) q ( ) q ( > ) ( $ ) $ (, > ) " ( > ) % (, >,!" name="description"> ) q ( ) q ( > ) ( $ ) $ (, > ) " ( > ) % (, >,!">

Formulekaart Wiskunde havo/vwo

Maat: px
Weergave met pagina beginnen:

Download "Formulekaart Wiskunde havo/vwo"

Transcriptie

1 Formlekr Wiskde hvo/vwo Vierksvergelijkig Als! e " 4c #, d worde de olossige v de vierksvergelijkig + + c gegeve door 4c, " ± " Mche e logrime q $ + q ( > ) q ( ) q ( > ) ( $ ) $ (, > ) " ( > ) % (, >,! ) y % log y (, y >,! ) y e % l y ( y > ) logv log + logv ( >,!,, v > ) log v $ log ( >,!, > ) v log log (, >,,!, > ) log Biomim v Newo ( ) k k k & + " k Goiomerische formles me k! k!( " k)! + si ' si( " ) " si si( ) " ' ( " ) ( ) si " si si si " si " " si si( + ) si + si si + si si + " si( " ) si " si si " si si " + ( + ) " si si + + " ( " ) + si si " " si + si " [ ]

2 Somformles voor rije Rekekdige rij: & ( + kv) ( + ) + ( + ) v k Meekdige rij: k " r & r k " r ( k & r " r k + ( r! ) r < Lieire differeievergelijkige De olossig v de lieire differeievergelijkig X X + + me! is X X + " " " Voor < geld lim X )( " Ksrekeig Biomile verdelig me rmeers e Ksverdelig: * + k " k P( X k), - ( " ). k / ( k,, ) Verwchig: E( X ) Vriie: Vr( X ) ( " ) Sdrdfwijkig: ( ) Vr( X ) ( " ) Normle verdelig me verwchig µ e sdrdfwijkig > Cmlieve verdeligsfcie: I " " µ P( X ) e d "( ' Voor µ e is di de zg. sdrdormle verdelig me cmlieve verdeligsfcie Iz " ( z) e d "( ' X " µ Als X orml verdeeld is me verwchig µ e sdrdfwijkig, d is de sochs Z sdrdorml verdeeld. Omrekeformles: " P( X ) µ e ( z) P( X µ + z) Voor willekerige sochsische vriele geld E( X + + X ) E( X) + + E( X ) Voor oderlig ofhkelijke sochsische vriele geld Vr( X + + X ) Vr( X ) + + Vr( X ) [ ]

3 Limiee lim si ) lim ( > ) )( Differeiëre e iegrere " lim l ( > ) ) lim )( + fcie fgeleide f ( ) + g( ) f ' ( ) + g' ( ) c$ f ( ) c$ f ' ( ) f ( ) $ g( ) f ' ( ) $ g( ) + f ( ) $ g' ( ) (rodcregel) f ( ) f ' ( ) $ g( ) " f ( ) $ g' ( ) (qoiëregel) g( ) ( g( )) f ( g( )) f ' ( g( )) $ g' ( ) (keigregel) Differeiëre e rimiivere v sdrdfcies: f ( ) f ' ( ) f ( ) I f ( ) d $ " + + c + (! " ) l l + c e e l + c log l e e + c l l l " + c si log l ( l " si si " + c + si + c Lieire ederig v f i : L( ) f ( ) + f ' ( )( " ) e Ihod v he omweeligslichm d os door de grfiek v de fcie f o he iervl [, ] om de -s e weele: I I ' ( f ( )) d Lege v de grfiek v de fcie f o he iervl [, ]: I L + ( f ' ( )) d [ 3 ]

4 Bewegige i he vlk Als ( ( ), y( )) de osiie i he Oy-vlk geef v ee eweged o he ijdsi, d word de selheidsvecor o he ijdsi gegeve door ( '( ), y'( )). De (sclire) selheid v he o he ijdsi word gegeve door v( ) ( ' ( )) + ( y' ( )) e de lege v de fgelegde weg sse de ijdsie e door I I v( ) d ( ' ( )) + ( y' ( )) d Eerige cirkelewegig me middel (m, ), srl r e hoekselheid 3 : ( ) m + r 3( " ) % & ' y( ) + r si 3( " ) Hrmoische rillig me evewichssd c, mlide A e eriode T: h ( ) c + A si ' T ( " ) Coie dymische modelle Eoeiële groei of vervl: differeilvergelijkig: dy c$ y d olossige: y y e c " ( ) ( ) Logisische groei: ( ) differeilvergelijkig: olossige: dy d c$ y( M " y) me M > y( ) M $ y( ) " y( ) + ( M " y( )) e cm " ( ) Lije e cirkels i he vlk Algemee vergelijkig v ee lij: + y c Normlvecor: (, ) Voor wee lije e me ormlvecore (, ) e (, ) geld: 4 % + Lij door (, q) me richigscoëfficië m: y q + m( " ) Voor wee lije e me richigscoëfficiëe m e m geld: 4 % mm " Vergelijkig v de cirkel me middel (m, ) e srl r: ( " m) + ( y " ) r Omrek: 'r ; lege oog me middelshoek 5 (rd): 5r Oervlke: 'r ; o. secor me middelshoek 5 (rd): 5r [ 4 ]

5 Kegelsede Prool: Ellis: sdrdvergelijkig: 4 y rd F: (, ) richlij r: y " P o rool % d( P, F) d( P, r) y sdrdvergelijkig: + me > > rde F, : ( ±c, ) me c " P o ellis % d( P, F ) + d( P, F ) Hyerool: sdrdvergelijkig: y " rde F,: ( ±c, ) me c + symoe: y P o hyerool % d( P, F ) " d( P, F ) Rklijeigesche:. De rklij i ee P v ee rool mk gelijke hoeke me de lij die P verid me he rd e de lij door P loodrech o de richlij.. De rklij i ee P v ee ellis of hyerool mk gelijke hoeke me de lije die P veride me de eide rde. Vlkke meekde De crsief gedrke erme moge ls verwijzige i ee ewijs gerik worde. Hoeke, lije e fsde De oversde hoeke ij wee sijdede lije zij gelijk (oversde hoeke). Als wee evewijdige lije gesede worde door ee derde lij, d zij de F-hoeke e Z-hoeke gelijk (F-hoeke, Z-hoeke). Als wee lije i wee verschillede e gesede worde door ee derde lij, wrij ee r gelijke F-hoeke of Z-hoeke oreed, d zij die wee lije evewijdig (F-hoeke, Z-hoeke). Ee reche hoek is 9 o ; ee gesreke hoek is 8 o. De som v de hoeke v ee driehoek is 8 o (hoekesom driehoek). De fsd (korse veridig) v ee o ee lij is de lege v de loodlij eergele vi d o die lij (fsd o lij). Driehoeksogelijkheid: Als drie e A, B, C ie o éé lij ligge, d geld AB + BC > AC. [ 5 ]

6 Driehoeke Gelijkeige driehoek:. Als i ee driehoek wee hoeke gelijk zij, d zij de egeoverliggede zijde ook gelijk.. Als i ee driehoek wee zijde gelijk zij, d zij de egeoverliggede hoeke ook gelijk. Sellig v Pyhgors: Als driehoek ABC ee reche hoek i C heef, d geld + c Omgekeerde sellig v Pyhgors: Als i driehoek ABC geld + c, d is hoek C rech. Cosisregel: I elke driehoek ABC geld c + " 6. c Sisregel: I elke driehoek ABC geld. si5 si 7 si6 Gelijke driehoeke Twee driehoeke zij gelijk (cogre) ls ze gelijk hee:. Ee zijde e wee liggede hoeke. (HZH). Ee zijde, ee liggede hoek e de egeoverliggede hoek. (ZHH) c. Twee zijde e de igesloe hoek. (ZHZ) d. Alle zijde. (ZZZ) e. Twee zijde e de reche hoek egeover éé v die zijde. (ZZR) Gelijkvormige driehoeke Twee driehoeke zij gelijkvormig ls ze gelijk hee:. Twee re hoeke. (hh). Ee r hoeke e de verhodig v de omliggede zijde. (zhz) c. De verhodig v de zijde. (zzz) d. Ee r reche hoeke e de verhodig v wee ie-omliggede zijde. (zzr) Vierhoeke De som v de hoeke v ee vierhoek is 36 o (hoekesom vierhoek). Eqivlee defiiies e eigesche v ee rllellogrm:. Er zij wee re evewijdige zijde.. Er zij wee re gelijke oversde zijde. c. Twee oversde zijde zij gelijk e evewijdig, d. De digole dele elkr middedoor. Eqivlee defiiies e eigesche v ee ri:. He is ee rllellogrm me vier gelijke zijde.. He is ee rllellogrm wri ee digol ee hoek middedoor deel. c. He is ee rllellogrm wri de digole elkr loodrech sijde. Eqivlee defiiies e eigesche v ee rechhoek:. He is ee vierhoek me vier reche hoeke.. He is ee rllellogrm me ee reche hoek. c. He is ee rllellogrm me gelijke digole. Pverzmelige De verzmelig v lle e die dezelfde fsd hee o wee gegeve e A e B, is de middelloodlij v he lijsk AB (middelloodlij). De verzmelig v lle e ie ee hoek die dezelfde fsd hee o de ee v die hoek, is de deellij (issecrice) v die hoek (deellij). [ 6 ]

7 De verzmelig v lle e die fsd r o ee gegeve M hee, is de cirkel me middel M e srl r (cirkel). De verzmelig v lle e die dezelfde fsd hee o wee elkr sijdede lije, is he deellijer (issecricer) v die wee lije (deellijer). De wee deellije v wee elkr sijdede lije sijde elkr loodrech i he sij v die wee lije (loodreche sd deellijer). De verzmelig v lle e die dezelfde fsd hee o wee evewijdige lije, is de midderllel v d lijer (midderllel). Cirkeleigesche Bij gelijke oge ehore gelijke koorde (oog e koorde). De loodlij vi he middel o ee koorde deel die koorde middedoor (loodlij o koorde). Ee rklij ee cirkel s loodrech o de veridigslij v middel e rk (rklij). Sellig v Thles: Als hoek C i driehoek ABC rech is, d lig C o de cirkel me middellij AB. Omgekeerde sellig v Thles: Als C o de cirkel me middellij AB lig, d is 8ACB rech. Sellig v de omrekshoek: Elke omrekshoek is hlf zo groo ls de ijehorede middelshoek. De hoek sse ee rklij e ee koorde is gelijk de ij die koorde ehorede omrekshoek (hoek sse koorde e rklij). Ligge P e Q dezelfde k v ee lij AB e geld 8 APB 8AQB, d ligge P e Q o eezelfde cirkeloog me A e B ls eide (hoeke o ee cirkeloog). Koordevierhoeksellig: I ee koordevierhoek is de som v elk r oversde hoeke 8 o. Omgekeerde koordevierhoeksellig: Ligge P e Q weerszijde v ee lij AB e geld o 8 APB + 8 AQB 8, d is APBQ ee koordevierhoek. De Formlekr Wiskde hvo/vwo is geliceerd i Uileg, Gele Ker r., CEVO-98/57. Deze versie v de Formlekr is smegeseld door Dick Kliges me gerikmkig v Microsof Word for Widows 959, versie 7. (Microsof Cororio) e MhTye9, versie 3.5 (Desig Sciece, Ic.). [ 7 ]

k H G I K J HG I kk J = Formulekaart Wiskunde havo/vwo Vierkantsvergelijking Machten en logaritmen Binomium van Newton Goniometrische formules

k H G I K J HG I kk J = Formulekaart Wiskunde havo/vwo Vierkantsvergelijking Machten en logaritmen Binomium van Newton Goniometrische formules Formlekr Wiskde hvo/vwo Vierksvergelijkig Als e 4 c, d worde de olossige v de vierksvergelijkig + + c = gegeve door 4c, = ± Mche e logrime q + q = ( > ) q ( ) q = ( > ) ( ) = = F H G I K J = ( >, ) ( >

Nadere informatie

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formulekrt VWO wiskude B Verelijkie + + c = 0 + D = of met D = 4c D = 0, D > 0 = c = = c / = c > 0, c > 0, > 0 lo l = lo = = > 0, > 0, lo l lo = = > 0, > 0, e = = l > 0 l = = e > 0 Mchte e loritme = /

Nadere informatie

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formlekrt VWO B /9 Formlekrt VWO wiskde B Ksrekei Telle! = ( )... 0! =! = k k!( k)! Ksrekei Voor toevlsvriele X e Y eldt E( X + Y) = E( X) + E( Y ) Voor ofhkelijke toevlsvriele X e Y eldt σ( X + Y) = σ

Nadere informatie

( ) Formulekaart VWO. Kansrekening. Tellen. k n k. Binomium van Newton : Kansrekening. Voor toevalsvariabelen X en Y geldt: E ( X + Y ) = E(

( ) Formulekaart VWO. Kansrekening. Tellen. k n k. Binomium van Newton : Kansrekening. Voor toevalsvariabelen X en Y geldt: E ( X + Y ) = E( Formulert VWO Telle! ( )... 0!!!( )! Biomium v Newto : Ksreei ( + ) Ksreei 0 Voor toevlsvriele X e Y el: E ( X + Y ) E( X ) + E( Y ) Voor ofhelije toevlsvriele X e Y el: σ ( X + Y ) σ ( X ) + σ ( Y ) -wet

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Leon van den Broek, Maris van Haandel, Dolf van den Hombergh, Aafke Piekaar, Daan van Smaalen. Iddink voortgezet onderwijs bv, Postbus 14, 6710 BA Ede

Leon van den Broek, Maris van Haandel, Dolf van den Hombergh, Aafke Piekaar, Daan van Smaalen. Iddink voortgezet onderwijs bv, Postbus 14, 6710 BA Ede 7 Rekee Di hoofdsuk is edoeld ls vullig op he oek voor VWO wiskude B Ihoudsopgve 7 Rekee Breuke Worels 8 Rekee i de meekude Rekee i de ksrekeig 7 eerse vereerde eperimeele uigve, juli 008 Colofo 008 Sichig

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Hoofdstuk 5 - Definities en stellingen

Hoofdstuk 5 - Definities en stellingen Hoofdstuk 5 - efinities en stellingen Voorkennis: ijzondere figuren ladzijde 30 V-a 50 60 = 80 50 60 = 70 d Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één punt:

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2016 tijdvak 2 donderdag 23 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 16 vragen. Voor dit examen zijn maximaal 76 unten te behalen. Voor

Nadere informatie

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B Centrale Commissie Voortentamen Wiskunde Syllabus voortentamen Wiskunde B Deze syllabus bevat een beschrijving van het programma van het voortentamen Wiskunde B dat wordt afgenomen door de Centrale Commissie

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

Hoofdstuk 5 - Meetkundige plaatsen

Hoofdstuk 5 - Meetkundige plaatsen oderne wiskunde 9e editie vwo deel Voorkennis: Eigenschappen en ewijzen ladzijde 138 V-1a Gegeven: Driehoek met hoeken :, en Te ewijzen: 180 ewijs: 1 3 Teken lijn door die evenwijdig loopt met : lijn door

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

3.1 Soorten hoeken [1]

3.1 Soorten hoeken [1] 3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4.

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4. Hoofdsuk Opdrch.6 k x + xk = = r = Algemee oplossig: k r xk = + xk = + / k xk = + k 9 7 x = x + 7 x + x = 7 x x = + + + 7 = r = Algemee oplossig: r 7/ x = + x = + / x = 7 c α α ( α α ) x = x x x x = x

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eame VWO 200 tijdvak 2 woesdag 23 jui 3.30-6.30 uur wiskude B Bij dit eame hoort ee uitwerkbijlage. Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 80 pute te behale. Voor elk vraagummer staat

Nadere informatie

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen

Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen Vlakke Meetkunde Les 3 Koordenvierhoeken en iso-hoeklijnen (Deze les sluit aan bij het paragraaf 3 en 4 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

12 Bewijzen in de vlakke meetkunde

12 Bewijzen in de vlakke meetkunde ewijzen in de vlakke meetkunde bladzijde 54 a ' b Gegeven: e gelijkzijdige driehoek met zijn omgeschreven cirkel. unt ligt op de kortste boog en ligt op het verlengde van zo, dat =. riehoek is gelijkzijdig.

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t

E 1. Voor de coördinaten van P geldt: x (t) = cos t + t sin t y (t) = sin t t sin t Buieling Gegeven een halve cirkel me sraal. Lijnsuk raak de halve cirkel in pun R. De lenge van is consan π meer, erwijl he raakpun R langs de cirkel loop, me een snelheid van m/s. Gebruik de ekening.

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep.

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep. 1 Bewerkige met mtrices ivoere vi voorbeelde 11 -tlle e de bewerkige ( 1, 2, 3,, ) is ee -tl met i De verzmelig v reële -tlle otere we met Defiieer de som ls ( 1, 2, 3,, ) + (b 1,b 2,b 3,,b ) = ( 1 +b

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

UITWERKINGEN VOOR HET VWO

UITWERKINGEN VOOR HET VWO UITWERKINGEN VOOR HET VWO EEL HOOFSTUK 5 GRENZEN Kern FSTNEN a) b) Nee. e zijden a en b zijn samen even lang. b a c ) a) Teken diagonaal In geldt ( ) In geldt 0 ( ) us is b) ijv. ) Te bewijzen: ewijs:

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Era oefening ij hoofdsuk a Een goede venserinselling voor de funie f is : X min en X ma en Y min eny ma 0. Voor de funie g X min 0 en X ma 0 en Y min 0 eny ma 0. y 0 8 8 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 Veriale

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Samenvatting. Hoofdstuk 4. Machtsfunctie De functie f x x n heet een machtsfunctie. Het verloop van de grafiek hangt af van de waarde van n.

Samenvatting. Hoofdstuk 4. Machtsfunctie De functie f x x n heet een machtsfunctie. Het verloop van de grafiek hangt af van de waarde van n. Hoofdstuk Samenvatting Machtsfunctie De functie f n heet een machtsfunctie. Het verloop van de grafiek hangt af van de waarde van n. Gebroken functie Machtsfuncties waarbij n een negatief geheel getal

Nadere informatie

a a a en b b ac ax bx c 0 x a a ab pq en a a x x x e q px lnq x VWO-6 Wiskunde-B Tob-100 Algebra en xy xz x z maar Voorbeeld:

a a a en b b ac ax bx c 0 x a a ab pq en a a x x x e q px lnq x VWO-6 Wiskunde-B Tob-100 Algebra en xy xz x z maar Voorbeeld: VWO-6 Wiskunde-B To-00 Aler ( ) en ( ) ( )( ) 3 4 5 6 4 c 0 q en q c q q en y z z mr q q q q q q en Vooreeld: q q en ( ) q q 0, 0,4 0 4 5 0,6 en y z yz 4 3 4 7 Wortels vereenvoudien Bijv 8 9 3 en 8 Wortels

Nadere informatie

2 Hoeken en bogen 77

2 Hoeken en bogen 77 2 Hoeken en bogen 77 1 De stand van zaken In deze paragraaf wordt je gevraagd wat je weet van de zijden, hoeken en diagonalen van verschillende soorten vierhoeken. En omgekeerd, wat voor speciaal type

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Hoofdstuk 6 - Cirkeleigenschappen

Hoofdstuk 6 - Cirkeleigenschappen Hoofdstuk 6 - irkeleigenshappen oderne wiskunde 9e editie vwo deel Voorkennis: hoeken en irkels ladzijde 56 V-a 68 ; dus S 80 SE. us SE S 56 ES 80 56 0. us SE 78. V- 60. Ook geldt 60. us. V-a 80 Er geldt:

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1

Vraag Antwoord Scores. 1 (dus de oppervlakte. van V en de oppervlakte van driehoek OAB zijn gelijk ) 1 Beoordelingsmodel Vraag Antwoord Scores Gelijke oervlakte maximumscore f' ( x) = x x = geeft x = Dit geeft x = ( ) ( ) f = = (dus de coördinaten van T zijn ( ) maximumscore 6 De oervlakte van V is ( )

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correctievoorschrift VWO 04 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vksecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde.

Gerichte lengtes spelen o.a. een rol bij de stelling van Ceva en Menelaos en komen in deel 3 aan de orde. Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi, gerichte lengtes Trainingsweekend, 16 februari 2008 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen

Nadere informatie

C + E = 180 ( AEBC is een koordenvierhoek)

C + E = 180 ( AEBC is een koordenvierhoek) G&R vwo B deel 4 1 Bewijzen in de vlakke meetkunde C von Schwartzenberg 1/16 1 Vermoeden: ACB is constant (in figuur 11 als punt C over de bovenste boog AB loopt) a * 3a * b * 3b Vermoeden: De drie cirkels

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

8 Vermoedens en bewijzen. bladzijde 171. 40 a C = C!ADC!BEC (hh) ADC = BEC = 90 Uit!ADC!BEC volgt AC DC

8 Vermoedens en bewijzen. bladzijde 171. 40 a C = C!ADC!BEC (hh) ADC = BEC = 90 Uit!ADC!BEC volgt AC DC 8 Vermoedens en bewijzen badzijde 7 40 a =!!E (hh) = E = 90 Uit!!E vogt = dus E =. E b EF = F = 90 FE = F (overstaande hoeken)!ef!f (hh) Uit!EF!F vogt F EF = dus F F = F EF. F F Gemengde opgaven 5 4 a

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel. Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Verdieping - De Lijn van Wallace

Verdieping - De Lijn van Wallace Verdieping - e Lijn van Wallace ladzijde 4 ac - d Nee, want als ijvooreeld en samenvallen dan geldt = op en = op, dus = = maar dan moet ook S met samenvallen, dus ligt S niet uiten de driehoek en dat is

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden 6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel

Nadere informatie

Over de tritangent stralen van een driehoek

Over de tritangent stralen van een driehoek Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

Eindexamen wiskunde B 1-2 vwo I

Eindexamen wiskunde B 1-2 vwo I Eindexamen wiskunde B - vwo - I Beoordelingsmodel Oppervlakte en inhoud bij f(x) = e x maximumscore e Lijn AB heeft richtingscoëfficiënt = (e ) Voor lijn AB geldt de formule y = (e ) x + De oppervlakte

Nadere informatie