breue e lgebr 9 9 7 7 7 9 0 Reee et stroe (). stt voor ee obeed tuurlij getl 7 9 0 Met wordt bedoeld e dus oo 0 0 Vul i: et wordt bedoeld... e dus oo... Vul oo de vjes v de stroo i: Tel de getlle

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Hoofdstuk 6 : Veeltermen

Hoofdstuk 6 : Veeltermen - 8 - Hoofdstuk 6 : Veelterme Evetjes herhale! Veelterme i éé obepaalde: Elke uitdrukkig va de gedaate a 0 + a + a +... + a + a + a0 waarbij a a, a,... 0, a R e N oeme we e veelterm i de obepaalde Beamige

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Tentamen: Kansrekening en Statistiek P0099

Tentamen: Kansrekening en Statistiek P0099 Fculteit Economie en Bedrijfskunde Tentmen: Knsrekening en Sttistiek 1 6011P0099 Tentmendtum & -tijd: 15 december 015, 1:00 17:00 Studiejr 015-016 Duur vn het tentmen: 3 uur Legitimtie: U dient zich te

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Vorig college. IN2505-II Berekenbaarheidstheorie. Intermezzo / kleine opfriscursus. Deterministische eindige automaten (DFA) College 6

Vorig college. IN2505-II Berekenbaarheidstheorie. Intermezzo / kleine opfriscursus. Deterministische eindige automaten (DFA) College 6 Vorig college College 6 Algoritmiekgroep Fculteit EWI TU Delft Hotel Hilbert Aftelbrheid vs. Overftelbrheid Digonlisering Overftelbrheid vn R 6 mei 2009 1 2 Intermezzo / kleine opfriscursus Deterministische

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Rinse Poortinga Lineaire Algebra en Voortgezette Analyse. 2 Lineaire afbeeldingen

Rinse Poortinga Lineaire Algebra en Voortgezette Analyse. 2 Lineaire afbeeldingen Rise Poortig Lieire Algebr e Voortgezette Alyse 2 Lieire fbeeldige Ihoud: 2 Lieire fbeeldige 22 Rije- e koloerg 23 rspoere 24 De deterit 25 De oplossige v ee stelsel lieire vergelijkige 26 Guss-eliitie

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

Bereik en waardering RTV Dordrecht - Herhalingsmeting

Bereik en waardering RTV Dordrecht - Herhalingsmeting Bereik e wrderig RTV ordrecht - Herhligsmetig Socil Geogrfisch Bureu bureu voor beleidsoderzoek e sttistiek ordrecht drs. F.W. Witerwerp drs. J.M. Schiff september 2006 Colofo Opdrchtgever Tekst rukwerk

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

Duurzaam (ver)bouwen. Noordoost-Brabant 2013-2016

Duurzaam (ver)bouwen. Noordoost-Brabant 2013-2016 t e v o C l io g Re Duurzm (ver)bouwe Noordoost-Brbt 2013-2016 e w u o b e m S d i e h m duurz Duurzm Bouwe Grodstoffe worde schrser, het eergievrgstuk ijpeder e os klimt verdert. Duurzm bouwe e verbouwe

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

Reeksen. Convergente reeksen

Reeksen. Convergente reeksen Reekse Reekse Defiitie, otatie e voorbeelde Defiitie: Eereeks is ee koppel ( ) {u } l, {s } l met s = u k = u l + u l+ + u l+2 +...+ u + u k=l u l = s l, u = s s, = l +, l +2,... {u } l oemt me de termerij,

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

= a m b m. Onthou: Pas Wet 4 vir hierdie voorbeelde toe. 1 n. ; a 0. Let Wel. (-3) 2 = 9 maar -3 2 = -9 & (-3) 0 = 1 maar -3 0 = -1

= a m b m. Onthou: Pas Wet 4 vir hierdie voorbeelde toe. 1 n. ; a 0. Let Wel. (-3) 2 = 9 maar -3 2 = -9 & (-3) 0 = 1 maar -3 0 = -1 C EKSPONENTE: VRAE Wet : () m m m Kwrtl : C Eksponente Vre wt Wette insluit Eksponensiële Uitdrukkings Onthou: Ps Wet vir hierdie vooreelde toe....c. % - ()(). %. - % ()() V Ps die gegewe wet in elk vn

Nadere informatie

GRAAD 12 SEPTEMBER 2016 WISKUNDE V1

GRAAD 12 SEPTEMBER 2016 WISKUNDE V1 NASIONALE SENIOR SERTIFIKAAT GRAAD SEPTEMBER 06 WISKUNDE V PUNTE: 50 TYD: 3 uur *MATHA* Herde vrestel best ut bldse, sluted ʼn lgtgsbld WISKUNDE V EC/SEPTEMBER 06 INSTRUKSIES EN INLIGTING Lees de volgede

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n

d 25, 35, 47 of27, 43, 69 b 2, 27, 10240, 100, e = 287 u( n) = 243 ( ) n Netwerk 4-5 vwo wiskude D Hoofdstuk 8 uitwerkige Hoofdstuk 8 Ker a 3, 37, 43 c 5, 3, 49 b, 3, d 5, 35, 47 of7, 43, 9 a,, 3, 5, 7 d 0,,,, 0 b, 7,, 3, 8 e 35, 35, 35, 35, 35 c 5, 0, 0, 40,80 f 0,, 8, 7,

Nadere informatie

opgave Opgave Bepaal de convergentiestralen van de volgende machtreeksen: (n + 1)! n! = lim n = lim (n + 1)!/(2n + 2)! n!/(2n)!

opgave Opgave Bepaal de convergentiestralen van de volgende machtreeksen: (n + 1)! n! = lim n = lim (n + 1)!/(2n + 2)! n!/(2n)! opgave 7 7 Bepaal de covergetiestrale va de volgede machtreekse: a!z ; b! (! z ; c 3 z! ; d z! a Zij a!, da lim ( +!! ( +, dus R 0 b Zij a!, da (! lim ( +!/( +!!/(! ( + 0, dus R c Zij a 3, da! lim 3 +

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå=

Inleiding. 1. Rijen. 1.1 De rij van Fibonacci. 2 Zou je deze regelmatigheden kunnen verklaren met wiskunde? déäçéáç=çççê=táëâìåçé=éå=téíéåëåü~éééå= Ileidig Waarom vorme zoebloempitte 2 bochte i de ee richtig e 34 i de adere? E wat heeft ee huisjesslak te make met + 5 2 Zou je deze regelmatighede kue verklare met wiskude? Heeft wiskude cocrete toepassige

Nadere informatie

n n n bedoelen we uiteraard dat n N : 0 f x divergeert naar + of.

n n n bedoelen we uiteraard dat n N : 0 f x divergeert naar + of. Limiete Defiities a Limiet voor a I het hoofdstuk ratioale fucties i het begi va dit schooljaar zage we reeds dat zulke fucties soms perforatiepute hebbe De fuctiewaarde i zo put bestaat iet, maar de grafiek

Nadere informatie

Het differentiequotiënt van een functie in een interval geeft de gemiddelde helling weer van die functie in dat interval. Symbolisch wordt dit:

Het differentiequotiënt van een functie in een interval geeft de gemiddelde helling weer van die functie in dat interval. Symbolisch wordt dit: Afgeleide ) Het begrip fgeleide ) Ileidig Bij de wielerwedstrijd De Wlse Pijl kome de reers op de muur v Hoei Zols je k ie op de figuur hierst heeft dee klim ee gemiddeld stijgigspercetge v 9,8% Wiskudig

Nadere informatie

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep.

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep. Deel Matrices Bewerkige met matrices ivoere via voorbeelde. -talle e de bewerkige (a,a,a 3,,a ) is ee -tal met a i. De verzamelig va reële -talle otere we met Defiieer de som als (a,a,a 3,...,a ) + (b,b,b

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Wiskundige Analyse 1

Wiskundige Analyse 1 Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Lagrange-polynomen. Dick Klingens september 2004

Lagrange-polynomen. Dick Klingens september 2004 Lgrge-polyome Dck Klges september 004 1. Probleem V ee fucte f s, hetzj door metg, hetzj door berekeg, slechts ee edg tl fuctewrde (her + 1 beked: f( x0, f( x1,, f( x We wlle deze (verder obekede fucte

Nadere informatie

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III Commissie Pesioehervormig 00-040 Nota over de actuariële eutraliteit Bijlage III. I het kader va de ivoerig va ee «deeltijds pesioe» wordt de kwestie va de actuariële correctie va de uitkerige i geval

Nadere informatie

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7 Hoofdstu Combiatorie. Basisregels Combiatorie is de studie va telprobleme. De ust va het telle bestaat vaa uit het codere of aders voorstelle va het telprobleem, zodat het uiteidelij volstaat om de volgede

Nadere informatie

Fourierreeksen. Calculus II voor S, F, MNW. 14 november 2005

Fourierreeksen. Calculus II voor S, F, MNW. 14 november 2005 Fourierreekse Calculus II voor S, F, MNW. 14 ovember 2005 Deze tekst is gedeeltelijk gebaseerd op het Aalyse BWI I dictaat e op aatekeige va Alistair Vardy. 1 Ileidig Het is vaak belagrijk ee gegeve fuctie

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

WPP 5.2: Analyse. Oplossing onderzoeksopdrachten

WPP 5.2: Analyse. Oplossing onderzoeksopdrachten WPP 5.: Aalyse oderzoeksopdrachte Oderzoeksopdracht leerboek bladzijde 0 Limiet va ee rij : defiities Beschouw de rij u :,,, 4,.... Bepaal de algemee term u. Via PC / GRT bepaal je de tabel e teke je

Nadere informatie

1) Complexe getallen - definitie

1) Complexe getallen - definitie Complexe getalle ) Complexe getalle - defiitie a) Meetkudige betekeis va het getal i Als je ee reëel getal met ee ader reëel getal vermeigvuldigt, wordt zij afstad tot de oorsprog met dit getal vermeigvuldigd

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Formulekaart Wiskunde havo/vwo

Formulekaart Wiskunde havo/vwo Formlekr Wiskde hvo/vwo Vierksvergelijkig Als! e " 4c #, d worde de olossige v de vierksvergelijkig + + c gegeve door 4c, " ± " Mche e logrime q $ + q ( > ) q ( ) q ( > ) ( $ ) $ (, > ) " ( > ) % (, >,!

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

Exact periode 2.2. Gemiddelde en standaarddeviatie Betrouwbaarheidsinterval Logaritme ph lettersommen balansmethode

Exact periode 2.2. Gemiddelde en standaarddeviatie Betrouwbaarheidsinterval Logaritme ph lettersommen balansmethode Exct periode. Gemiddelde en stndrddevitie Betrouwbrheidsintervl Logritme ph lettersommen blnsmethode 1 gemiddelde en stndrddevitie vn meetwrden. x en s Hieronder zie je twee getllenseries die hetzelfde

Nadere informatie

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formulekrt VWO wiskude B Verelijkie + + c = 0 + D = of met D = 4c D = 0, D > 0 = c = = c / = c > 0, c > 0, > 0 lo l = lo = = > 0, > 0, lo l lo = = > 0, > 0, e = = l > 0 l = = e > 0 Mchte e loritme = /

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT Vrg 1 Zij gegeven de volgende declrtie in Eiffel Gui : STUDENT in de veronderstelling dt er een klssentekst bestt voor de klsse STUDENT. Welke vn de volgende uitsprken is wr: A. N uitvoering vn de instructie

Nadere informatie

Uitwerking Tentamen Analyse B, 28 juni lim

Uitwerking Tentamen Analyse B, 28 juni lim Uitwerking Tentmen Anlyse B, 8 juni 0 Opgve [5pt] Bereken Hint: b = e b log. lim ( sin(π. Zij I =], [. Voor lle I \ {} geldt dt Definieer ( sin(π = e log( sin(π = e log sin(π. ϕ( = f(, f( = log, g( = sin(π.

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

déäçéáç=çççê=táëâìåçé=éå

déäçéáç=çççê=táëâìåçé=éå déäçéáç=çççê=táëâìåçé=éå téíéåëåü~éééå táëâìåçé oáàéå e~åë=_éâ~éêí oçöéê=i~äáé iéçå=iéåçéêë hçéå=píìäéåë 4, LUC Diepebeek (België), Geboeid door Wiskude e Weteschappe Niets uit deze uitgave mag worde verveelvoudigd

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Ongelijkheden groep 2

Ongelijkheden groep 2 Ongelijkheden groep Rvi & Cuchy-Schwrz Trnstrendtriningsdg (triningsdg, 6 mrt 009 Cuchy-Schwrz Cuchy-Schwrz Voor reële getllen x,, x n en y,, y n geldt: x i y i en bijgevolg x i y i n n met gelijkheid

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave va het Koikrijk der Nederlade sids 1814. Nr. 6416 10 maart 2015 Regelig va de Miister va Oderwijs, Cultuur e Weteschap va 27 februari 2015, r. FEZ/732697 houdede wijzigig

Nadere informatie