Tentamen: Kansrekening en Statistiek P0099

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Tentamen: Kansrekening en Statistiek P0099"

Transcriptie

1 Fculteit Economie en Bedrijfskunde Tentmen: Knsrekening en Sttistiek P0099 Tentmendtum & -tijd: 15 december 015, 1:00 17:00 Studiejr Duur vn het tentmen: 3 uur Legitimtie: U dient zich te legitimeren met behulp vn een geldig bewijs vn inschrijving (collegekrt) en een geldig identiteitsbewijs voorzien vn een goed gelijkende psfoto. Indien u zich niet kunt legitimeren kn u de toegng tot het tentmen worden ontzegd. Indien u niet correct bent ngemeld voor dit vk vi SIS wordt het cijfer vn uw werk niet geregistreerd. Schrijf uw nm en studentnummer op elk prt bld dt u inlevert. Wrschuwing tegen frude: Studenten die betrpt worden op frude worden bestrft. Uw mobiele telefoon dient uitgeschkeld te zijn en opgeborgen in uw ts.. Dit geldt ook voor geluidspprtuur, koptelefoons, digitle horloges (I-wtches e.d.) of ndere elektronische hulpmiddelen. Uw ts dient gesloten nst uw tfel op de vloer te zijn gepltst. Tijdens het tentmen is toiletbezoek niet toegestn (tenzij het bij wijze vn uitzondering door de hoofdsurveillnt wordt toegestn). Toegestne hulpmiddelen: potlood (niet rood!), pen (niet rood!), gum, linil, (niet-grfische) rekenmchine Een grfische rekenmchine is niet toegestn. Tentmen nkijktermijn en Tentmen inzge: De uitslg vn dit tentmen wordt uiterlijk 18 werkdgen n de tentmendtum vi de Onderwijsdministrtie Economie en Bedrijfskunde in SIS bekend gemkt. Vi Blckbord en vi de mil zl de inzge gecommuniceerd worden. Specifieke toelichtingen voor dit tentmen: 8 vrgen met verschillende onderdelen, pgin s, het mximl ntl te behlen punten is 100. Per onderdeel stt de mximle score ngegeven. Bij dit tentmen worden tbellen verstrekt vn de stndrdnormle verdeling, lsmede een overzicht vn veelgebruikte verdelingen. SUCCES!

2

3 1 De continue stochst X heeft de volgende knsdichtheid, wrbij een positieve constnte is: [3] Bepl de wrde vn. x voor 0 x f ( x) 1 10 voor x 0 voor x0 en x b [5] Bepl de verdelingsfunctie vn X en schets deze. c [] Bepl de verwchte wrde vn X. d [5] Bepl de knsen P( X 1 ) en P( 0. X 0.). e [] Stel dt u = een willekeurige getrokken wrde voorstelt uit de uniform verdeelde stochst op het intervl (0, 1). Bepl n de hnd vn u een wrde voor x die kn worden opgevt ls een trekking uit de verdeling vn X. Lt C en D twee disjuncte gebeurtenissen zijn, die llebei onfhnkelijk zijn vn de gebeurtenis E. [6] Definieer de gebeurtenis A ls A C D. Geef een formeel bewijs dt A onfhnkelijk is vn E. Zorg er voor dt elke stp in het bewijs (kort) wordt toegelicht, wrbij eventueel nr bekende stellingen uit de reder mg worden verwezen. b [] Indien p P( C) P( D) en q P( E), druk dn P( C D E) uit ls functie vn p en q. 3 [8] Gebruik de trnsformtie-methode om de knsdichtheid te beplen vn Y 1 ( X 1), wrbij de continue stochst X wordt bepld door de volgende knsdichtheid: x e e voor x f( x) 0 elders Plts de getllen 1 tot en met 5 lukrk in een 5 bij 5 tbel. Dit zou bijvoorbeeld tot het volgende resultt kunnen leiden: [] Hoe groot is de kns dt er op de bovenste rij precies twee oneven getllen stn? b [5] Hoe groot is de kns dt lle getllen op de bovenste rij en/of lle getllen op de tweede rij oneven zijn (eventueel mogen dus ook beide rijen volledig uit oneven getllen bestn)? c [5] Bepl de kns dt precies één getl uit de eerste kolom even is én precies twee getllen uit diezelfde kolom deelbr zijn door 3.

4 5 [6] Stel dt X ~ N(, ). Definieer Y X b. Bewijs met behulp vn de momentgenererende functie vn X dt Y ook een normle verdeling volgt. Gebruik vervolgens de gevonden momentgenererende functie vn Y om druit de verwchte wrde vn Y te beplen (dus zonder gebruik te mken vn de kennis dt Y een normle verdeling heeft). 6 Twee typen hlogeenlmpen worden geproduceerd, de eerste met een levenduur (in uren) X ~ N(00,160 ) en de ndere met een levensduur Y ~ N(500, 600 ). [5] Een opdrchtgever moet voor een nieuwe bestelling een vn de twee typen kiezen. Omdt de verkoopprijzen exct gelijk zijn, formuleert de opdrchtgever ls enig criterium dt de kns dt een lmp het begeeft binnen 000 uur zo klein mogelijk moet zijn. Welk type zl de opdrchtgever dn moeten kiezen? b [5] Stel de opdrchtgever wil lmpen bestellen vn het type dt in onderdeel is gekozen. Wt is de kns dt de gemiddelde levensduur vn die lmpen minder is dn 000 uur? c [6] Bepl de kns dt een willekeurige lmp vn het eerste type minstens 100 uur lnger licht geeft dn een willekeurige lmp vn het tweede type. Hint: Bepl eerst de verdeling vn Y = ( 1)*Y. 7 [6] De knsdichtheid vn X ~ ( ) is gegeven in het bijgeleverde formulebld. Gebruik deze knsdichtheid om door middel vn integrtie de verwchte wrde vn X te beplen. (Hint: De r1 t Gmmfunctie () r t e dt heeft de eigenschp dt ( r) ( r 1) ( r 1) ) 0 8 In een continu productieproces vinden verstoringen plts volgens een Poisson proces met een intensiteit vn 0.1 per uur. Definieer X t ls het ntl gebeurtenissen in een tijdsintervl met een lengte vn t uur. [] b [] c [5] d [8] Bepl de kns dt er gedurende één klenderdg ( uur) geen enkele verstoring pltsvindt. Als gisteren (mndg!) een storingsvrije dg ws, bepl dn de kns dt de eerstvolgende storingsvrije klenderdg niet eerder dn.s. zterdg pltsvindt. Definieer V ls het ntl verstoringen op één klenderdg wrbij gegeven is dt die niet storingsvrij ws. Bepl een formule voor de knsfunctie vn V. Men bekijkt een willekeurig tijdsintervl met lengte t (wrbij t een willekeurig positief reëel getl voorstelt) en drin blijkt precies 1 Poisson gebeurtenis te zijn opgetreden (X t = 1). Toon dn n dt het tijdstip Y wrop die gebeurtenis heeft pltsgevonden een uniforme verdeling heeft op het intervl [0, t]. Hint: leid de CDF vn Y f.

5 Uitwerkingen 1 Er dient te gelden dt f ( x) dx 1 en dus 1 x dx dx 1. Druit volgt dt 1 x x ( ) / = 3/ b c d e 0 voor 0 x x 1 1 tdt x voor 0 x F( x) 3 x tdt dt x voor 3 x voor x Check: F F(0) 0 0, () 1 Merk ook op dt er geen zich bij x = geen sprong voordoet E( X ) x x dx x dx P( X 1 ) = 1 P( X 1 ) 1 F(1 ) P( 0. X 0.) x dx dx 75 Drvoor hebben we de inverse vn de CDF nodig; in dit gevl komt de wrde u = in het tweede stijgende deel vn de CDF terecht, en hoeven we lleen voor dt deel de CDF te beplen. Uit 3 1 u x x10u 6, dus voor u volgt dt x P( A E) P(( C D) E) P(( C E) ( D E)) (volgt uit verzmelingenleer, lt zien mbv Venn-digrm) Omdt C en D elkr uitsluiten, geldt dt ook voor ( C E) en ( D E). Drom volgt dt P(( C E) ( D E)) P( C E) P( D E) Vervolgens gebruiken we het gegeven dt C en E onfhnkelijk zijn, net zols D en E : P( C E) P( D E) P( C) P( E) P( D) P( E) ( P( C) P( D)) P( E) P( C D) P( E) Bij de ltste stp is wederom gebruik gemkt vn het gegeven dt C en D elkr uitsluiten, We hebben nu ls resultt dt P( AE) P( A) P( E), wruit volgt dt A onfhnkelijk is vn E. P( C D E) P( A E) P( A) P( E) P( A E) P( A) P( E) P( A) P( E) p q pq

6 3 Het is eenvoudig in te zien dt op de drger vn X de trnsformtie een 1-op-1 functie voorstelt wrbij de drger vn Y bestt uit het intervl (0, 1). De functie y u( x) 1 ( x 1) heeft ls inverse Dn volgt uit de trnsformtie-methode dt: 1 1 u ( y) x y d 1 ( y 1) 11 y fy( y) f X( u ( y)) u ( y) e e y 1 y e voor 0 y 1 dy De 5 getllen bestn uit 13 oneven en 1 even getllen. b c Definieer A = gebeurtenis dt lle getllen op de eerste rij oneven zijn, en B = gebeurtenis dt lle getllen op de tweede rij oneven zijn. Het zl duidelijk zijn dt P( A) P( B), dus Dn: Merk op: P( A B) P( A) P( B) P( A B) even getllen, wrvn deelbr door 3, en 8 niet deelbr door 3 13 oneven getllen, wrvn deelbr door 3 en 9 niet deelbr door 3. P(precies 1 even en deelbr) P(1 even-niet deelbr, oneven-deelbr, oneven-niet deelbr) P(1 even-deelbr, 1 oneven-deelbr, 3 oneven-niet deelbr) 5 t M () t e X t ty tx tb bt ( t) X bt bt t t ( b) t t x M ( t) E( e ) E( e ) e E( e ) e M ( t) e e e Y En deze mgf is weer te herkennen ls die vn een N( b, ) verdeelde stochst. ( b) t t M ' ( t) e ( b) t Y E( X ) M ' (0) b X 6 We vergelijken de knsen: P( X 000) en P( Y 000) X P( X 000) P( ) P( Z 1.5) P( Y 000) P( Z 0.833) 0.033

7 b De opdrchtgever moet drom het eerste type lmp kiezen. X i N( , 160 ) krijgen we: i i i i1 i1 Omdt P( X 000) P( X 8000) P( Z ) P( Z.5) 160 c Gevrgd wordt: P( X Y 100) P( X Y 100). Uit de vorige tentmenvrg blijkt onmiddellijk dt weer uit dt X Y X Y ( ) ~ N( 300, ). Drom volgt nu: Y ~ N( 500, 600 ). Vervolgens volgt dr P 100 ( 300) 00 ( X Y 100) P ( Z ) ( ) ( 0.6) P Z 61 P Z 7 (zie uitwerking opgve.7) 8 b c P X. ( 0) e Dt kn dus lleen gebeuren indien de vier dgen vnf mndg niet storingsvrij zullen zijn. Drom is de gevrgde kns hier (1 PX ( 0)) Voor i = 1,, 3, volgt dt:. P( X i X 0) P( X i). e fv ( i) P( V i) P( X i X 0) ( 0) ( 0)! (1 ) i.. P X P X i e d (zie ook opgve.3) Xt ~ POI( t). We beplen de CDF vn Y, voor 0 < y < t : P(1 gebeurtenis in (0, y] en geen gebeurtenis in ( y, t)) P( Y y) P(1 gebeurtenis in (0, y] Xt =1) PX ( 1) t P(1 gebeurtenis in (0, y)) P(geen gebeurtenis in ( y, t)) t e t knsen) (knsen in teller zijn weer Poisson y ( t y) e y e y t e t t En dit is de cdf vn een uniforme verdeling op (0, t ).

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Primitieve en integraal

Primitieve en integraal Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 4 Primitieve en integrl Een motivtie om nr de fgeleide vn een functie f te kijken is het beplen vn de richtingscoëfficiënt vn de rklijn

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

Voorblad bij tentamen

Voorblad bij tentamen Voorbld bij tentmen (in te vullen door de exmintor) Vknm: Inleiding Quntumfysic Vkcode: 3BQX1 Dtum: 4-06-015 Begintijd: 18.00 uur Eindtijd: 19.00 uur Antl pgin s: Antl vrgen: vellen A4 1 opgve (6 deelopgven)

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B (pilot) Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Keuze van het lagertype

Keuze van het lagertype Keuze vn het lgertype Beschikbre ruimte... 35 Belstingen... 37 Grootte vn de belsting... 37 Richting vn de belsting... 37 Scheefstelling... 40 Precisie... 40 Toerentl... 42 Lgergeruis... 42 Stijfheid...

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Op weg naar een betrouwbare beoordeling a

Op weg naar een betrouwbare beoordeling a Op weg nr een betrouwbre beoordeling Een eerlijke beoordeling vn cll center gents Cll center-gents worden vk mede beoordeeld op ACT en AHT. Met nme het beoordelen op ACT is niet redelijk, omdt toevl hierin

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

lijnfolder CaH Campushopper geldig vanaf 14 september 2015

lijnfolder CaH Campushopper geldig vanaf 14 september 2015 lijnfolder geldig vnf 14 september 2015 CH Cmpushopper Hoe deze folder gebruiken? Beste reiziger Met deze folder willen wij u helpen om uw verpltsing met De Lijn uit te stippelen. Een lijnfolder bevt de

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Exmen Klssieke Mechnic Herbert De Gersem, Eef Temmermn 25 jnuri 2012, 8u30, cdemiejr 11-12 IW2 NAAM: RICHTING: vrg 1 (/4) vrg 2 (/4) vrg 3 (/5) vrg 4 (/4) vrg 5 (/3) TOTAAL (/20) Verloop vn het exmen Het

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

rekenboek 6a lessen 507019

rekenboek 6a lessen 507019 rekenboek 6 lessen 507019 Het museum OPENINGSTIJDEN zomerseizoen vn 1 pr. t/m 31 okt. elke dg geopend vn 10.00-17.00 uur winterseizoen elk weekend geopend vn 11.00-15.00 uur Prijzen groepen p.p. 12,50

Nadere informatie

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel.

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel. Tentmen Elektriciteit en Mgnetisme 1 Woensdg 11 juli 1 9:-1: Leg uw collegekrt n de rechterknt vn de tfel. Schrijf o elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke ogve o een rt vel. Dit tentmen

Nadere informatie

opdrachtenboek groep 6

opdrachtenboek groep 6 opdrchtenboek groep 6 53933 blok opdrchtenboek groep 6 blok Mlmberg, s-hertogenbosch Alle rechten voorbehouden. Niets uit deze uitgve mg worden verveelvoudigd, opgeslgen in een geutomtiseerd gegevensbestnd,

Nadere informatie

Erasmus MC Junior Med School

Erasmus MC Junior Med School Ersmus MC Desiderius School vn begrijpen nr beslissen Ersmus MC Junior Med School 2012-2013 De rts-onderzoekers vn morgen Het progrmm Dit progrmm loopt prllel n VWO-5 en -6 en bestt uit vier onderdelen:

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a Werkbld Een feestml Nm: Ieder lnd en iedere cultuur kent specile dgen. Dn gn fmilies bij elkr op bezoek. Op die specile dgen is er meestl extr ndcht voor het eten. Hier zie je wt voorbeelden vn feesten

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

bezorgerboekje informatie voor

bezorgerboekje informatie voor bezorgerboekje informtie voor Inhoud 2 3 4 6 10 12 13 14 15 Welkom Onmisbre schkel / De Persgroep Distributie Wetten en regels Inschrijven / Bezorgovereenkomst /Arbeidstijdenwet / Arbeidsomstndighedenwet

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bchelor IR de Bchelor Fysic jnuri 4 Er worden 5 vrgen gesteld. Vul o ieder bld je nm in. Motiveer of bewijs iedere uitsrk. Los lle vrgen o, o een rt bld! Het exmen duurt u. Veel succes!. Bereken lle

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck Antwoorden Doeboek 1 Kijk op kegelsneden Rob vn der Wll en Liesbeth de Clerk 1 De 3 4 ) 5 Een 6 Als 7 8 ) 9 De Nee, lle punten die 1 entimeter vn het midden liggen, liggen op de irkel. gevrgde figuur bestt

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

Kansrekening en dynamica als basis voor breed wiskundeonderwijs 2

Kansrekening en dynamica als basis voor breed wiskundeonderwijs 2 Knsrekening en dynmic ls bsis voor breed wiskundeonderwijs Joost Hulshof en Ronld Meester c Reproductie lleen in overleg met de uteurs. Alle rechten voorbehouden. 1 Voorwoord In de eerste cursus hebben

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Uitwerking herkansing Functies en Reeksen

Uitwerking herkansing Functies en Reeksen Uitwerking herknsing Functies en Reeksen 3 jnuri 14, 9: - 1: uur Opgve 1 () De functie ' is prtieel differentieerbr, met prtiële fgeleiden @'.x; y/ D.1; 1/T en @x @' @y.x; y/ D. v; v/t : Deze prtiële fgeleiden

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

3 Exponentiële functies en logaritmische functies

3 Exponentiële functies en logaritmische functies Eponentiële functies en logritmische functies Bij wiskunde B heb je l eerder te mken gehd met eponentiële en logritmische functies. In dit hoofdstuk gn we er wt dieper op in en lten we een ntl toepssingen

Nadere informatie

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel Rpportge Enquête ondergrondse fvlinzmeling Zltommel Enquête ondergrondse fvlinzmeling Zltommel VERSIEBEHEER Versie Sttus Dtum Opsteller Wijzigingen Goedkeuring Door Dtum 0.1 onept 4-11-09 VERSPREIDING

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar. Hertentmen Elektriciteit en Mgnetisme 1 Woensdg 14 juli 2011 09:00-12:00 Schrijf op elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke opgve op een prt vel. Dit tentmen bestt uit 4 vrgen. Alle vier

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correctievoorschrift VWO 04 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vksecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Op zoek naar talent en ambitie!

Op zoek naar talent en ambitie! Ersmus MC Desiderius School vn begrijpen nr beslissen Op zoek nr tlent en mbitie! Geneeskunde studeren in Rotterdm Decentrle selectie 2011-2012 Wt hebben we jou te bieden? Sterke knten vn het onderwijsprogrmm

Nadere informatie

Hoofdstuk 8 Beslissen onder risico en onzekerheid

Hoofdstuk 8 Beslissen onder risico en onzekerheid Hoofdstuk 8 Beslissen onder risico en onzekerheid 8.5 Tectronis Tectronis, een friknt vn elektronic, kn vn een nder edrijf een éénjrige licentie verkrijgen voor de fricge vn product A, B of C. Deze producten

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

Puntenslijper-robot. Stuklijst. Afmetingen (mm)

Puntenslijper-robot. Stuklijst. Afmetingen (mm) 108.535 Puntenslijper-robot Stuklijst Antl Afmetingen (mm) Houten blokje 1 50x50x50 Houten blokje 1 40x40x40 Houten ltje 1 250x15x15 Multiplex 1 200x200x4 Dubbele puntenslijper 1 25x25x15 Ktrolwiel, met

Nadere informatie

Trendanalyse huurwoningmarkt Verkorten inschrijfduur en leegstandtijd

Trendanalyse huurwoningmarkt Verkorten inschrijfduur en leegstandtijd Verkorten inschrijfduur en leegstndtijd Pul Kooij 165419 Msterproject Business Mthemtics & Informtics Stgeverslg Zig Websoftwre B.V. Botterstrt 51 C 171 XL Huizen Vrije Universiteit Amsterdm Fculteit Copyright

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

Wiskundige Structuren

Wiskundige Structuren wi1607 Wiskundige Structuren Cursus 2013/2014 Ev Coplkov Bs Edixhoven Lenny Telmn Mrk Verr i Inhoudsopgve I Verzmelingen en fbeeldingen........................................... 2 I.1 Nottie....................................................................

Nadere informatie

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur Fculteit Biomedische Technologie Tentmen OPTICA (8N040) 15 ugustus 013, 9:00-1:00 uur Opmerkingen: 1) Lijsten met de punten toegekend door de corrector worden op OASE gepubliceerd. De ntwoorden vn de opgven

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

Z- ß- ßr!2f int tçotg

Z- ß- ßr!2f int tçotg Z- ß- ßr!2f int tçotg A n s I u iti n g sco nve n nt "De Bouw Werkt ln Noordoost Brbnt" Er is een convennt gesloten De Bouw Werkt in Noordoost Brbnt. Eén vn de doelstellingen vn het convennt is het uitbreiden

Nadere informatie

ELEKTROMAGNETISME 1-3AA30

ELEKTROMAGNETISME 1-3AA30 ELEKTROMAGNETISME - 3AA3 9 rt 8, 4. 7. uur Geef bij iedere toepssing vn een kring- of oppervlkte-integrl duidelijk n lngs welke weg of over welk oppervlk wordt geïntegreerd Het forulebld en beoordelingsforulier

Nadere informatie

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat Modelvrgstukken Algebr vn wortelvormen Tenzij expliciet nders vermeld stellen lle letters positieve getllen voor Vereenvoudigen vn enkelvoudige wortels ; Dit is gewoon de bsisregel ) ) 8 ) ; ) Een 8-ste

Nadere informatie

3 Onderfunderingen en funderingen... 5 4 Verhardingen... 6 5 Wanneer proeven uit te voeren?... 6 5.1 Plaatproeven...6 5.2 Proctorproeven...

3 Onderfunderingen en funderingen... 5 4 Verhardingen... 6 5 Wanneer proeven uit te voeren?... 6 5.1 Plaatproeven...6 5.2 Proctorproeven... Inhoudsopgve 1 Inleiding... 1 2 Anvullingen... 2 2.1 Anvullingen met geleverd nvulmteril...2 2.2 Anvullingen met tussentijds gestockeerde grond...4 2.3 Grondverbetering...4 3 Onder funderingen... 5 4 Verhrdingen...

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correctievoorschrift VWO 05 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

HANDLEIDING FOKWAARDEN 2014. Informatie & Inspiratie document Met uitleg over het hoe en waarom van de fokwaarden

HANDLEIDING FOKWAARDEN 2014. Informatie & Inspiratie document Met uitleg over het hoe en waarom van de fokwaarden HANDLEIDING FOKWAARDEN 2014 Informtie & Inspirtie document Met uitleg over het hoe en wrom vn de fokwrden Missie Al ruim 25 jr ondersteunt ELDA bedrijven in de grrische sector, en het is voor ons een belngrijke

Nadere informatie

Wiskundige Analyse 1

Wiskundige Analyse 1 Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe

Nadere informatie

naam werkboek groep 5

naam werkboek groep 5 nm werkboek groep 5 blok 8 les Reken uit tussen streepjes. 333 + 53 =............ 73 + 05 =............ 66 + 8 =............ 33 + 357 =............ 64 + 4 =............ 7 + 63 =............ 08 + 409 =...

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk I. Lineire Algebr Les 4 Eigenwrden en eigenvectoren In het voorbeeld vn de verspreiding vn de Euro-munten hebben we gezien hoe we de mix vn munten n floop vn n jr uit de n-de mcht A n vn de overgngsmtrix

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT Vrg 1 Zij gegeven de volgende declrtie in Eiffel Gui : STUDENT in de veronderstelling dt er een klssentekst bestt voor de klsse STUDENT. Welke vn de volgende uitsprken is wr: A. N uitvoering vn de instructie

Nadere informatie

PROCEDURE SCHADEMELDING - VASTGOED -

PROCEDURE SCHADEMELDING - VASTGOED - PROCEDURE SCHADEMELDING - VASTGOED - Afdeling Finnciën Gemeente Molenwrd Procedure Schdemelding Vstgoed versie 1.0 - pg. 1 Gemeente Molenwrd Inhoud Inleiding 1. Algemene beplingen 1.1 Schde melding 1.2.Schde

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

#JONGERENGIDS. @student @werkzoekende @werknemer. Toegankelijke gezondheid voor iedereen!

#JONGERENGIDS. @student @werkzoekende @werknemer. Toegankelijke gezondheid voor iedereen! #JONGERENGIDS @student @werkzoekende @werknemer Socilistische Mutuliteit vn brbnt Toegnkelijke gezondheid voor iedereen! betlt 40 /jr De Socilistische Mutuliteit terug voor je nticonceptie Love4you.be

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

EXAMENONDERDEEL ELEKTRONISCHE INSTRUMENTATIE (5GG80) gehouden op woensdag 22 juni 2005, van tot uur.

EXAMENONDERDEEL ELEKTRONISCHE INSTRUMENTATIE (5GG80) gehouden op woensdag 22 juni 2005, van tot uur. Technische Universiteit Eindhoven Fculteit Elektrotechniek EXAMENONDEDEEL ELETONISCHE INSTUMENTATIE (5GG8) gehouden op woensdg juni 5, vn 4. tot 7. uur. Het geruik vn het collegedictt Elektronische Instrumenttie

Nadere informatie