Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Maat: px
Weergave met pagina beginnen:

Download "Werkblad TI-83: Over de hoofdstelling van de integraalrekening"

Transcriptie

1 Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5 In elk vn de figuren is ook een verticle lijn m getekend. De oppervlkte vn het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn de functie f en de lijn m, geven we n met F(), wrij de lijn m door het punt (, ) gt, wrij is. Zo is in de linker figuur F() gelijk n de oppervlkte vn het gekleurde driehoekje; we denken drij de lijn m door het punt (, ). Zodt in dit gevl: F () = = Opgve Bereken in de drie gevllen de wrde vn opvolgend F(), F(), F(), F(), F(). Hoe groot is in de drie gevllen F()? We zien dt de wrde vn F() fhnkelijk is vn (niet zo verwonderlijk overigens). Opgve Proeer in elk vn de drie gevllen een functievoorschrift voor F() te vinden; dus iets ls F() = 'uitdrukking in '. Is er drij een vernd tussen het functievoorschrift vn de functie F() en dt vn de functie f()? Zo j, welk vernd is dt dn? We doen vervolgens min of meer hetzelfde voor de functie f ( ) =. De oppervlkte vn het vlkdeel tussen de grfiek vn f, de positieve -s en de lijn m geven we ook nu n met F(). De wrden vn F(), F(), kunnen we (nog) niet direct erekenen. We geruiken drom de grfische rekenmchine (GR). Hoofdstelling integrlrekening (vs..) [] Copyright 7 PndD Softwre, Rotterdm

2 In de drie figuren hieroven is GR-erekening vn de wrde vn F(5) geïllustreerd. Zo'n erekening kun je ps uitvoeren ls de grfiek vn de functie f op het gewenste domein, en hier is dt [; 5], op het scherm vn de GR stt (instellen met [WINDOW]). De erekening zelf doe je met [CALC]7:Sf()d, wrij je eerst de LowerLimit (de linker grens vn het intervl; hier dus ) invoert, en drn de UpperLimit (de rechter grens vn het intervl; in dit gevl dus 5). De GR geeft dn een enderde uitkomst; hier is dt,667. De ecte wrde is. Opgve Neem onderstnde tel over en vul de ontrekende wrden in. Zet drij lle wrden die je met de GR vindt, om in ecte wrden (dt kn in lle gevllen!). F() F() 5 Je kn een functievoorschrift voor F() vinden. Doe dt! Is er ook hier een vernd tussen de functievoorschriften vn F() en f()? Zo j, welk vernd is dt dn?. Tellen We kunnen tellen zols in Opgve ook direct met de GR mken vi Lijsten (LIST), mits we op de juiste mnier in het [Y=] scherm de te geruiken oppervlktefunctie vstleggen (we zullen lter zien hoe dt precies moet). Deze oppervlktefunctie vinden we in het [MATH] menu ls 9:fnInt(. Hierin moeten we enkele prmeters, gescheiden door komm's, toevoegen: - de 'formule' vn de functie f(); - de vriele die ij de functie f hoort; dt is ijn ltijd de X; - de ondergrens vn de te erekenen integrl, meestl een getl; - de ovengrens vn de te erekenen integrl, eveneens meestl een getl. Het direct erekenen vn ijvooreeld vn de oppervlkte ij de functie f ( ) = + op het intervl [; ] geeft dn met geruikmking vn fnint op het rekenscherm vn de GR (>>>): Opgve Bereken nu, ter oefening, op de mnier ls hieroven stt, ook de oppervlkte ij de onderstnde functies op het drij vermelde intervl. Mk vn elke functie ook een schets vn de grfiek op het etreffende intervl. Hoofdstelling integrlrekening (vs..) [] Copyright 7 PndD Softwre, Rotterdm

3 . f ( ) = sin op [; ] c. h ( ) = sin op [; ]. g ( ) = op [; 9] d. k ( ) = op [-; ] Om geruik te kunnen mken vn de Lijsten vn de GR moeten we in het [Y=] menu twee functies definiëren: - de functie f ; hiervoor geruiken we meestl Y; - de oppervlktefunctie; deze pltsen we in Y, wrin we de Y- VARiele Y opnieuw geruiken. Merk op dt we voor de vierde prmeter vn fnint (dt is de ovengrens vn het intervl) hier de X geruiken! Kn je verklren wrom dit nodig is? Vooreeld. We geven ls vooreeld een toepssing met dezelfde functie f ls in Opgve, nmelijk f() = (zie de schermfdruk hieroven) We pltsen llereerst de te geruiken -wrden in lijst L (>>>): Dn kennen we n Lijst L de functie Y toe. Zet, om dt te doen, eerst de cursor op de nm L (het ovenste vkje) en typ dn chter 'L=' de uitdrukking Y(L) in het onderste deel vn het venster (>>>). N het drukken op [ENTER] worden de wrden erekend (>>>). In de lijst L stn dus voor =,,,,, de wrden vn F() = fnint(y,x,,).. Nottie en eigenschppen Voor de werkelijke oppervlkte vn het vlkdeel tussen de grfiek vn een functie f en de -s op het intervl [; ] schrijven we in het vervolg: f ( )d (Spreek uit ls: 'de integrl vn tot vn "ef-iks" "dee-iks" '.) Eigenschppen. Uit de figuur hiernst kunnen we fleiden: f ( )d = f ( )d f ( )d en c c f ( )d = f( )d + f ( )d Hoofdstelling integrlrekening (vs..) [] Copyright 7 PndD Softwre, Rotterdm

4 . Een 'ewijs' vn de hoofdstelling Voor de functie F() die ls functiewrden de oppervlkte geeft vn het vlkdeel dt egrensd wordt door de grfiek vn de functie f(), de -s, de y-s en een lijn m door het punt (, ) en loodrecht op de -s, geldt, op sis vn wt we gezien heen in Opgve en Opgve : F ( ) = f( ) Dt dit vernd estt is uiterrd niet toevllig. Als een klein eetje ngroeit met Δ = h tot + h, dn groeit F() een eetje n met ΔF. We heen dn, volgens de definitie vn de fgeleide vn een functie: F( + h) F( ) ΔF( ) df lim = lim = = F ( ) h h Δ Δ d Bekijk nu nevenstnde figuur. Drin is Δ F de oppervlkte vn een verticle strook tussen de punten en + h op de -s. Die oppervlkte is (ongeveer) gelijk n de reedte (h =Δ ) ml de 'gemiddelde' hoogte vn de strook (het dikke lijnstuk in de strook), zodt: Δ F = lengte vn het dikke lijnstuk Δ Dit is ook het gevl ls de grfiek vn de functie f geen rechte lijn is (g dt n!). De lengte vn het lijnstuk ndert tot f() ls h steeds kleiner gekozen wordt. Dus: ls Δ ndert ΔF tot, dn ndert tot f(). Δ Δ F In formule: lim = f ( ) Δ Δ Conclusie: de functie f is de fgeleide vn de functie F, of wel: f ( ) = F ( ) Hoofdstelling. En hieruit volgt dn de zogenoemde hoofdstelling vn de integrlrekening: f ( )d = F ( ) F ( ) wrij voor de functie F() geldt, dt F'() = f (). De functie F is een zogenoemde primitieve functie of kortweg primitieve vn de functie f. Als het functievoorschrift vn de functie f gegeven is, dn wordt 'het vinden' vn het functievoorschrift vn de functie F ook wel primitiveren genoemd. Opgve 5 In Opgve zijn we uitgegn vn de functies f ( ) =, f ( ) = + en f ( ) = 5. Bijehorende primitieve functies F zijn opvolgend: F( ) =, F( ) = + en F( ) =. Hoofdstelling integrlrekening (vs..) [] Copyright 7 PndD Softwre, Rotterdm

5 G dit n! Controleer nu met deze functies F de in Opdrcht gevonden wrden. Opgve 6 Gegeven is de functie f ( ) = sin+ cos. Wrom is de functie F ( ) = sin een primitieve functie vn de functie f? Wrom is ook de functie G ( ) = sin + 7 een primitieve functie vn f? Geef zelf nog een derde functie die ook een primitieve functie is vn de functie f. Hoeveel primitieve functies heeft de functie f dus? Afsprk. Als we vn een functie f (lleen) een primitieve functie F moeten opschrijven, dn noteren we dt ls volgt: f ( )d = F( ) + C We spreken het linker deel vn deze formule uit ls: 'een primitieve functie vn f()' of ook wel ls 'de oneplde integrl vn f() "dee-iks" '. Het getl C is hier de zogenoemde integrtieconstnte. Een integrl die voorzien is vn een onder- én ovengrens, heet wel eplde integrl. Opgve 7 In Opgve gingen we uit vn de functie F( ) =. G dit n! f ( ) =. Drij hoort een primitieve functie Vergelijk nu F(), F(), F(), F(), F(), F(), F() met de uitkomsten met die in de tel vn Opgve of die in het vooreeld n Opgve stn. Afsprk. We schrijven ij het integreren dt is het erekenen vn de integrl vk: f ( )d = [ F ( )] [ F ( )] stt drin dus voor F() F(). De functie f wordt soms integrnd (wt geïntegreerd moet worden) genoemd. Vooreelden. Willen we 8 7 d erekenen, dn schrijven we: d = [ ] = ( ) ( ) =.. sin d [-cos = ] = (-cos ) (-cos) = -(-) (-) = + =.. ( + )d = [ + ] = (6 + 6) ( + 8) = 8 = Integreren In de volgende opgve moeten de integrlen worden erekend zonder geruik te mken vn de GR. Indien gewenst mg de GR wel worden geruikt om het ntwoord te controleren. Opgve 8 Bereken de onderstnde integrlen; geef drij ecte ntwoorden. Werk je ntwoorden drij op dezelfde mnier uit ls in ovenstnde vooreelden. Hoofdstelling integrlrekening (vs..) [5] Copyright 7 PndD Softwre, Rotterdm

6 .. c. ( )d - d. 5 ( + )d d g. e. ( )d h. + d f. d i. + - cos( )d (sin sin )d 5 d 6. Vervolg integreren We ekijken nu de functie f ( ) = sin op het intervl [; ]. Berekening vn I sin d =, totl I = sin d geeft dn: I = sin d en vn I = [-cos ] = (-cos ) (-cos) = -(-) (-) = + = I = [-cos ] = (-cos ) (-cos ) = (-) () = Itotl = I + I = + ( ) = En dit ltste klopt ntuurlijk met: totl I = [-cos ] = (-cos ) (-cos) = (-) (-) = -+ = We zien dt de wrde vn de integrl I negtief is. Opgve 9 Verklr wrom sin d = -, dus negtief, is. Anwijzing: denk eventueel n de Riemnn-som wrop deze integrl geseerd kn worden. Verklr wrom sin d =. Uit Opgve 9 lijkt dus dt een integrl vn een functie die geheel onder de -s gelegen is, een negtieve wrde heeft. De wrde vn een dergelijke integrl geeft uiterrd geen oppervlkte weer! Om de oppervlkte ij zo'n functie te erekenen moeten we dus de solute wrde vn die functie eschouwen. Ligt de grfiek vn een functie oven én onder de -s, dn moeten we het integrtie-intervl splitsen. Voor de oppervlkte A vn het vlkdeel dt op het intervl [; ] gelegen is tussen de grfiek vn de functie f ( ) = sin en de -s, heen we: A= sin d + (- sin )d = sin d sind = (-) = Immers, op het intervl [; ] is sin = - sin. Bij de erekening vn oppervlktes ij functies is het dus n te evelen een schets vn de grfiek vn de functie te mken op het eschouwde intervl! Hoofdstelling integrlrekening (vs..) [6] Copyright 7 PndD Softwre, Rotterdm

7 Opgve Bereken de onderstnde integrlen zonder geruik te mken vn de GR (dus vi een primitieve vn de integrnd). G drij n of de erekende integrl een oppervlkte representeert. Zo niet, ereken dn eveneens de oppervlkte vn het vlkdeel ingesloten door de grfiek vn de integrnd en de -s op het eschouwde integrtie-intervl... ( )d c. - ( )d - d. - sin( )d - d Opgve Vn een zekere functie f is gegeven dt f ( )d = V onder- en ovengrens. Bewijs dn dt f ( )d = - V.. We verwisselen nu in de integrl de 7. Oppervlkte tussen twee grfieken We eschouwen nu de functies: f ( ) = + g ( ) = We willen drij de oppervlkte V erekenen vn het vlkdeel dt wordt ingesloten door de grfieken vn eide functies. Drtoe is het in de eerste plts noodzkelijk de -coördinten ( en ) vn de snijpunten A en B vn de grfieken te kennen. We lossen dus op: + = = ± + = = ± 5 zodt = 5 en = + 5. Opgve In vervolg op het ovenstnde. V f is de oppervlkte op het intervl [; ] vn het vlkdeel tussen de grfiek vn de functie f en de -s. V g is de oppervlkte op dt intervl tussen de grfiek vn g en de -s. In dit gevl is dn V = Vf Vg ; g dt n! Dn is: = ( + ) V ( ) ( ) d. Verklr deze uitdrukking. Bereken V met geruikmking vn de GR (ntwoord:,86). Hoofdstelling integrlrekening (vs..) [7] Copyright 7 PndD Softwre, Rotterdm

8 Als de grfieken vn de functies f en g elkr in meer dn twee punten snijden moeten we eenzelfde strtegie kiezen: we splitsen het integrtie intervl, mr nu in meerdere stukken, en op elk vn die stukken kijken we of de grfiek vn f oven die vn g ligt, of nders om. Vooreeld. Uitgnde vn de functies f ( ) = - + g ( ) = willen we de oppervlkte V vn het vlkdeel erekenen dt door de eide grfieken wordt ingesloten. Ook nu moeten we eerst de -coördinten,, c vn de snijpunten A, B, C erekenen. Door de vergelijking: + = te schrijven ls: - ( ) = ( ) 'zien' we dt: = -, =, c = - Opmerking. Uiterrd kunnen we die wrden (weliswr enderd) ook erekenen met de GR (vi [intersect]). V c = g ( ) f ( ) d + f ( ) g ( ) d c Voor V geldt nu: ( ) ( ) Opgve Geef een verklring voor de hieroven stnde formule vn V. Bereken V met geruikmking vn de GR (ntwoord:,9). Opgve Iemnd teken de grfiek vn de functie v ( ) = f( ) g ( ) Zie de schermfdrukken hiernst. Hij merkt drij op dt ook v ( )d de oppervlkte vn het edoelde vlkdeel V oplevert. Heeft deze persoon het ij het juiste eind? Verklr je ntwoord. Bereken v ( )d. Opgve 5 Bereken door geruik te mken vn primitieve functies (ect) de oppervlkte vn de eide vlkdelen die worden ingesloten door de grfieken vn de functies f ( ) = en g ( ) = +. Geef drij een volledig overzicht vn je erekeningen. 5 (Antwoord:,.) 6 Hoofdstelling integrlrekening (vs..) [8] Copyright 7 PndD Softwre, Rotterdm

9 8. Tot slot Opgve 6 Bereken de onderstnde integrlen door geruik te mken vn primitieve functies.. cos d c. d. + d d. d Opgve 7 Hiernst is de grfiek K getekend vn de functie f ( ) = en de lijn l met vergelijking y =. Het punt P is het snijpunt vn K met de -s. K heeft in het punt Q een top (de functie f heeft dr een mimum). Bereken de -coördinten p en q vn opvolgend P en Q. Door K, de lijn l en de verticle lijnen = p (door P) en = t (rechts vn P, dus met t > p) wordt een vlkdeel V met oppervlkte V(t) ingesloten. Bereken V(). Bereken de wrde(n) vn t wrvoor V() t =. Links vn de y-s ligt een gerceerd vlkdeel W met een 'onegrensde' omtrek. Onderzoek of W een egrensde oppervlkte heeft. Hoofdstelling integrlrekening (vs..) [9] Copyright 7 PndD Softwre, Rotterdm

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

11 Wiskundige denkactiviteiten: digitale bijlage

11 Wiskundige denkactiviteiten: digitale bijlage Wiskundige denkctiviteiten: digitle ijlge Suggesties voor opdrchten wrij de leerlingen uitgedgd worden wiskundige denkctiviteiten te ontplooien. De opdrchten heen de volgende structuur. In de kop stn chtereenvolgend:

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Snelstartgids Access Online: Betalingen en Rapportage

Snelstartgids Access Online: Betalingen en Rapportage Snelstrtgids Access Online: Betlingen en Rpportge Snel op weg met Access Online Voor het geruik vn de pplictie De meest geruikte functies in overzichtelijke stppen Snelstrtgids Access Online: Betlingen

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

2 De kracht van vectoren

2 De kracht van vectoren De krcht vn vectoren Dit is een ewerking vn Meetkunde met coördinten lok Punten met gewicht vn d Goddijn ten ehoeve vn het nieuwe progrmm (015) wiskunde vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

100 sin(α) kn. 3,0 m. De horizontale en verticale componenten van de kracht van 100 kn worden in dit voorbeeld bepaald:

100 sin(α) kn. 3,0 m. De horizontale en verticale componenten van de kracht van 100 kn worden in dit voorbeeld bepaald: Werken met vectren In deze krte ntitie wrden sisvrdigheden vr het werken met vectren tegelicht met een pr vreelden. Het ek gt uit vn enige vrkennis m..t. vectren mr die vrkennis is niet vr iedere strtende

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Opdrachten bij hoofdstuk 2

Opdrachten bij hoofdstuk 2 Opdrchten ij hoofdstuk 2 2.1 Het vullen vn je portfolio In hoofdstuk 2 he je gezien op welke mnier je de informtie kunt verzmelen. An de hnd vn die informtie kun je de producten mken wrmee jij je portfolio

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Platte en bolle meetkunde

Platte en bolle meetkunde Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Eindexamen wiskunde B vwo 2011 - I

Eindexamen wiskunde B vwo 2011 - I Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =

Nadere informatie

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter.

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter. Opgve 1 Dit is een roosterord. Elk roosterhokje is 5 m ij 5 m. Hoeveel edrgt de oppervlkte vn dit ord? Opgve 2 Welke oppervlktemten ken je l? Noem er zoveel mogelijk. De oppervlkte-eenheid is de vierknte

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10 H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde

1 Vlaamse Wiskunde Olympiade : Tweede ronde 1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

6.4 Rekenen met evenwichtsreacties

6.4 Rekenen met evenwichtsreacties 6.4 Rekenen met evenwihtsreties An de hnd vn een reeks vooreelden zullen we het rekenwerk ehndelen n evenwihtsreties. Vooreeld 6.2 We estuderen het gsevenwiht: A(g) + B(g) C(g) + D(g) In een ruimte vn

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

3 Exponentiële functies en logaritmische functies

3 Exponentiële functies en logaritmische functies Eponentiële functies en logritmische functies Bij wiskunde B heb je l eerder te mken gehd met eponentiële en logritmische functies. In dit hoofdstuk gn we er wt dieper op in en lten we een ntl toepssingen

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan.

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan. 2 Verschuiven Dit is een ewerking vn Meetkunde met coördinten Blok Punten met gewicht vn Ad Goddijn ten ehoeve vn het nieuwe progrmm (2014) wiskunde B vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten?

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten? Opgve 1 Hier zie je een windroos met de windrihtingen er in getekend. Hij is verder verdeeld in 360 hoekjes, elk vn die hoekjes heet 1 grd. Bij het Noorden (N) hoort 0 grden (en dus ook 360 grden). file:

Nadere informatie

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls

Nadere informatie

1. Differentiaalvergelijkingen

1. Differentiaalvergelijkingen Differentilvergelijkingen Vn discreet nr continu We estuderen de evolutie vn de evolking vn een lnd met 5 miljoen inwoners Stel u n het ntl inwoners n n jr, met n een discrete vriele We heen enkel informtie

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

Lengteverandering bij temperatuurverandering.

Lengteverandering bij temperatuurverandering. 2 Uitzetting. Opgve 2.1 Lengteverndering ij tempertuurverndering. De ene stof zet sterker uit dn de ndere. Deze mterileigenshp wordt ngegeven met de lineire uitzettingsoëffiiënt (α). De lineire uitzettingsoëffiiënt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.

Nadere informatie

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen. Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen?

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y

Nadere informatie

Meet de lengte en de breedte van de rechthoek.

Meet de lengte en de breedte van de rechthoek. M15 Rechthoek en lk 692 E Je kunt hieronder eenvoudig de oppervlkte vn een rechthoek vinden door de ruitjes te tellen. Elk ruitje is 1 cm². Hoe groot is de oppervlkte vn deze rechthoek?... 693 B Bereken

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk. Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet.

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet. Hndleiding edatenq Mndelijkse enquête toerisme en hotelwezen Inleiding edatenq is een toepssing die de ondernemingen de mogelijkheid iedt om hun sttistische ngiften in te vullen en door te sturen vi internet.

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Wiskunde voor 1 havo/vwo

Wiskunde voor 1 havo/vwo Wiskunde voor 1 hvo/vwo Deel 2 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons

Nadere informatie

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet.

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet. kennismking met i-respect.nl INTRODUCTIE GEMAAKT DOOR: Annèt Lmmers ONDERWERP: Een eerste kennismking met i-respect.nl en het onderwerp publiceren. DOEL: Weten wt de gevolgen en risico s kunnen zijn vn

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

Spiegelen, verschuiven en draaien in het vlak

Spiegelen, verschuiven en draaien in het vlak 2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet.

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet. Inleiding edatenq is een toepssing die de ondernemingen de mogelijkheid iedt om hun sttistishe ngiften in te vullen en door te sturen vi internet. Het etreft een door de FOD Eonomie volledig eveiligde

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

Tussen haakjes staan de namen van de programma's, in de groep GRVECTOR.

Tussen haakjes staan de namen van de programma's, in de groep GRVECTOR. MEETKUNDE Tussen hkjes stn de nmen vn de progrmm's, in de groep GRVECTOR. De oppervlkte vn een veelhoek (OPPVEELH)... Pnorm vn de driehoeksmeting (RDRIEHK)...3 3 Vectoren in R (HOEK)...6 4 Vectoren in

Nadere informatie

reëelwaardige functies

reëelwaardige functies Primitieven en Riemnn- integrlen vn reëelwrdige functies Het begrip primitieve vn een R R functie Stel : f( ) reëelwrdige functie, met definitie gebied = intervl I Def : F( ) is primitieve functie vn f(

Nadere informatie

Hoofdstuk 8 Beslissen onder risico en onzekerheid

Hoofdstuk 8 Beslissen onder risico en onzekerheid Hoofdstuk 8 Beslissen onder risico en onzekerheid 8.5 Tectronis Tectronis, een friknt vn elektronic, kn vn een nder edrijf een éénjrige licentie verkrijgen voor de fricge vn product A, B of C. Deze producten

Nadere informatie

Inhoudsopgave. Voorwaarden Hypotheek SpaarVerzekering Model 10052. Delta Lloyd Levensverzekering NV. 1 Wat bedoelen wij met? 3

Inhoudsopgave. Voorwaarden Hypotheek SpaarVerzekering Model 10052. Delta Lloyd Levensverzekering NV. 1 Wat bedoelen wij met? 3 Voorwrden Hypotheek SprVerzekering Model 10052 Delt Lloyd Levensverzekering NV Inhoudsopgve 1 Wt edoelen wij met? 3 2 Wnneer strt uw verzekering? 3 3 Wnneer stopt uw verzekering? 3 3.1 Kunt u de verzekering

Nadere informatie