Uitwerking Tentamen Analyse B, 28 juni lim

Maat: px
Weergave met pagina beginnen:

Download "Uitwerking Tentamen Analyse B, 28 juni lim"

Transcriptie

1 Uitwerking Tentmen Anlyse B, 8 juni 0 Opgve [5pt] Bereken Hint: b = e b log. lim ( sin(π. Zij I =], [. Voor lle I \ {} geldt dt Definieer ( sin(π = e log( sin(π = e log sin(π. ϕ( = f(, f( = log, g( = sin(π. g( De functies f en g zijn continu differentieerbr op I met de fgeleiden f ( = en g ( = π cos(π. Verder hebben we f( = log( = 0 en g( = sin(π = 0, terwijl g ( < 0 voor lle I. De regel vn de l Hôpitl is dus toepsbr en geeft De eponentiële functie is continu, dus f( lim ϕ( = lim g( = f ( g ( = π = π. lim ( sin(π = lim e ϕ( = e lim ϕ( = e π. Opgve [5pt] Bewijs dt rctn rctn y y voor lle, y R. De functie f(u = rctn u is continu differentieerbr op R met f (u = + u. Merk op dt f (u voor lle u R. Als = y R dn f( f(y = 0 = y. Zij, y R twee verschillende reële getllen. Als > y, dn bestt er wegens de middelwrdestelling een u ]y, [ zo dt f( f(y = f (u( y. Hieruit volgt dt ofwel f( f(y y. f( f(y = f (u( y = f (u y y

2 Als < y dn bestt er wegens dezelfde stelling een u ], y[ met f(y f( = f (u(y, wruit steeds blijkt dt f( f(y y. Opgve [0pt] Zij D = [ ] [ 0, π 0, π ]. Beschouw de functie f : D R gedefinieerd door f(, y = sin + sin y + sin( + y. ( [5pt] Geef een bovengrens en een ondergrens vn f op D. Voor iedere ξ R geldt sinξ. Met de driehoeksongelijkheid hebben we ofwel f(, y = sin + sin y + sin( + y sin + siny + sin( + y + + = 5 5 f(, y 5 voor lle (, y R en dus voor lle (, y D. Dus is M = 5 een bovengrens en is m = 5 een ondergrens vn f. Wegens sin ξ 0 voor ξ [0, π], zien we dt f(, y 0 voor lle (, y D. Uit f(0, 0 = 0 volgt dn dt min D f = 0. (b [0pt] Lt zien dt er één sttionir punt ( 0, y 0 vn f in D is met cos 0 = cosy 0 =. De functie f is differenteerbr op R met de prtiële fgeleiden = cos + cos( + y, y = cosy + cos( + y. De sttionire punten vn f zijn oplossingen vn het stelsel = 0, y = 0, ofwel { cos + cos( + y = 0, cosy + cos( + y = 0. Zij ( 0, y 0 D een oplossing vn het stelsel. Dn moet cos 0 = cosy 0 gelden. Omdt cos een strikt monotoon dlende functie op [0, π ] is, concluderen we dt 0 = y 0. Dit impliceert dt 0 voldoet n de vergelijking cos 0 + cos( 0 = 0 ofwel cos 0 + cos 0 = 0. Definieer t = cos 0. Dn krijgen we de kwdrtische vergelijking t + t = 0,

3 die twee oplossingen heeft, nl. t = + en t =, wrvn t oncceptbel is wegens t >. Voor t is het evident dt 0 < t <. Dus is er één 0 [0, π ] zo dt cos 0 = cosy 0 =. (c [5pt] Bepl de minimle en mimle wrden vn f op D. De functie f : D R is continu en de verzmeling D R is begrensd en gesloten. Dus neemt f zijn minimle en mimle wrden n in D: Er zijn punten (p, q D en (P, Q D zo dt f(p, q f(, y f(p, Q voor lle (, y D. We hebben l gezien dt f(0, 0 een minimle wrde is vn f in D. De mimle wrde kn genomen worden óf in een inwendig punt (ξ, η inw(d óf in een punt (ξ, η op de rnd D vn D. Als (ξ, η inw(d dn moet dit punt een sttionir punt zijn. Mr f heeft slechts één sttionir punt in inw(d, nl. ( 0, y 0 met y 0 = 0. De wrde vn de functie in dit punt berekenen we s volgt: f( 0, 0 = 4 sin 0 + sin( 0 = sin 0 ( + cos 0 = cos 0 ( + cos 0. Dit leidt tot ( ( f( 0, 0 = + = ( +. Om de mimle wrde vn f op D te beplen, merk eerst op dt f(, y symmetrisch is t..v. de verwisseling vn de rgumenten. Het is dus genoeg om de mimle wrden vn f op de segmenten L = {(, y D y = 0} en R = {(, y D = π } te berekenen. De beperking vn f tot L is de functie ψ( = f(, 0 = sin. Deze functie is strikt monotoon stijgend met ( π m ψ = sin = en min ψ = sin0 = 0. [0, π ] [0, π ] De beperking vn f tot R is gegeven door ( π ϕ(y = f, y = siny + cosy +. Zijn fgeleide ϕ (y = cosy sin y is gelijk n nul in één punt y [0, π ] met tn y =. Dit impliceert dt cosy =, siny = cos y =. 5 5 De wrden vn ϕ in de rndpunten y = 0 en y = π zijn ( π ϕ(0 = en ϕ = 4, terwijl de wrde vn ϕ in het inwendig punt y ]0, π [ is ϕ(y = = + 5.

4 Deze wrde is de mimle wrde vn f op D, omdt ϕ(y > 4. Nu moeten we de positieve getllen α = f( 0, 0 en β = ϕ(y = f(0, y met elkr vergelijken. We hebben (α 9 = 08 > 80 = (β 9, wruit blijkt dt α > β. De mimle wrde vn f is dus genomen in het punt ( 0, 0, d.w.z. m D f = ( +. Opgve 4 [5pt] Zij < b en lt f : [, b] R een continue functie zijn. Neem drie willekeurige punten k [, b], k =,,. Lt zien dt er een punt ξ [, b] bestt zo dt f(ξ = f( + f( + f(. Hint: Definieer een functie g : K R wrin K = [, b] [, b] [, b] door de formule g(,, = f( + f( + f( en bewijs dt g(k = [c, d] wrin c = min f en d = m f. [,b] [,b] De functie f is een continue functie op een begrensd en gesloten intervl. Definieer c = min [,b] f, d = m [,b] f. Dn bestn ξ, η [, b] zo dt c = f(ξ en d = f(η. Bovendien geldt dt f([, b] = [c, d]. Voor iedere (,, K geldt ( min f + min f + min f f( + f( + f( ( m [,b] [,b] [,b] f + mf + m f [,b] [,b] [,b] ofwel c = min [,b] f g(,, m [,b] f = d. Dit betekent dt g(k [c, d]. Verder geldt g(ξ, ξ, ξ = c en g(η, η, η = d. Zij γ(t = ( tξ + tη, t [0, ]. Dn en (γ(t, γ(t, γ(t K voor lle t [0, ] (γ(0, γ(0, γ(0 = (ξ, ξ, ξ, (γ(, γ(, γ( = (η, η, η. De functie t ϕ(t = g(γ(t, γ(t, γ(t is continu op [0, ] en ϕ(0 = c, ϕ( = d. Met de tussenwrdestelling volgt dt [c, d] g(k. We hebben dus g(k = [c, d] = f([, b]. Neem een willekeurig punt (,, K. Dn y = g(,, [c, d]. Dus is er een punt ξ [, b] wrvoor f(ξ = y ofwel f(ξ = g(,,. Opgve 5 [5pt] Zij < b en lt f : [, b] R een Riemnn-integreerbre functie zijn. We willen in deze opgve bewijzen dt voor iedere ε > 0 er een continue functie ϕ : [, b] R bestt zo dt f( ϕ( d < ε. 4 (

5 ( [0pt] Neem een ε > 0. Bewijs dt er een stuksgewijs constnte (stp functie ψ : [, b] R bestt zo dt f( ψ( d < ε. Neem een ε > 0. Omdt f : [, b] R Riemnn-integreerbr is, bestt er een verdeling V vn [, b], V = { = 0 < < < < n = b}, zo dt S(f, V S(f, V < ε, wrbij S(f, V en S(f, V boven- en ondersomen vn f t..v. V zijn, resp. We weten dt voor iedere verdeling Hieruit volgt dt S(f, V f( d S(f, V. f( d S(f, V < ε. Definieer en (zie het pltje. m j = inf f, j =,,..., n, [ j, j] { mj ψ( = j < j, j =,,...,n; m n = n. y m n m m = 0 n = b Dn f( ψ( voor lle [, b], de functie ψ : [, b] R is Riemnn-integreerbr en n S(f, V = m j ( j j = j= ψ( d. Dus f( ψ( d = (f( ψ(d = f( d S(f, V < ε. 5

6 (b [0pt] Ps de functie ψ n tot een continue functie ϕ : [, b] R zo dt ψ( ϕ( d ε. Zij h = min j n j j. Beschouw i, i =,,...,n en neem een zo dt 0 < < h. Als m i m i+ dn pssen we de functie ψ rondom i ls volgt ψ m i+ m i ϕ ϕ m i ψ m i+ i i en noem de nieuwe functie ϕ. De functie ϕ : [, b] R is continu en voldoet n Dit implicieert dt wrin i+ i ψ( ϕ( d = m i+ m i voor i =,,..., n. n ψ( ϕ( d = m i+ m i = M i= n M = m i+ m i. i= Kies nu zo dt 0 < < h en M ε. Dn geldt ψ( ϕ( d ε. (c [5pt] Bewijs dt voor deze functie ϕ geldt (. We hebben f( ϕ( f( ψ( + ψ( ϕ( voor lle [, b]. De bsolute wrde vn het verschill vn twee Riemnn-integreerbre functies is Riemnn-integreerbr. Dus levert de integrtie vn deze ongelijkheid de beoogte schtting f( ϕ( d f( ψ( d + ψ( ϕ( d ε + ε = ε. 6

7 Bonus Opgve [0pt] Zij f : R R een begrensde en twee keer continu-differentieerbre functie. Bewijs dt er een punt 0 R is zo dt f ( 0 = 0. Merk eerst op dt de functies f (, f ( en f( lleml continu zijn op R en dus Riemnn-integreerbr op iedere begrensd en gesloten intervl. Stel dt f ( 0 voor lle R. Dn óf f ( > 0 óf f ( < 0 voor lle R. Beschouw eerst het gevl f ( > 0. Wegens f ( > 0 is de functie f ( strikt momotoon stijgend op R. Er is dus een punt R zo dt f ( 0. De Hoofdstelling vn de Integrlrekening impliceert dt en vervolgens f( = f( + = f( + f (t = f ( + f (t dt t ( f ( + = f( + f (( + f (ξ dξ t f (ξ dξ dt ( t f (ξ dξ dt. Mr Dus ( t f (ξ dξ dt 0 voor lle R. f( f( + f (( voor lle R. Deze ongelijkheid betekent dt de grfiek vn f( boven de grfiek vn de lineire functie g( = f( + f (( ligt voor lle (en deze lijn rkt in het punt (, f(: f( f( f( g( g( f( Als f ( > 0 dn is g( niet nr boven begrensd s +, en dus f( ook niet. Als f ( < 0 dn is g( niet nr boven begrensd s, en dus f( ook niet. In beide gevllen krijgen we een tegensprk met de begrensheid vn f. Dus kn f ( niet strikt positief zijn. Het gevl f ( < 0 geeft op soortgelijke wijze dt f ( niet strikt negtief kn zijn. Er moet dus een punt 0 R bestn zo dt f ( 0 = 0. 7

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u == Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking

Nadere informatie

2 Opgaven bij Hoofdstuk 2

2 Opgaven bij Hoofdstuk 2 2 Opgven bij Hoofdstuk 2 Opgve 2. De functie f : R 2 R is gedefinieerd door ) Bewijs dt f continu is op R 2 \ {(, )}. f(, y) = 2 y 2 + y 2 ls (, y) (, ) f(, ) =. b) Bewijs dt voor iedere R de functie y

Nadere informatie

De stelling van Rolle. De middelwaardestelling

De stelling van Rolle. De middelwaardestelling De stelling vn Rolle Als f : [, b] R, continu is op [, b] en differentieerbr op (, b) en f() = f(b) dn is er een c (, b) zodt f (c) = 0. De middelwrdestelling Als f : [, b] R, continu is op [, b] en differentieerbr

Nadere informatie

Analyse I: antwoorden

Analyse I: antwoorden 1ste Kndidtuur Burgerlijk Ingenieur Acdemiejr 2002-2003 1ste semester 16 jnuri 2003 Anlyse I: ntwoorden 1. Formuleer en bewijs de formule vn Tylor voor een functie f : R R. Stel de formules op voor de

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

Uitwerking herkansing Functies en Reeksen

Uitwerking herkansing Functies en Reeksen Uitwerking herknsing Functies en Reeksen 3 jnuri 14, 9: - 1: uur Opgve 1 () De functie ' is prtieel differentieerbr, met prtiële fgeleiden @'.x; y/ D.1; 1/T en @x @' @y.x; y/ D. v; v/t : Deze prtiële fgeleiden

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 5 De tweevoudige integrl collegejr : 8-9 college : 5 build : 27 ugustus 28 slides : 48 Vndg dubbel en De tweevoudige integrl en inhoud 2 Herhlde integrl 3 4 Poolcoördinten intro VA Wt is een integrl?

Nadere informatie

Wiskundige Analyse 1

Wiskundige Analyse 1 Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe

Nadere informatie

Tentamen Numerieke Wiskunde (WISB251)

Tentamen Numerieke Wiskunde (WISB251) 1 Tentmen Numerieke Wiskunde (WISB251) Mk één opgve per vel en schrijf op ieder vel duidelijk je nm en studentnummer. Lt duidelijk zien hoe je n de ntwoorden komt. Onderstnde formules en stellingen mg

Nadere informatie

Basiswiskunde Een Samenvatting

Basiswiskunde Een Samenvatting Bsiswiskune Een Smenvtting Verzmelingen N: ntuurlijke getllen, nl.,, 3,... Z: gehele getllen, nl....,,, 0,,,... Q: rtionle getllen,.w.z. breuken vn gehele getllen R: reële getllen, us lle getllen op e

Nadere informatie

2 Verwisselingsstellingen en oneigenlijke integralen

2 Verwisselingsstellingen en oneigenlijke integralen 2 Verwisselingsstellingen en oneigenlijke integrlen 2.1 Verwisseling vn de differentitievolgorde Lt V een open deelverzmeling vn R 2 zijn, en f : V R een reëelwrdige funtie op V die prtieel differentieerbr

Nadere informatie

Inhoud college 7 Basiswiskunde

Inhoud college 7 Basiswiskunde Inhoud college 7 Bsiswiskunde 3.3 De ntuurlijke logritme en de exponentiële functie (zie college 6) 5.1/3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 5.5 De hoofdstelling vn Clculus 2.10

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Syllabus Analyse 2A. door T. H. Koornwinder

Syllabus Analyse 2A. door T. H. Koornwinder Syllbus Anlyse 2A door T. H. Koornwinder Universiteit vn Amsterdm, Fculteit der Ntuurwetenschppen, Wiskunde en Informtic, Korteweg-de Vries Instituut voor Wiskunde september 2001 Deze syllbus geeft de

Nadere informatie

Continuïteit en Nulpunten

Continuïteit en Nulpunten Continuïteit en Nulpunten 1 1 Inleiding Continuïteit en Nulpunten In de wiskunde wordt heel vk gebruik gemkt vn begrippen ls functie, functievoorschrift, grfiek, Voor een gedetilleerde inleiding vn deze

Nadere informatie

Primitieve en integraal

Primitieve en integraal Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 4 Primitieve en integrl Een motivtie om nr de fgeleide vn een functie f te kijken is het beplen vn de richtingscoëfficiënt vn de rklijn

Nadere informatie

Bespreking Examen Analyse 1 (Juni 2007)

Bespreking Examen Analyse 1 (Juni 2007) Bespreking Exmen Anlyse 1 (Juni 2007) Voorf: Zols ik ook vorig jr in juni en in september gedn heb, geef ik hier bedenkingen bij het exmen vn deze junizittijd. Ik zorg ervoor dt deze tekst op toledo komt,

Nadere informatie

Dictaat Functies en Reeksen. E.P. van den Ban

Dictaat Functies en Reeksen. E.P. van den Ban Dictt Functies en Reeksen E.P. vn den Bn c Mthemtisch Instituut Universiteit Utrecht Herzien, Juli 2019 Voorwoord Dit dictt is ontstn uit een npssing vn het dictt Functies en Reeksen vn Prof.dr. J.J.

Nadere informatie

Ongelijkheden groep 2

Ongelijkheden groep 2 Ongelijkheden groep Rvi & Cuchy-Schwrz Trnstrendtriningsdg (triningsdg, 6 mrt 009 Cuchy-Schwrz Cuchy-Schwrz Voor reële getllen x,, x n en y,, y n geldt: x i y i en bijgevolg x i y i n n met gelijkheid

Nadere informatie

Dictaat Functies en Reeksen. E.P. van den Ban

Dictaat Functies en Reeksen. E.P. van den Ban Dictt Functies en Reeksen E.P. vn den Bn c Mthemtisch Instituut Universiteit Utrecht Augustus 2014 Voorwoord Dit dictt is ontstn uit een npssing vn het dictt Functies en Reeksen vn Prof.dr. J.J. Duistermt,

Nadere informatie

1.1 Terug naar Archimedes met simpele voorbeelden

1.1 Terug naar Archimedes met simpele voorbeelden 1 Integrlrekening Woord voorf: ik verwijs f en toe nr het groene boekje Wiskunde in je Vingers met Ronld Meester [HM]. Onderstnde tekst bevt net ls [HM] geen pltjes. Het is verstndig en leerzm om die zelf

Nadere informatie

Resultatenoverzicht wiskunde B

Resultatenoverzicht wiskunde B Resulttenoverzicht wiskunde B In dit document zijn door dpt Wiskunde lle resultten vn het VWO-eindexmenprogrmm beknopt smengevt m.u.v. het domein Voortgezette Meetkunde. Kijk voor meer informtie op: www.dptwiskunde.nl.

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Kwantummechanica Donderdag, 6 oktober 2016 OPGAVEN SET HOOFDSTUK 3 - OPLOSSINGEN

Kwantummechanica Donderdag, 6 oktober 2016 OPGAVEN SET HOOFDSTUK 3 - OPLOSSINGEN 1 Kwntummechnic Donderdg, 6 oktober 16 OPGAVEN SET HOOFDSTUK 3 - OPLOSSINGEN ALGEMENE VRAGEN Opgve 1: De golunctie Ψx, t voor de lgste energietoestnd vn een eenvoudige hrmonische oscilltor, bestnde uit

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Eindexamen vwo wiskunde B pilot I

Eindexamen vwo wiskunde B pilot I Onfhnkelijk vn mimumscore 5 f ' ( x) = e + ( + ) e f' ( x ) = 0 voor x = f ( ) = (dus P (, ) ) e e Hieruit volgt dt lle punten P dezelfde y-coördint hebben, dus liggen l deze punten op één (horizontle)

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn.

n=0 en ( f(y n ) ) ) n=0 equivalente rijen zijn. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 8 juli 2011, 14.00 17.00 Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek Analysis I. Geef

Nadere informatie

Wiskundige Analyse I:

Wiskundige Analyse I: Universiteit Gent Fculteit Ingenieurswetenschppen en Architectuur Wiskundige Anlyse I: uittreksel ten behoeve vn de Open Lessen F Brckx & H De Schepper Vkgroep Wiskundige Anlyse Acdemiejr 25-26 Voorwoord

Nadere informatie

IMO-selectietoets II donderdag 30 mei 2019

IMO-selectietoets II donderdag 30 mei 2019 IMO-seletietoets II donderdg 30 mei 019 NEDERLANDSE W I S K U N D E OLYMPIADE Uitwerkingen Opgve 1. Op een middelbre shool zit in elke kls een oneven ntl leerlingen. Verder heeft elke leerling een beste

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

2) Kegelsneden (in basisvorm)

2) Kegelsneden (in basisvorm) ) Kegelsneden (in sisvorm) In dit hoofdstuk werken we ltijd in een Euclidisch geijkt ssenstelsel. ) De rool Definitie De rool is de meetkundige lts vn de unten wrvoor de fstnd tot een gegeven unt F gelijk

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Differentiatie van functies

Differentiatie van functies Deel II Clculus Wiskunde voor kunstmtige intelligentie, 004 Les 6 Differentitie vn functies Wrscijnlijk eeft iedereen wel een idee ervn wt een functie is, mr voor de duidelijkeid erlen we voor de meest

Nadere informatie

Parels van studenten tijdens een examen

Parels van studenten tijdens een examen Prel 1 Prels vn studenten tijdens een exmen c k x k n+1 n+1 ( = c k x k ( ) )x c n+1x n+1 n+1 k ( ) k x n+1 k ( ) k k k Prel 2 Vrg: Zij n N, c k C voor k = 1,..., n, c n 0. Toon n dt de functie f(z) =

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel A Clculus Anbevolen ctergrondlitertuur met veel opgven (en oplossingen): Frnk Ayres: (Scum s Outline of Teory nd Problems of) Clculus. McGrw-Hill Compnies, 999, 578 p., ISBN: 749736. Micel Spivk:

Nadere informatie

Fractionele calculus

Fractionele calculus Universiteit Utrecht Deprtement Wiskunde Bchelorscriptie Wiskunde TWIN Wiskunde en Ntuurkunde Frctionele clculus Een studie vn fgeleiden en integrlen vn niet-gehele orde Auteur: M.A. Lip Studentnummer

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Inleiding Analyse. Dictaat. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2009, herzien

Inleiding Analyse. Dictaat. E.P. van den Ban. c Mathematisch Instituut Universiteit Utrecht Voorjaar 2009, herzien Inleiding Anlyse Dictt E.P. vn den Bn c Mthemtisch Instituut Universiteit Utrecht Voorjr 2009, herzien -5 -4 Introductie Dit dictt wordt gebruikt bij het eerstejrs college Inleiding Anlyse. Het is ls op

Nadere informatie

Tentamen: Kansrekening en Statistiek P0099

Tentamen: Kansrekening en Statistiek P0099 Fculteit Economie en Bedrijfskunde Tentmen: Knsrekening en Sttistiek 1 6011P0099 Tentmendtum & -tijd: 15 december 015, 1:00 17:00 Studiejr 015-016 Duur vn het tentmen: 3 uur Legitimtie: U dient zich te

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1},

(iii) intervallen, bijvoorbeeld afgesloten intervallen zoals D = [0, 1] := {x en halfopen intervallen zoals D = (0, 1] := {x R 0 < x 1}, Hoofdstuk II Clculus Les Differentitie vn functies Wrscijnlijk eeft iedereen wel een idee ervn wt een functie is, mr voor de duidelijkeid zl et ndig zijn om de meest belngrijke begrippen n te gn en fsprken

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

ANALYSE IN MEER VARIABELEN JUNI , 13:30-16:30

ANALYSE IN MEER VARIABELEN JUNI , 13:30-16:30 Docent: J. vn de Leur Assistent: J.L. vn der Leer Durn ANALYSE IN MEER VARIABELEN JUNI 6 03, 3:30-6:30 Exercise (5 pt) Lt T de torus in R 3 prmetristie zijn die gegeven wordt door de Φ(α, θ) = (( + cos

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

PR en QR snijden de grote as van E in respectievelijk U en V. Bewijs dat de vector UV. x 2y. a 4b. sin sin cos cos. a b 2 2. cos cos, sin sin.

PR en QR snijden de grote as van E in respectievelijk U en V. Bewijs dat de vector UV. x 2y. a 4b. sin sin cos cos. a b 2 2. cos cos, sin sin. Oplossing Op e ellips E neem je twee vste punt P Q e vernderlijk punt R De middelloodlijn vn e constnte PR QR snijd de grote s vn E in respectievelijk U V Bewijs dt de vector UV vector is (dus onfhnkelijk

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eindemen wiskunde B vwo 7-I Beoordelingsmodel Podiumverlichting mimumscore sin α = r 65 V 65 r r r 65 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 65 65 = 9+ 9+ 9 + mimumscore 5 65 9 + = geeft

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

De Stieltjes-integraal in een Banachruimte

De Stieltjes-integraal in een Banachruimte M. Dems De Stieltjes-integrl in een Bnchruimte Bchelorscriptie, 26 ugustus 213 Scriptiebegeleider: dr. O. vn Gns Mthemtisch Instituut, Universiteit Leiden 1 Inleiding De Stieltjes-integrl is vernoemd nr

Nadere informatie

Formularium Analyse I

Formularium Analyse I Formulrium Anlyse I Getllen, functies en rijen coördintenstelsels: poolcoördinten (r, θ) sferische coördinten (r, θ, ϕ) x = r cos θ y = r sin θ cylindrische coördinten (u, θ, z) x = r sin ϕ cos θ r 0 y

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal

Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, , Examenzaal Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 26 augustus 2010, 14.00 17.00, Examenzaal Het gebruik van een rekenmachine en/of telefoon is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren

Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren Dit is in feite de ongelijkheid van Cauchy Schwarz voor het standaardinproduct in R s van de vectoren a = (a 1,..., a s ) en b = (b 1,..., b s ). Toepassing van deze Cauchy Schwarz-ongelijkheid levert

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar. Hertentmen Elektriciteit en Mgnetisme 1 Woensdg 14 juli 2011 09:00-12:00 Schrijf op elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke opgve op een prt vel. Dit tentmen bestt uit 4 vrgen. Alle vier

Nadere informatie

a b x-as g(x) is stijgend op [a,b]

a b x-as g(x) is stijgend op [a,b] Functieonderzoek In dit hoofdstuk wordt de grfiek vn functies besproken. Voordt we het pltje kunnen tekenen moeten we ntl zken uitzoeken. Te denken vlt n domein, nulpunten, mim, minim, symptoten en buigpunten.

Nadere informatie

Dit dictaat bevat een serie uitgewerkte voorbeeldopgaven. Deze zijn naar onderwerp geordend, waarvan de volgorde overeenkomt met die van het boek.

Dit dictaat bevat een serie uitgewerkte voorbeeldopgaven. Deze zijn naar onderwerp geordend, waarvan de volgorde overeenkomt met die van het boek. Beste studenten Dit dictt bevt een serie uitgewerkte voorbeeldopgven Deze zijn nr onderwerp geordend, wrvn de volgorde overeenkomt met die vn het boek De keuze vn de onderwerpen is tot stnd gekomen n studenten

Nadere informatie

V.2 Limieten van functies

V.2 Limieten van functies V.2 Limieten van functies Beschouw een deelverzameling D R, een functie f: D R en zij c R. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Studiewijzer Wiskunde 2 voor B (2DB10, 2DB40), cursus 2005/2006.

Studiewijzer Wiskunde 2 voor B (2DB10, 2DB40), cursus 2005/2006. Studiewijzer Wiskunde voor B (DB0, DB40), cursus 005/006. Inleiding In de cursus Wiskunde voor B (DB0, DB40) wordt gebruikt het boek Clculus, Robert T. Smith, Rolnd B. Minton, second edition, Mc Grw Hill,

Nadere informatie

Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde. vrijdag 1 februari 2013, 8:30 12:30

Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde. vrijdag 1 februari 2013, 8:30 12:30 Examen G0U13B Bewijzen en Redeneren (6 sp.) Bachelor of Science Wiskunde vrijdag 1 februari 2013, 8:30 12:30 Geef uw antwoorden in volledige, goed lopende zinnen. Het examen bestaat uit 5 vragen. Begin

Nadere informatie

V.4 Eigenschappen van continue functies

V.4 Eigenschappen van continue functies V.4 Eigenschappen van continue functies We bestuderen een paar belangrijke stellingen over continue functies. Maxima en minima De stelling over continue functies die we in deze paragraaf bewijzen zegt

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

wiskunde B vwo 2018-II

wiskunde B vwo 2018-II Loodrecht in de perfortie mimumscore + + + + + + f( ) + + + ( + ) Dus f( ) ( + + ) Dit geeft (+ + ) + + ( h ( )) (voor 0 ) + h ( ) + + + (voor 0 ) ( + ) Dus h ( ) Dit geeft + + + (voor 0 ) ( f( ) ) (voor

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

Formularium goniometrie

Formularium goniometrie Jr 6 : Formulrium 6u en 7u Formulrium goniometrie sin α cos α Definities : tn α cot α secα cscα cos α sin α cos α sin α Gevolg : tn α cot α cot α tn α Hoofdformule : cos sin Gevolg : tn sec cot csc α α

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

Inleiding Analyse 2009

Inleiding Analyse 2009 Inleiding Analyse 2009 Inleveropgaven A). Stel f(, y) = In (0, 0) is f niet gedefinieerd. We bestuderen y2 2 + y 4. lim f(, y). (,y) (0,0) 1. Bepaal de waarde van f(, y) op een willekeurige rechte lijn

Nadere informatie

ANTWOORDEN EN UITWERKINGEN TENTAMEN QUANTUMMECHANICA 2 VAN 31 MEI 2011

ANTWOORDEN EN UITWERKINGEN TENTAMEN QUANTUMMECHANICA 2 VAN 31 MEI 2011 ANTWOORDEN EN UITWERKINGEN TENTAMEN QUANTUMMECHANICA VAN MEI ) (Andere ntwoorden zijn niet noodzkelijk (geheel) incorrect) () Enkelvoudig ontrd ofwel niet-ontrd. Niveu met energie C= heeft een deeltje

Nadere informatie

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel.

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel. Tentmen Elektriciteit en Mgnetisme 1 Woensdg 11 juli 1 9:-1: Leg uw collegekrt n de rechterknt vn de tfel. Schrijf o elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke ogve o een rt vel. Dit tentmen

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2004-I

Eindexamen wiskunde B1-2 vwo 2004-I chten vn een derdegrdsfunctie Gegeven is de functie 3 2 1 3 4 4 f ( x) x x op het domein [0, 3]. V is het gebied ingesloten door de grfiek vn f en de x-s. 5p 1 ereken lgebrïsch de excte wrde vn de oppervlkte

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

3 Numerieke Integratie

3 Numerieke Integratie 3 NUMERIEKE INTEGRATIE 5 3 Numerieke Integrtie 3. Probleemstelling Gegeven een (voldoend gldde) functie f op een begrensd intervl [, b], bepl een bendering voor de integrl I := en geef een foutschtting

Nadere informatie

Opgaven Inleiding Analyse

Opgaven Inleiding Analyse Opgaven Inleiding Analyse E.P. van den Ban Limieten en continuïteit Opgave. (a) Bewijs direct uit de definitie van iet dat y 0 y = 0. (b) Bewijs y 0 y 3 = 0 uit de definitie van iet. (c) Bewijs y 0 y 3

Nadere informatie

WISKUNDE ANALYSE ECWI-WEWI 6/8. Rudy De Wever

WISKUNDE ANALYSE ECWI-WEWI 6/8. Rudy De Wever WISKUNDE ANALYSE 6-7 6 ECWI-WEWI 6/8 Rudy De Wever Inhoud. HERHALING AFGELEIDE VAN EEN REËLE FUNCTIE..... Definitie fgeleide in een niet-geïsoleerd punt vn het domein..... Rekenregels..... Herhlingsoefeningen....

Nadere informatie

Kwadratische reciprociteit

Kwadratische reciprociteit Kwdrtische recirociteit René Pnnekoek 9 februri 011 Inleiding: kwdrten in Z/Z Beschouw de ring Z/Z en een element Z/Z. We willen weten of een kwdrt is, oftewel of er x Z/Z bestt zodnig dt x. Voor concrete

Nadere informatie

Uitwerking tentamen Analyse B

Uitwerking tentamen Analyse B Uitwerking tentamen Analyse B 30 juni 20, 7:00 20:00 uur De hieronder gegeven uitwerkingen moeten worden opgevat als voorbeelden van correcte oplossingen. In veel gevallen zijn andere correcte oplossingen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Aanwijzingen bij vraagstukken distributies

Aanwijzingen bij vraagstukken distributies Aanwijzingen bij vraagstukken distributies Vraagstuk 9.7 Voor het eerste deel, test x x + iε 1 met een testfunctie. Voor het laatste deel: vind eerst bijzondere oplosssingen door de gesuggereerde procedure

Nadere informatie

ELEKTROMAGNETISME 1-3AA30

ELEKTROMAGNETISME 1-3AA30 ELEKTROMAGNETISME - 3AA3 9 rt 8, 4. 7. uur Geef bij iedere toepssing vn een kring- of oppervlkte-integrl duidelijk n lngs welke weg of over welk oppervlk wordt geïntegreerd Het forulebld en beoordelingsforulier

Nadere informatie

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f.

(b) Formuleer het verband tussen f en U(P, f), en tussen f en L(P, f). Bewijs de eerste. (c) Geef de definitie van Riemann integreerbaarheid van f. Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 2 juli 2015, 08:30 11:30 (12:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek Analysis

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks

1. (a) Formuleer het Cauchy criterium voor de convergentie van een reeks Radboud Universiteit Nijmegen Tentamen Analyse 1 WP001B 7 augustus 2015, 16:30 19:30 (20:30) Het gebruik van een rekenmachine, telefoon of tablet is niet toegestaan. U mag geen gebruik maken van het boek

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B (pilot) Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Formulekaart VWO 1. a k b n k. k=0

Formulekaart VWO 1. a k b n k. k=0 Formulekrt VWO 1 Formulekrt VWO Knsrekening Tellen n! = n (n 1)... 1 0! = 1 ( ) n n! = k k!(n k)! Binomium vn Newton: ( + b) n = n k=0 ( ) n k b n k k Knsrekening Voor toevlsvribelen X en Y geldt E(X +

Nadere informatie

Oefeningen Analyse I

Oefeningen Analyse I Inleiding Oefeningen Anlyse I Wil je de eventuele foutjes melden. Met dnk, Ynnick Meers e-mil: meers@skynet.be Hoofdstuk 5: Integrlen Oefening Gegeven: f is continu op [, b] en f(x) > in [, b] Drnst is

Nadere informatie

UNIVERSITEIT GENT FACULTEIT WETENSCHAPPEN. OPLEIDING baccalarius=batselier=bachelor WISKUNDE ANALYSE I

UNIVERSITEIT GENT FACULTEIT WETENSCHAPPEN. OPLEIDING baccalarius=batselier=bachelor WISKUNDE ANALYSE I UNIVERSITEIT GENT FACULTEIT WETENSCHAPPEN OPLEIDING bcclrius=btselier=bchelor WISKUNDE ANALYSE I Prof. J. Vinds Editie 2015-2016 Anlyse I behndelt Functies vn één reële vernderlijke. Met dnk n Prof. C.

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie week 4.8, maandag Faculteit EWI TU Delft Delft, 6 juni, 2016 1 / 33 Outline 1 Maximum-modulusprincipe Lemma van Schwarz 2 2 / 33 Maximum-modulusprincipe Lemma van Schwarz Maximum-modulusprincipe Stelling

Nadere informatie

Syllabus Analyse A3. door T. H. Koornwinder. Universiteit van Amsterdam, Faculteit WINS Vakgroep Wiskunde, cursus 1995/96

Syllabus Analyse A3. door T. H. Koornwinder. Universiteit van Amsterdam, Faculteit WINS Vakgroep Wiskunde, cursus 1995/96 Ter inleiding Syllbus Anlyse A3 door T. H. Koornwinder Universiteit vn Amsterdm, Fculteit WINS Vkgroep Wiskunde, cursus 995/96 Deze syllbus is een direct vervolg op de syllbus Anlyse A. Net ls dr gt het

Nadere informatie