Voorbereidende opgaven Kerstvakantiecursus

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Voorbereidende opgaven Kerstvakantiecursus"

Transcriptie

1 Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt overzicht lgebrïsche vrdigheden en werk hem dn uit tot wr je kunt. Lt het voor de rest rusten. Deze opgven zijn bedoeld om je kennis vn de rekenregels op te frissen en om de docenten een indictie te geven vn jouw lgebrïsche vrdigheden. De opgven geven geen goed beeld vn het niveu vn de cursus. Je mg geen rekenmchine gebruiken. Werk de hkjes uit:. ( ) 6 4 b. ( ) c. ( 4 + 5) ( 5 4) Vereenvoudig zo ver mogelijk en schrijf zonder gebroken of negtieve eponenten:. ( b ) ( b) d. 4b b. 5 + e. b (4 ) c. + f. Schrijf met gebroken en/of negtieve eponenten: g. h. 7 i. 5 Herleid:. b. Wiskunde B vwo voorbereidende opgven SSL 05

2 4 Vereenvoudig zo ver mogelijk:. 4 b. 7 c Schrijf links om tot rechts (schrijf lle tussenstppen op!):. ( p ) p p = c. + = + b. 4 + = n n n d. + = + 6 Neem onderstnde tbel over in je schrift en vul hem in (de zinnen hoef je niet over te nemen, mr vul wel je oplossingen, wel/niet en één/twee in) Even mcht (,,, ) Oneven mcht (,,, ) Een even mcht heeft één/twee oplossing(en). De oplossing(en) vn is/zijn dus: 4 = 6 Een oneven mcht heeft één/twee oplossing(en). De oplossing(en) vn is/zijn dus: = 8 Bij een even mcht zijn er wel/geen negtieve 4 oplossingen mogelijk. = 6 kn dus wel/niet. Bij een oneven mcht zijn er wel/geen negtieve oplossingen mogelijk. = 8 kn dus wel/niet. 7 Druk p uit in q:. q = + 4 b. p p q = p Tip: lukt dit niet, kijk dn in het beknopt overzicht lgebrïsche vrdigheden (Bijlge ). 8 Bepl en b: + b= 5 b= 5 Wiskunde B vwo voorbereidende opgven SSL 05

3 9 Symmetrie ( ) 6. Toon n dt f = symmetrisch is t.o.v. de y-s. ( ) 5 b. Toon n dt g = puntsymmetrisch is t.o.v. (0,0). Tip: lukt dit niet, kijk dn in het beknopt overzicht lgebrïsche vrdigheden (Bijlge ). Hoeveel tijd heb je tot hier n de opgven besteed? Wt vond je vn deze opgven? Heel mkkelijk 4 5 Heel moeilijk Wiskunde B vwo voorbereidende opgven SSL 05

4 Beknopt overzicht lgebrïsche vrdigheden In dit overzicht vind je de volgende vrdigheden:. Hkjes e. Omschrijven b. Mchten f. Stelsels vn vergelijkingen c. Wortels g. Breuksplitsen d. Breuken. Hkjes Wnneer hkjes? In de volgende twee gevllen heb je hkjes nodig: A B C vb: AB C vb: Als dingen lleen met elkr worden vermenigvuldigd, heb je geen hkjes nodig, dus: vb: ( ) Hkjes uitwerken vb: vb: ( 4) 4 4 ( )( ) 6 Ps op voor de volgende veelgemkte fout: vb: ( ) b. Mchten regel b c b c b c b c ( ) ( b) b bc bc c c c b b b c b c voorbeeld 5 6 ( ) ( ) ( ) 4 c. Wortels b b vb: b vb: b 4 4 b b!!!! vb: !!!! Wiskunde B vwo voorbereidende opgven 4 SSL 05

5 d. Breuken teller Breuk = noemer. Vermenigvuldigen Teller teller, noemer noemer. vb: Delen Delen door een breuk is vermenigvuldigen met het omgekeerde. vb: / Optellen Noemers gelijk mken. Dit doe je door beide breuken op een specile mnier met te vermenigvuldigen, nmelijk boven en onder keer de noemer vn de ndere breuk. vb: ( ) vb: ( ) ( ) ( ) Vereenvoudigen b b b b c c c c ( ) vb: ( ) b b c c c vb: Let op: b c b c vb: Wiskunde B vwo voorbereidende opgven 5 SSL 05

6 e. Omschrijven Als gegeven is: A = iets met B, kn het voorkomen dt je B moet uitdrukken in A. Dt betekent dt je moet zorgen voor: B = iets met A. Stppenpln omschrijven ) Hl lle termen met B links, lle ndere termen nr rechts ) Isoleer B door n beide knten omgekeerde bewerkingen uit te voeren. Omgekeerde bewerkingen zijn plus en min, keer en gedeeld door, kwdrt en wortel enz. vb: b 4, druk b uit in ) 4 b termen met b nr links, met nr rechts ) b ( 4 ) werk weg: vermenigvuldig n beide knten met b ( 4 ) omgekeerde vn is Voor twee specile gevllen is er een etr stp nodig: B in noemer vn breuk kruislings vermenigvuldigen B in meerdere termen buiten hkjes hlen vb: b b stt in de noemer, dus kruislings vermenigvuldigen: b b ( ) b ) b ) b n beide knten delen door vb: bb, druk b uit in ) bb b stt in meerdere termen, dus buiten hkjes hlen: b( ) ) b n beide knten delen door Wiskunde B vwo voorbereidende opgven 6 SSL 05

7 f. Stelsels vn vergelijkingen Er zijn twee methoden voor het oplossen vn een stelsel vn vergelijkingen. Het is voldoende ls je één vn beide beheerst. Substitutie ( vervngen ) Anpk: kies een letter, zeg A, en druk die uit in de ndere letter, zeg B, met behulp vn een vn de vergelijkingen (zie omschrijven ). Vul de zo gevonden uitdrukking vn A vervolgens in in de tweede vergelijking en los verder op. b4 vb: 86b00 Druk uit in b met behulp vn (): 4 b Substitueer dit vervolgens in (): 8(4 b) 6b00 8b6b00 b b 6 Bepl nu met behulp vn de eerder gevonden uitdrukking: 4 b4 6 8 Dus = 8 en b = 6. Optellen/ftrekken Zorg dt je vn een letter fkomt door de ene vergelijking een geschikt ntl keer vn de ndere f te trekken. b4 vb: 86b00 In vergelijking () komt b zes keer voor. We kunnen dus vn b fkomen door () zes keer vn () f te trekken: () 6(). Dit geeft: 86b00 66b84 6 Delen door geeft: = 8. Dit vervolgens invullen in () geeft: 8b 4 Dus b = 6. Wiskunde B vwo voorbereidende opgven 7 SSL 05

8 g. Breuksplitsen Soms is het nodig voor integreren om een breuk te schrijven ls de som vn twee breuken. Dit gt met het volgende stppenpln: Stppenpln breuksplitsen ) Tel de twee breuken bij elkr op ) Stel de tellers n elkr gelijk ) Stelsel oplossen (zie f) vb: bepl en b 4 00 b ( 6)( 8) b 6 ) ( 6)( 8) ( 8) b( 6) ( 6)( 8) ( 6)( 8) 4 00 ( b) 86b ( 6)( 8) ( 6)( 8) ) 4 00 ( b) 8 6b, dus: b 4 en 8 6b 00 ) Zie onderdeel f. h. Lijn- en puntsymmetrie Een functie f is lijnsymmetrisch ten opzichte vn de y-s ls geldt: f f vb: f f f, dus f is lijnsymmetrisch t.o.v. de y-s.. Een functie f is puntsymmetrisch ten opzichte vn (0,0) ls geldt: f f. vb: f f f, dus f is puntsymmetrisch tov (0,0). Wiskunde B vwo voorbereidende opgven 8 SSL 05

9 Bijlge Meetkundige Pltsen In deze bijlge bespreken we meetkundige pltsen. We beginnen met het onderdeel "Wt is het?", wrin we kort definiëren wt een meetkundige plts is. Vervolgens gn we uitgebreid in op hoe je zo'n meetkundige plts construeert en wt je hierbij opschrijft, dit doen we in het onderdeel "Hoe moet het?". Hiermee kn je de oefenopgve vn de voorbereidende opgven mken. Een terechte vrg zou zijn: Een bijlge over meetkundige pltsen, dt wordt tijdens de cursus toch ps behndeld? Klopt! Meetkundige pltsen wordt dn inderdd behndeld. We gn ons dn echter richten op wt op het emen het belngrijkst is: wnneer je welke meetkundige plts moet tekenen. Weten welke meetkundige plts je moet tekenen levert je op je emen nog niet lle punten op. Hoe je die meetkundige plts tekent is nmelijk vn essentieel belng. De reden dt je nu l met de genoemde onderdelen n de slg gt, en niet ps tijdens de cursus, is de volgende. Door nu l te oefenen met construeren, krijg je die technieken onder de knie. Hierdoor kunnen we ons tijdens de cursus richten op de vrgen die je ddwerkelijk op je emen mg verwchten. Tenslotte vlt je misschien op dt deze bijlge vrij lng is. Het doorwerken vn deze bijlge zl ongeveer een uur tijd kosten. Dit levert je echter wel een hndig nslgwerk op. Doordt lles uitgebreid uitgelegd stt kun je deze bijlge zowel tijdens ls n de cursus gebruiken voor het mken vn opgven. Heel veel succes met het doorwerken vn deze bijlge! A Wt is het? Een meetkundige plts vn een of meerdere objecten zijn de punten die even ver vn dt/die object(en) f liggen. Voorbeeld: Twee boeren A en B willen een stuk lnd verdelen, zodt ieder evenveel lnd heeft. De grenzen vn het lnd vn boer A en boer B zijn dn die punten die even ver vn boer A ls boer B f liggen. Zie de figuur. A B We hebben dus de meetkundige plts vn A en B getekend. Wiskunde B vwo voorbereidende opgven 9 SSL 05

10 B Hoe moet het? Dit onderdeel behndelt de meetkundige pltsen die op je emen gevrgd kunnen worden. Dit zijn er vijf. De kopjes in dit onderdeel zijn steeds de objecten wrvn je de meetkundige plts tekent. Onder elk kopje wordt de bijbehorende meetkundige plts uitgelegd. Vervolgens volgt een stppenpln met voorbeeld wrmee je de meetkundige plts stp voor stp kunt tekenen. Nst de verschillende meetkundige pltsen, gn we kijken nr wt we moeten opschrijven bij het construeren. ) Twee punten De meetkundige plts tussen twee punten heet een middelloodlijn. Je kn de middelloodlijn op twee mnieren tekenen: met een psser of geodriehoek. Beide mnieren leveren op je eindemen lle punten op. Stppenpln middelloodlijn (met geodriehoek) Voorbeeld I. Trek een rechte lijn tussen de twee gegeven punten. II. Meet het midden vn deze rechte lijn en zet hier een punt. III. Teken met je geo een lijn door dit punt, loodrecht op de lijn uit stp I. Dit is de middelloodlijn. III A II I B Wiskunde B vwo voorbereidende opgven 0 SSL 05

11 Stppenpln middelloodlijn (met psser) I. Zet je psser op punt A en teken een hele cirkel met strl AB. II. Zet nu je psser op punt B en teken weer een hele cirkel met strl AB. III. Teken nu een lijn door de snijpunten vn de twee cirkels. Dit is de middelloodlijn. Let op: Stop de lijn niet bij de snijpunten, mr trek hem door. Voorbeeld I II A B III ) Twee evenwijdige lijnen De meetkundige plts tussen twee evenwijdige lijnen is de middenprllel. Stppenpln middenprllel (met geo) I. Teken een punt op een vn de twee lijnen. Trek vnf dt punt een loodlijn nr de ndere lijn. II. Meet het midden vn de lijn en zet hier een punt. III. Teken nu een loodlijn door het punt uit stp II. Dit is de middenprllel. Voorbeeld I III II Wiskunde B vwo voorbereidende opgven SSL 05

12 ) Één punt Stel we willen lle punten die even ver vn één punt f liggen. De meetkundige plts is dn een cirkel, die we met een psser kunnen construeren. Voorbeeld A 4) Twee snijdende lijnen De meetkundige plts tussen twee snijdende lijnen is de bissectrice. Je kn de bissectrice op twee mnieren tekenen: met een psser of geodriehoek. Op je eindemen leveren beide mnieren lle punten op. Stppenpln bissectrice (met geodriehoek) Voorbeeld I. Meet de hoek tussen de twee lijnen. Teken met behulp vn je geodriehoek een punt op de helft vn deze hoek. II. Teken een rechte lijn vnuit het hoekpunt A door het punt uit stp I. Dit is de bissectrice. I II Wiskunde B vwo voorbereidende opgven SSL 05

13 5) Prboolconstructie Let op! Er zijn ook nderee mnieren om een prbool te construeren. Als jij een ndere mnier weet die je fijn vindt, mg je onderstnd stppenpln oversln. De meetkundige plts tussen een punt en een lijn is een prbool. Het punt heet ook wel het brndpunt vn de prbool (hier r F) en de lijn heet de richtlijn (hierr lijn k). Stppenpln prboolconstructie 0. Teken een punt op de helft vn de loodlijn door F op k. Dit is de top vn de prbool T.. I. Teken een punt op de lijn k. Dit is een voetpunt V. II. Teken door V een loodlijn op k (lijn l). III. Teken een middelloodlij jn vn het lijnstuk FV ( hier lijn m). Het snijpunt tussen lijnen m en l is één puntt op de prbool, punt P. IV. Herhl stp I t/m III nog drie keer, met ndere voetpunten. Dn heb je vijf punten op de prbool geconstrueerd. V. Trek door de vijf gevonden punten een (zo mooi mogelijke) prbool. Voorbeeld 0 T F II III l P m P4 P T F P P I V k k Wiskunde B vwo voorbereidende opgven SSL 05

14 Wt schrijf ik op? In de toelichting vn je werkwijze moeten ltijd de volgende dingen stn: Nm meetkundige plts (bijv. middelloodlijn) Objecten wrtussen je de meetkundige plts tekent (bijv. brndpunt F en richtlijn k) Indien vn toepssing: begin- en eindpunten (zie voorbeeld) Mk hier een korte zin vn. Voorbeeld Gegeven is een lnd A met std F. Lnd A wordt begrensd door lijn g. In de zee ligt een zndbnk, gegeven door lijn k. Zie onderstnde figuur. Teken lle punten in de zee die even ver vn std f ls de zndbnk f liggen. Licht je werkwijze toe. Lnd A F g Zee Zndbnk k Uitwerking Lnd A F g Zee Zndbnk k We tekenen de prbool met brndpunt F en richtlijn k. Het begin- en eindpunt zijn de snijpunten vn de prbool met lijn g. Wiskunde B vwo voorbereidende opgven 4 SSL 05

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11 84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +

Nadere informatie

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat Modelvrgstukken Algebr vn wortelvormen Tenzij expliciet nders vermeld stellen lle letters positieve getllen voor Vereenvoudigen vn enkelvoudige wortels ; Dit is gewoon de bsisregel ) ) 8 ) ; ) Een 8-ste

Nadere informatie

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid.

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid. Lesopzet De door ons gemkte lessencyclus wordt in drie opeenvolgende rekenlessen gegeven. Les is iets korter dn les en, wrdoor er eventueel extr herhling vnuit les ingepst kn worden.. Les Deze les krijgen

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = =

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = = 7b Hulp bld 1 nm 1 Reken uit met de rekenmchine 444 : 37 = 299 : 23 = 882 : 63 = 364 : 26 = 2 Reken uit met rest Voorbeeld: 469 : 37 = ntwoord op de rekenmchine: 12,675675 37 kn 12 keer vn 469 f 12 37

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck Antwoorden Doeboek 1 Kijk op kegelsneden Rob vn der Wll en Liesbeth de Clerk 1 De 3 4 ) 5 Een 6 Als 7 8 ) 9 De Nee, lle punten die 1 entimeter vn het midden liggen, liggen op de irkel. gevrgde figuur bestt

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Over de tritangent stralen van een driehoek

Over de tritangent stralen van een driehoek Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven

Nadere informatie

Breuken en verhoudingen

Breuken en verhoudingen WISKUNDE IN DE BOUW Breuken en verhoudingen Leerdoelen N het estuderen vn dit hoofdstuk moet je in stt zijn om: te rekenen met reuken en verhoudingen; reuken toe te pssen in erekeningen vn onder ndere

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

2 Formules herschrijven

2 Formules herschrijven Formules herschrijven Verkennen www.mth4ll.nl MAThADORE-bsic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules herschrijven Inleiding Verkennen Probeer de vrgen bij Verkennen zo goed mogelijk te bentwoorden.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Formularium Wiskunde 1 ste graad

Formularium Wiskunde 1 ste graad Kls: Nm: Formulrium Wiskunde 1 ste grd Vkwerkgroep Wiskunde T. I. SINT-LAURENS MARIA MIDDELARES Ptrongestrt 51 9060 Zelzte Tel. (09)45 7 1 Fx (09)45 40 65 Internet: http://tislmm.pndor.be E-mil: so.tislmm.zelzte@frcrit.org

Nadere informatie

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

GBK Leden profiel beheer

GBK Leden profiel beheer GBK Leden profiel eheer Op de nieuwe GBK site kn het eigen leden profiel ijgehouden worden. Op dit profiel kn iogrfische informtie worden ingevoerd, werk kn n een portfolio worden toegevoegd, er kunnen

Nadere informatie

Klas: Project: ENENN. Ontwerp

Klas: Project: ENENN. Ontwerp Voornm & nm: Kls: 3 BSIS LSSEN Project: MEETKUNDIG TEKE ENENN Ontwerp 2010 : w. vermelen Strtdtum P L N N I N G T V e n T T Geplnde einddtum Werkelijke einddtum Strtdtum P L N N I N G P R K T I J K Geplnde

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a Werkbld Een feestml Nm: Ieder lnd en iedere cultuur kent specile dgen. Dn gn fmilies bij elkr op bezoek. Op die specile dgen is er meestl extr ndcht voor het eten. Hier zie je wt voorbeelden vn feesten

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

Spiegelen, verschuiven en draaien in het vlak

Spiegelen, verschuiven en draaien in het vlak 2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen. Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen?

Nadere informatie

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar. Hertentmen Elektriciteit en Mgnetisme 1 Woensdg 14 juli 2011 09:00-12:00 Schrijf op elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke opgve op een prt vel. Dit tentmen bestt uit 4 vrgen. Alle vier

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl Hoe zichtbr ben jij mobiel? MOBIELpkket Oplossingen voor ondernemende kppers die kiezen 2012 www.wiewthr.nl Reviews? Voordelen 27% Nederlnders vindt reviewsites ls WieWtHr.nl erg nuttig* Wiewthr.nl is

Nadere informatie

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet.

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet. kennismking met i-respect.nl INTRODUCTIE GEMAAKT DOOR: Annèt Lmmers ONDERWERP: Een eerste kennismking met i-respect.nl en het onderwerp publiceren. DOEL: Weten wt de gevolgen en risico s kunnen zijn vn

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie