Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Complexe getallen. c(a+ib)=ca+i(cb) id(a+ib)=i(ad)+i 2 (bd)=(-bd)+i(ad) (a+ib)(c+id)=ac+i(ad)+i(bc)+i 2 (bd)= ac-bd+i(ad+bc)"

Transcriptie

1 . Ileidig: Complexe getalle I de wiskude stelt zich het probleem dat iet bestaat voor de reële getalle of dat de vergelijkig x + 0 gee reële ulpute heeft. Om dit euvel op te losse werd het getal i igevoerd met de eigeschap dat i -. i Dit getal wordt bijgevoegd bij de gewoe reële getalle met de eis dat deze ieuwe verzamelig og steeds ee veld moet blijve; cocreet komt dit erop eer dat de verzamelig der complexe getalle wordt gedefiieerd {( a + ib a,b zij reëel} voor zie va de optellig e vermeigvuldigig e de bijhorede distributiviteite. Ee complex getal a+ib bestaat uit ee reëel gedeelte a e ee imagiair gedeelte b. are(a+ib e bim(a+ib. Twee complexe getalle zij gelijk als zowel hu reëel als imagiair gedeelte gelijk zij: a + ib c + id a c e b d De optellig gebeurt et als bij koppels; de reële gedeelte worde bij elkaar opgeteld, alsook de imagiaire: (a+ib+(c+id(a+c+i(b+d Om complexe getalle te vermeigvuldige maak je gebruik va de distributiviteit e beschouw je i als ee gewoe veraderlijke met de bijkomede eigeschap dat i -: c(a+ibca+i(cb id(a+ibi(ad+i (bd(-bd+i(ad (a+ib(c+idac+i(ad+i(bc+i (bd ac-bd+i(ad+bc Stellig : Het iverse complexe getal: (a+ib - a + ib a + ib a + ib Dit is opieuw ee complex getal x+iy zodat (a+ib*(x+iy+i0. Deze gelijkheid impliceert a ax by x het volgede stelsel: bx bijgevolg bx + ay 0 y b a y - a ib (a + ib. De teller a-ib wordt de complex toegevoegde geoemd, otatie: a + ib a ib De term a + b wordt de modulus va ee complex getal geoemd: a b + a + ib Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

2 Complexe getalle Ee delig uitvoere met complexe getalle (of ee breuk is dus et zoals bij de reële getalle ee vermeigvuldigig va de teller met de iverse va de oemer: c + id (c + id * (a ib (c + id * (a + ib a + ib Vierkatswortels va egatieve getalle zij vaaf u wel bepaald: b b ib Merkwaardige producte: ook voor complexe getalle geldt o.a.: (a+b a +b +ab i -, i i.i-i, i 4 i. i (-.(-, i 5 i. i 4 i, Ga zelf maar ees a dat: i + i Opdrachte: Bereke de volgede uitdrukkige. (-i Bewijs dat: + i i + i i i + i i +. Kwadratische vergelijkige: 9 9 ( i 6 6 De vergelijkig x -60 heeft twee oplossige, amelijk x -4 e x 4. Door de laatste observatie ka u echter ook aavaard worde dat z +60 ook twee oplossige heeft amelijk z -4i e z 4i. Sterker og: de vergelijkig az +bz+c0 heeft vaaf u altijd twee oplossige: z, b ± b a 4ac Afhakelijk va het teke va de discrimiat D b 4ac zulle er twee verschillede reële (D>0, twee samevalled reële (D0 of twee verschillede complex toegevoegde (D<0 ulpute zij. Bovedie ka de tweedegraads veelterm otbode worde als az +bz+ca(z-z (z-z. Voorbeeld : ulpute va z -z+ ± 4 ± i De twee ulpute zij: z,. We kue agaa dat i i i + i i + i Bijgevolg ka de veelterm otbode worde als: z - z + z - z - Opdracht: Bepaal de ulpute va volgede kwadratische veelterme e otbid ze. z -6z+0 z -z+4 z +5z+ Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

3 Complexe getalle. Hoofdstellig va de Algebra Reeds i de 7 e eeuw (Girard: was me va meig dat ee willekeurige veelterm va de e graad ulpute heeft. Pas i het jaar 799 bewees oze vried Gauss de stellig: Ee willekeurige veelterm va de e graad: x + a x a x + a x + a ka altijd otbode worde i lieaire factore (x-x (x-x (x-x waarbij x,,x complexe ulpute zij va de veelterm Opmerkige: De coëfficiët va de eerste term ka altijd gelijk aa gemaakt worde door de hele veelterm te dele door de leidede coëfficiët. De ulpute va ee veelterm hoeve echter iet oodzakelijk verschilled te zij. Waeer ee ulput k maal voorkomt i de otbidig spreke we va ee multipliciteit k. Me ka ook de volgede gelijkhede bewijze: De som va alle ulpute x + +x (-a, De som va alle productepare x.x +x.x + +x -.x a. De som va alle productetrio s x.x.x + +x -. x -.x (-a. Ez. Het product va alle ulpute x.x..x (- a. Stellig: Als de coëfficiëte a,a,,a va ee veelterm f(xx + a x a x + a x + a allemaal reëel zij, e als z ee ulput is va de veelterm: f(z0, Da is ook de complex toegevoegde z ee ulput: f (z 0 Deze laatste stellig heeft tot gevolg dat ee veelterm met reële coëfficieëte ofwel reële ulpute heeft ofwel pare complexe ulpute die elkaars toegevoegde zij. Dit beteket door dat veelterme va oeve graad steeds mistes éé reëel ulpute moete hebbe. Toepassig: We zij op zoek aar ee vierdegraadsveelterm waarva,, e 4 de ulpute zij. We wete atuurlijk dat deze veelterm va de vorm x 4 +ax +bx +cx+d is e ka otbode worde als het product (x+(x-(x-(x-4. Uitwerkig va dit product zou os de obekede parameters a, b, c e d kue oplevere, maar rekefoute zij hier zeker iet uit te sluite. Probeer maar ees. Veel eevoudiger zij de volgede bewerkige: a-( , b(-*+(-*+(-*4+*+*4+*4 c-[(-**+(-**4+(-**4+**4]6 d(-***4-4 Omgekeerd zou je u kue cotrolere via de reketechiek va Horer dat de veelterm x 4-6x +x +6x-4 iderdaad de getalle,, e 4 als ulput heeft. Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

4 Complexe getalle 4 4. Meetkudige iterpretatie va ee complex getal Ee vergelijkig tusse de complexe getalle e putecoördiate i ee vlak drigt zich op: het complex getal a+ib komt overee met het put (a,b i het tweedimesioele vlak. Voor ee put hebbe we voordie ook al ees de zogeaamde poolcoördiate gedefiieerd. Deze krijge u ook ee betekeis voor het complexe getal: r a + ib wordt de modulus geoemd b als a > 0 wordt α Bgtg het argumet geoemd a b als a < 0 wordt α 80 + Bgtg het argumet geoemd a Omgekeerd ka je ook het complexe getal a+ib zoeke dat overeekomt met ee zekere modulus r e ee argumet α: de goiometrische voorstellig va ee complex getal a+ibr(cos(a+isi(a. b r α a Voorbeeld : goiometrische voorstellig va r ( α Bgtg + π (0 6 z + Je ka zelf agaa dat z + j ( cos(0 + jsi( 0 Opdracht: Bereke u zelf de goiometrische voorstellig va de getalle: +4i, -4+i, 4-i, 5+4i, 4-5i. Deze goiometrische voorstellig is ee uitsteked hulpmiddel om sel twee complexe getalle met elkaar te vermeigvuldige of te dele: Zij z r ( cos( α + isi( α e z r ( cos( α + isi( α zz r r ( cos( α + i si( α ( cos( α + isi( α r r ( cos( αcos( α si( αsi( α + i( cos( αsi( α + si( α cos( α r r ( cos( α + α + isi( α + α Coclusie: bij ee vermeigvuldigig worde de moduli vermeigvuldigd e de argumete worde opgeteld. Naar aalogie met de vermeigvuldigig bij ee expoetiële fuctie geeft deze eigeschap aaleidig tot de otatie: a + ib r(cos( α + isi(α j iα r * e. Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

5 Complexe getalle 5 Op ee gelijkaardige maier ka je bewijze dat voor ee delig geldt: z r i( α e α z r r r ( cos( α α + i si( α α Voorbeeld : Delig via goiometrische voorstellig. π i π + i * e 6 i π π e cos + isi i π i * e 6 E ook bij de machtsverheffig is deze voorstellig heel voordelig: (a + ib iα iα ( r *e r * e r ( cos(α + i si(α Voorbeeld 4: machtsverheffig via goiometrische voorstellig π 6π ( + i cos + isi Opdracht: Bereke zelf de volgede uitdrukkige. + i i ( i4 + i + ( ( de machtswortels va complexe getalle. + i4 i4 i 4 + i + i ( i ( + i 4 Vaak stelt zich het volgede probleem: gegeve zr(cos(α+isi(α; zoek het complexe getal w zodat w z. Dus zoek ee -de machtswortel va z. Door de goiometrische voorstellig va ee complex getal komt dit erop eer dat wr (cos(α +isi(α voldoet aa w r (cos(α +isi(α r(cos(α+isi(α r r Dit komt erop eer dat α of α α r cos + i si α is ee -de machtswortel va z. Maar de observatie dat cos(α+isi(αcos(α+π+isi(α+πcos(α+4π+isi(α+4π leert os dat er og adere oplossige te vide zij; er zij er i totaal: α α w r cos + isi w w α + π α + π r cos + i si M α + π ( r cos + α + ( π isi Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

6 Complexe getalle 6 Voorbeeld 5: zoek de 4 de machtswortels va cos(40 +isi(40 w w w w4 ( cos( 0 + i si ( 0 0, i0,7648 ( cos( isi ( 00-0,765 + i0, ( cos( isi ( 90-0,9848- i0,765 ( cos( isi ( 80 0,7648 -i0,9848 Bijkomede regel: Als je og eve aar de algemee oplossig kijkt da zie je dat de k-de α + (k π (k i α i π i oplossig ka geschreve worde als: w k r *e r *e * e Me vidt alle -de machtswortels uit ee complex getal door éé willekeurige wortel te vermeigvuldige met alle -de machtswortels uit het getal. Voorbeeld 6: Zoek alle de machtswortels uit 8i. Bemerk dat (i -8i e de de π π machtswortels uit zij: cos + isi ( + i w i w w i * i * ( + i i ( i i 4π 4π cos + i si ( i Oefeige: Los de volgede vergelijkige op: z z 5 i z 4 i Meetkudige iterpretatie va -de machtswortels. Als je de oplossige uit de vorige voorbeelde zou uittekee op ee x-y diagram met de afspraak dat de x-coördiate overeekome met het reële gedeelte e de y-coördiate met het imagiaire gedeelte va ee complex getal, da zij deze -de machtswortels allemaal hoekpute va ee regelmatige -hoek. Hieraast zie je de regelmatige driehoek uit voorbeeld 6. i i i Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

7 Complexe getalle 7 Zoek de ulpute va de kwadratische veelterm 7z +z+. Vermits het hier gaat om ee veelterm va de tweede graad ka hier gebruik gemaakt worde va de discrimiat (ook al is die egatief b ± b 4ac ± 9 56 ± i 47 z, a 4 4 Dit beteket dat de veelterm ka otbode worde als: i 47 + i 47 7z + z + 7 z z 4 4 Zoek alle oplossige va de vergelijkig: z 5 i. Eerst berekee we de modulus e het argumet va i : π De modulus is + (, het argumet Bgtg(- -60 (eigelijk De modulus va elke oplossig is 5. De eerste oplossig heeft als argumet: -60 /5-, de adere verschille telkes met ee hoek va 60 /57. Goiometrische voorstellig Cartesische voorstellig 5 cos( + isi(,597+i(-0,88 5 cos( isi( 60 0,57449+i(0, cos( isi( -0,7686+i(0, cos( isi( 04 -,0499+i(-0,467 5 cos( isi( 76 0,007+i(-,44 w [ ] w [ ] w [ ] w 4 [ ] w 5 [ ] Bepaal de coördiate va de hoekpute va ee regelmatige vijfhoek waarva éé hoek samevalt met het put (,5 We kue dit probleem voorstelle i het complexe vlak. Het gegeve hoekput wordt da +i5 e is ee vijfde machtswortel va ee ader complex getal dat os eigelijk iet iteresseert. De vier adere hoekpute zij ook vijfde machtswortels va datzelfde getal. Uit de cursus wete we dat die wortels bekome worde door éé oplossig te vermeigvuldige met alle vijfde machtswortels uit het getal. Goiometrische voorstellig Cartesische voorstellig w 9 [ cos(68, isi( 68,9859 ] +i(5 w 9 [ cos( isi( ] -4,75+i(,44798 w 9 [ cos( i si( ] -4,55696+i(-,8695 w 4 9 [ cos( i si( ],089+i(-5,066 9 cos( i si( ,77+i(-0,570 w 5 [ ] Cursus Wiskude 004 Eerste Jaar Bouw Hogeschool Sit-Lukas W.Mommaerts

1) Complexe getallen - definitie

1) Complexe getallen - definitie Complexe getalle ) Complexe getalle - defiitie a) Meetkudige betekeis va het getal i Als je ee reëel getal met ee ader reëel getal vermeigvuldigt, wordt zij afstad tot de oorsprog met dit getal vermeigvuldigd

Nadere informatie

3 Meetkundige voorstelling van complexe getallen

3 Meetkundige voorstelling van complexe getallen 3 Meetkudige voorstellig va complexe getalle 31 Complexe getalle als pute va ee vlak Complexe getalle zij geïtroduceerd als pute va ee vlak tov ee orthoormaal assestelsel Ee dergelijk assestelsel is odig

Nadere informatie

Trigonometrische functies

Trigonometrische functies Trigoometrische fucties Ileidig De meest gebruikelijke defiitie va de trigoometrische fucties cos e si berust op meetkudige cocepte (cirkel, hoek, driehoeke etc.) die buite het bestek va de aalyse valle.

Nadere informatie

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100...

Opgaven OPGAVE 1 1... OPGAVE 2. = x ( 5 stappen ). a. Itereer met F( x ) = en als startwaarden 1 en 100. 100... Opgave OPGAVE 1 a. Itereer met F( ) = e als startwaarde 1 e 1. 16 1............... 16 1............... b. Stel de bae grafisch voor i ee tijdgrafiek. c. Formuleer het gedrag va deze bae. (belagrijk is

Nadere informatie

1. Symmetrische Functies

1. Symmetrische Functies Algebra III 1 1. Symmetrische Fucties permutatios sot la metaphysique des équatios Lagrage*, 1771 I dit hoofdstuk bestudere we de ivariate va de werkig va de symmetrische groep S op polyoomrige i variabele.

Nadere informatie

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak

Dit geeft ee voorwaarde die slechts afhagt va de begiwaarde va de `basisoplossige' (bij (3) is die voorwaarde a b a b 0). Hoe ka me twee lieair oafhak Lesbrief 5 Recurreties e ogelijkhede Recursief gedefiieerde rije Er zij getallerije {a } die voldoe aa ee recurrete betrekkig va de vorm a +k = f(a +k ;a +k ;:::;a ) voor = ; ;:::, waardoor de + k-de term

Nadere informatie

We kennen in de wiskunde de volgende getallenverzamelingen:

We kennen in de wiskunde de volgende getallenverzamelingen: Masteropleidig Fiacial Plaig Kwatitatieve Methode Relevate wiskude We kee i de wiskude de volgede getalleverzamelige: De atuurlijke getalle: N = {0,,,,4, } De gehele getalle: Z = {, -,-,-,0,,,, } (egels:

Nadere informatie

Periodiciteit bij breuken

Periodiciteit bij breuken Periodiciteit bij breuke Keuzeodracht voor wiskude Ee verdieede odracht over eriodieke decimale getalle, riemgetalle Voorkeis: omrekee va ee breuk i ee decimale vorm Ileidig I deze odracht leer je dat

Nadere informatie

Appendix A: De rij van Fibonacci

Appendix A: De rij van Fibonacci ppedix : De rij va Fiboacci Het expliciete voorschrift va de rij va Fiboacci We otere het het e Fiboaccigetal met F De rij va Fiboacci wordt gegeve door: F F F F 4 F F 6 F 7 F De volgede afleidig is gebaseerd

Nadere informatie

Praktische opdracht: Complexe getallen en de Julia-verzameling

Praktische opdracht: Complexe getallen en de Julia-verzameling Praktische opdracht: Complexe getalle e de Julia-verzamelig Auteur: Wiebe K. Goodijk, Zerike College Hare Beodigde Voorkeis: 1 = i Het complexe vlak. Notatie: z = a + bi of z = r(cosϕ + i si ϕ) Regel va

Nadere informatie

Ongelijkheden. IMO trainingsweekend 2013

Ongelijkheden. IMO trainingsweekend 2013 Ogelijkhede IMO traiigsweeked 0 Deze tekst probeert de basis aa te brege voor het bewijze va ogelijkhede op de IMO. Het is de bedoelig om te bewijze dat ee bepaalde grootheid (ee uitdrukkig met ee aatal

Nadere informatie

Rijen. 6N5p

Rijen. 6N5p Rije 6N5p 0-03 Rije Ileidig I de wiskude werke we vaak met formules e/of fucties die elke mogelijke waarde aa kue eme. Als bijvoorbeeld f( x) = 5x + 5x 3, da ku je voor x (bija) elke waarde ivulle e ka

Nadere informatie

Videoles Discrete dynamische modellen

Videoles Discrete dynamische modellen Videoles Discrete dyamische modelle Discrete dyamische modelle Orietatie Algebraisch Algebraisch/ umeriek Numeriek Maak de volgede rijtjes af: Puzzele met rijtjes a. 2 4 6 8 10 - b. 1 2 4 8 16 - c. 1 2

Nadere informatie

Een meetkundige constructie van de som van een meetkundige rij

Een meetkundige constructie van de som van een meetkundige rij Ee meetkudige costructie va de som va ee meetkudige rij [ Dick Kliges ] Iets verder da Euclides deed Er wordt door sommige og wel ees gedacht dat Euclides (hij leefde rod 300 v. Chr.) allee over meetkude

Nadere informatie

1. Recursievergelijkingen van de 1 e orde

1. Recursievergelijkingen van de 1 e orde Recursievergelijkige va de e orde Rekekudige rije Het voorschrift va ee rekekudige rij ka gegeve wordt met de volgede recursievergelijkig: u = u + b Idie we deze vergelijkig i de vorm u = u u = b otere

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Convergentie, divergentie en limieten van rijen

Convergentie, divergentie en limieten van rijen Covergetie, divergetie e limiete va rije TI-spire e rije 7N5p GGHM 22-23 Eigeschappe rekekudige rij b = begiwaarde v = verschil tusse twee opeevolgede terme recursieve formule: u = u + v met u = b directe

Nadere informatie

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering Samevattig Fouriertheorie e distributies De exacte beaderig Ileidig 2 De warmtevergelijkig Ja Wiegerick Korteweg - de Vries Istituut voor Wiskude Uiversiteit va Amsterdam 27 september 22 3 Oplossig door

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

2. Limiet van een rij : convergentie of divergentie

2. Limiet van een rij : convergentie of divergentie 2. Limiet va ee rij : covergetie of divergetie 2. Eigelijke of eidige limiet 2.. Voorbeeld I ee bos staa 4 bome. De diest bosbeheer zal jaarlijks 2% bome kappe e ieuwe aaplate. Zal het bos verdwije? Zal

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Functies, Rijen, Continuïteit en Limieten

Functies, Rijen, Continuïteit en Limieten Fucties, Rije, Cotiuïteit e Limiete Fucties, Rije, 2-0 Cotiuïteit e Limiete Fucties, Rije, Cotiuïteit e Limiete Ihoud 1. Fucties Defiitie e kemerke / bewerkige op fucties Reële fucties va éé reële veraderlijke

Nadere informatie

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking

Iteratie is het steeds herhalen van eenzelfde proces, verwerking op het bekomen resultaat. Verwerking 1. Wat is iteratie? Iteratie is het steeds herhale va eezelfde proces, verwerkig op het bekome resultaat. INPUT Verwerkig OUTPUT Idie de verwerkig gebeurt met ee (reële) fuctie geldt voor ee startwaarde

Nadere informatie

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6

HOOFDSTUK III. SCHATTEN VAN PARAMETERS Schatters en Betrouwbaarheidsintervallen. Theorie Statistiek Les 6 HOOFDSTUK III SCHATTEN VAN PARAMETERS Schatters e Betrouwbaarheidsitervalle 3. HET GEMIDDELDE VAN EEN NV Steekproef uit ee ormaal verdeelde populatie De kasveraderlijke X, X, X 3,..., X zij N(µ, σ) verdeeld

Nadere informatie

7. Betrouwbaarheidsintervallen voor proporties

7. Betrouwbaarheidsintervallen voor proporties VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 7. Betrouwbaarheidsitervalle voor proporties Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg

Nadere informatie

C p n = C p (2000) Zet op de volgende uitdrukking gelijke noemer. 1 (p + 1)!n! + 1. (n + 1)!p! (a 3 2 a 2 )15

C p n = C p (2000) Zet op de volgende uitdrukking gelijke noemer. 1 (p + 1)!n! + 1. (n + 1)!p! (a 3 2 a 2 )15 Combiatieleer. (99 Op hoeveel maiere kue 8 studete verdeeld worde i groepe als elke groep uit mistes studet moet bestaa.. (99 Hoeveel terme elt ee homogee veelterm va graad 5 i 3 obepaalde x, y e, z? 3.

Nadere informatie

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt.

Hoofdstuk 1 - Rijen ) = bladzijde ; voor x = 11 is y = = 55. te rekenen omdat die ook met hele stappen toeneemt. Hoofdstuk - Rije bladzijde V-a Als x steeds met toeeemt, da eemt y met toe. b Voor x is y + 5 ; voor x is y + 55. c De waarde va x eemt met hele stappe toe. De waarde va y is da makkelijk uit te rekee

Nadere informatie

Spelen met vormen. Tim Neefjes Bryan Tong Minh

Spelen met vormen. Tim Neefjes Bryan Tong Minh Spele met vorme Tim Neefjes Brya Tog Mih Ileidig Toe ee plei i Stockholm, Sergel s Square aa heraaleg toe was stode de architecte voor ee probleem. Het was ee rechthoekig plei e i het midde moest ee wikelcetrum

Nadere informatie

2 Veelhoeken 1 REGELMATIGE VEELHOEKEN

2 Veelhoeken 1 REGELMATIGE VEELHOEKEN Veelhoeke 1 EGELMATIGE VEELHOEKEN Voor meetkudige figure met meer da vier zijde geruike we vaak de verzamel aam veelhoeke. Als we te make hee met regelmatige veelhoeke, kue we hu omtrek e oppervlakte erekee

Nadere informatie

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken.

HET BELANG VAN. Vragen Tijdens de voordracht op 14 augustus 2007 hebben we de volgende vragen besproken. HET BELANG VAN KP HART Vrage Tijdes de voordracht op augustus 007 hebbe we de volgede vrage besproke. Hoe ku je izie dat ee vierkat, bij gegeve omtrek, de rechthoek met de maximale oppervlakte is? Hoe

Nadere informatie

Deel A. Breuken vergelijken 4 ----- 12

Deel A. Breuken vergelijken 4 ----- 12 Deel A Breuke vergelijke - - 0 Breuke e brokke (). Kleur va elke figuur deel. Doe het zo auwkeurig mogelijk.. Kleur va elke figuur deel. Doe het telkes aders.. Kleur steeds het deel dat is aagegeve. -

Nadere informatie

2.6 De Fourierintegraal

2.6 De Fourierintegraal 2.6 De Fourieritegraal We vertrekke va de Fourierreeks i complexe vorm: voor g : [ π,π] C kue we schrijve met g(t) α e it, α 1 Z π g(t)e it dt. 2π π We herschrijve deze formules eerst voor ee fuctie f

Nadere informatie

Rijen met de TI-nspire vii

Rijen met de TI-nspire vii Rije met de TI-spire vii De tore va Pisa Me laat ee bal valle vaaf de tore va Pisa(63m hoog) Na elke keer stuitere haalt de bal og ee vijfde va de voorgaade hoogte. Gevraagd zij: a) De hoogte a de e keer

Nadere informatie

De wiskunde achter de GR

De wiskunde achter de GR Domei Keuzeoderwerpe vwo B,D De wiskude achter de GR Ihoud 1.1 Biair rekee 1. Taylor beaderige 1.3 Nulpute, sijpute 1.4 Itegrale beadere 1.5 Overzicht I opdracht va: Stichtig Math4all Math4all, Deveter

Nadere informatie

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten

1. Weten dat in het geval van compressoren rekening moet gehouden worden met thermische effecten Hoofdstuk 4 Compressore Doelstellige 1. Wete dat i het geval va compressore rekeig moet gehoude worde met thermische effecte 2. Wete dat er ee gres is aa het verhoge va de druk va ee gas 3. Wete welke

Nadere informatie

Kansrekenen [B-KUL-G0W66A]

Kansrekenen [B-KUL-G0W66A] KU Leuve Kasrekee [B-KUL-G0W66A] Notities Tom Sydey Kerckhove Gestart 8 februari 2015 Gecompileerd 9 februari 2015 Docet: Prof. Tim Verdock Ihoudsopgave 1 Combiatoriek 2 1.1 Variaties..........................................

Nadere informatie

wiskunde A pilot vwo 2016-I

wiskunde A pilot vwo 2016-I wiskude A pilot vwo 06-I Aalscholvers e vis maximumscore 3 De viscosumptie per dag is 30 0 0,36 + 696 0, 85 ( 788 (kg)) I de maad jui is dit 30 788 (kg) Het atwoord: 38 000 ( 38 duized) (kg) Als ee kadidaat

Nadere informatie

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E

B C D E Welke rij is noch een Rekenkundige. noch een Meetkundige Rij? A B C D E Naam : Klas:.Datum: Ma 0 sept. 00 Rechterkat als kladblad gebruike A. 5067 De rij x, x+, x+,... is rekekudig als x gelijk is aa ) ) ) 4) 4 5) 0 6) 4 7) 8) ee getal tusse e 0 B. 57 80 De legtes a, b e c

Nadere informatie

Workshop generating functions

Workshop generating functions Workshop geeratig fuctios PRIME 6 oktober 04 Geererede fucties werde igevoerd door Abraham de Moivre i 730 om recursieprobleme op te losse, maar hebbe sidsdie i allerlei deelgebiede va de wiskude hu ut

Nadere informatie

Reeksen. Convergente reeksen

Reeksen. Convergente reeksen Reekse Reekse Defiitie, otatie e voorbeelde Defiitie: Eereeks is ee koppel ( ) {u } l, {s } l met s = u k = u l + u l+ + u l+2 +...+ u + u k=l u l = s l, u = s s, = l +, l +2,... {u } l oemt me de termerij,

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

Werktekst 1: Een bos beheren

Werktekst 1: Een bos beheren Werktekst : Ee bos behere Berekeige met rije op het basisscherm Op ee perceel staa 3000 kerstbome. Ee boomkweker moet beslisse hoeveel bome er jaarlijks gekapt kue worde e hoeveel ieuwe aaplat er odig

Nadere informatie

Discrete dynamische systemen

Discrete dynamische systemen Cahiers T 3 Europe Vlaadere r. 19 Discrete dyamische systeme Recursievergelijkige met de TI-84 Joha Deprez Discrete dyamische systeme Joha Deprez HUBrussel, Uiversiteit Atwerpe, Katholieke Uiversiteit

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2008-II

Eindexamen wiskunde A1-2 vwo 2008-II Groepsfoto s Alle mese kippere met hu oge. Daardoor staa op groepsfoto s vaak ekele persoe met geslote oge. Sveso e Bares hebbe oderzocht hoeveel foto s je moet make va ee groep va persoe om 99% kas te

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Het andere binomium van Newton Edward Omey

Het andere binomium van Newton Edward Omey Ileidig Het adere biomium va Newto Edward Omey Bija iederee heeft tijdes ij studies eis gemaat met de biomiale coëf- ciëte of getalle Dee worde diwijls voorgesteld oder de vorm die door Blaise Pascal (6-66)

Nadere informatie

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00

2de bach TEW. Statistiek 2. Van Driessen. uickprinter Koningstraat Antwerpen ,00 de bach TEW Statistiek Va Driesse Q www.quickpriter.be uickpriter Koigstraat 3 000 Atwerpe 46 5,00 Nieuw!!! Olie samevattige kope via www.quickpritershop.be Hoofdstuk : Het schatte va populatieparameters.

Nadere informatie

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek.

Een toelichting op het belang en het berekenen van de steekproefomvang in marktonderzoek. 006 Wolters-Noordhoff bv Groige/Houte De steekproefomvag Ee toelichtig op het belag e het berekee va de steekproefomvag i marktoderzoek. Ihoud 1 Ileidig Eerst ekele defiities 3 Steekproefomvag e respose

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

Betrouwbaarheid. Betrouwbaarheidsinterval

Betrouwbaarheid. Betrouwbaarheidsinterval Betrouwbaarheid Ee simulatie beoogt éé of i.h.a. twee of meerdere sceario s te evaluere e te vergelijke, bij Mote Carlo (MC) simulatie voor ee groot aatal istelwaarde, voor éé of meerdere parameters. Hierbij

Nadere informatie

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178

Machtsfuncties en wortelfuncties. Introductie 177. Leerkern 178 Ope Ihoud Uiversiteit leereeheid 6 Wiskude voor ilieuweteschappe Machtsfucties e wortelfucties Itroductie 77 Leerker 7 Machtsfucties et ee atuurlijk getal als epoet 7 Machtsfucties et ee egatief geheel

Nadere informatie

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III

Commissie Pensioenhervorming 2020-2040. Nota over de actuariële neutraliteit. Bijlage III Commissie Pesioehervormig 00-040 Nota over de actuariële eutraliteit Bijlage III. I het kader va de ivoerig va ee «deeltijds pesioe» wordt de kwestie va de actuariële correctie va de uitkerige i geval

Nadere informatie

Vectoren en Matrixalgebra

Vectoren en Matrixalgebra Cahiers T Europe Vlaadere r. Vectore e Matrixalgebra Ee ieuwe aapak met toepassige Guido Herweyers Vectore e Matrixalgebra Ee ieuwe aapak met toepassige Guido Herweyers Ihoudsopgave Woord vooraf.....

Nadere informatie

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder

Rijen en reeksen. Mei 2008. Remy van Bergen Peter Mulder Rije e reekse Keuzeoderwerp Atheeum 5 wiskude B e B Mei 008 Remy va Berge Peter Mulder Dit boekje gaat over rije e reekse. Wiskudige rije! Rije worde i de wiskude op verschillede maiere gedefiieerd. Met

Nadere informatie

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå=

fíéê~íáéi=çóå~ãáëåüé=éêçåéëëéå=éå= åìãéêáéâé=ãéíüççéå= fíéê~íáéiçóå~ãáëåüééêçåéëëéåéå åìãéêáéâéãéíüççéå oçöéêi~äáé hçéåpíìäéåë Iteratie, dyamische processe e umerieke methode Roger Labie Koe Stules www.scholeetwerk.be 005, UHasselt (België), Scholeetwerk Weteschappe

Nadere informatie

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting

Op zoek naar een betaalbare starterswoning? Koop een eigen huis met korting Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Op zoek aar ee betaalbare starterswoig? Koop ee eige huis met kortig Pagia Ee eige huis waar u zich helemaal thuis voelt. Dat wil iederee!

Nadere informatie

Cahiers T 3 Europe Vlaanderen nr. 3. Regressie. Een eerste kennismaking. Bieke Van Deyck

Cahiers T 3 Europe Vlaanderen nr. 3. Regressie. Een eerste kennismaking. Bieke Van Deyck Cahiers T 3 Europe Vlaadere r. 3 Regressie Ee eerste keismakig Bieke Va Deyck Regressie Ee eerste keismakig Bieke Va Deyck Ihoudsopgave HOOFDSTUK : DE BIVARIATE VERDELING A. Probleembeschrijvig B. Het

Nadere informatie

de oplossingen zijn van d d 1 = 0. Hoofdvraag 7. Als de lenge van de zijde van een vijfhoek 1 is, dan heeft de diagonaal als lengte

de oplossingen zijn van d d 1 = 0. Hoofdvraag 7. Als de lenge van de zijde van een vijfhoek 1 is, dan heeft de diagonaal als lengte De Gulde Sede Ee project va begeleid zelfstadig lere i het vijfde jaar. Ee samewerkig tusse Sit Ja Berchmas i Westmalle, Spijker i Hoogstrate e Sit Jozef i Esse. Vrage Bladzijde 6. Too aa dat i ee petago

Nadere informatie

Evaluatie pilot ipad onder docenten

Evaluatie pilot ipad onder docenten Evaluatie pilot ipad oder docete Oderwerp equête Geëquêteerde Istellig Evaluatie pilot ipad Docete OSG Sigellad locatie Drachtster Lyceum Datum aamake equête 19-06-2012 Datum uitzette equête 21-06-2012

Nadere informatie

kwadratische vergelijkingen

kwadratische vergelijkingen kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1,2 (nieuwe stijl) Wiskude B, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen)

Combinatoriek. Nota s in samenwerking met Anja Struyf en Sabine Verboven (Universiteit Antwerpen) 1 Combiatoriek Nota s i samewerkig met Aja Struyf e Sabie Verbove (Uiversiteit Atwerpe) I het dagelijkse leve worde we vaak gecofroteerd met vraagstukke waarva de oplossig het telle va het aatal elemete

Nadere informatie

Op het internet is heel wat bijkomend materiaal te vinden over dit onderwerp. We vermelden een tweetal URL s:

Op het internet is heel wat bijkomend materiaal te vinden over dit onderwerp. We vermelden een tweetal URL s: Fiboacci: joger da je dekt! -- Ileidig Het documet dat voorligt is opgesteld door ere-pedagogisch begeleider Walter De Volder. Oze bijzodere dak e waarderig gaa da ook volledig aar hem: va zij vele ure

Nadere informatie

12 Kansrekening. 12.1 Kansruimten WIS12 1

12 Kansrekening. 12.1 Kansruimten WIS12 1 WIS12 1 12 Kasrekeig 12.1 Kasruimte Kasmaat Ee experimet is ee hadelig of serie hadelige met ee of meer mogelijke resultate uitkomste geoemd). De uitkomsteruimte, die we steeds zulle aageve met Ω, is de

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Rijen

Uitwerkingen bij 1_0 Voorkennis: Rijen Uitwerkige ij _0 Voorkeis: Rije V_ a U = 7 + U = +,5 7 + = +,5 0,5 = 4 = 8 Na 8 rode krijge ze elk,-. V_ U() =, 06 U( ) met U(0) = 500 e U() het eidedrag a jaar. V_ a u 458 8 r u 8 9 4 = = = dus 5 u5 8

Nadere informatie

Eindexamen wiskunde B1 vwo 2007-I

Eindexamen wiskunde B1 vwo 2007-I Eidexame wiskude B vwo 007-I havovwo.l Podiumverlichtig Ee podium is 6 meter diep. Midde bove het podium hagt ee balk met tl-buize. De verlichtigssterkte op het podium is het kleist aa de rad, bijvoorbeeld

Nadere informatie

6 Het inwendig product

6 Het inwendig product 6 Het iwedig prdct Te algebra e meetkde gescheide vakke ware, was h vrtgag lagzaam e h t beperkt Maar sids beide vakke zij vereigd, hebbe ze elkaar derlig versterkt e zij ze gezamelijk pgetrkke aar perfectie

Nadere informatie

G0N34a Statistiek: Examen 7 juni 2010 (review)

G0N34a Statistiek: Examen 7 juni 2010 (review) G0N34a Statistiek: Exame 7 jui 00 review Vraag Beoordeel de volgede uitsprake. Als ee uitspraak iet juist is of ovolledig, leg da uit waarom e verbeter de uitspraak.. Bij het teste va hypotheses is de

Nadere informatie

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25.

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25. Hoofdstuk WORTELS. ZIJDE EN OPPERVLAKTE VAN EEN VIERKANT a z a 9 + + + + 9 Lagzamer a Nee Hij doet alsof de oppervlakte gelijkmatig toeeemt. Je moet als zijde eme. z 0, 0, z a a 0,09 0,9 z a 0 / 00 0,

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep.

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep. 1 Bewerkige met mtrices ivoere vi voorbeelde 11 -tlle e de bewerkige ( 1, 2, 3,, ) is ee -tl met i De verzmelig v reële -tlle otere we met Defiieer de som ls ( 1, 2, 3,, ) + (b 1,b 2,b 3,,b ) = ( 1 +b

Nadere informatie

Oefeningen op Rijen. Leon Lenders, Bree

Oefeningen op Rijen. Leon Lenders, Bree Oefeige op Rije Leo Leders, Bree I de tekst staa ee aatal oefeige i verbad met rije. De moeilijkere oefeige zij volledig uitgewerkt. Volgede oderwerpe kome aa bod : Plooie va ee blad papier Salaris Het

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 009 tijdvak wiskude B, Het correctievoorschrift bestaat uit: Regels voor de beoordelig Algemee regels Vakspecifieke regels Beoordeligsmodel 5 Izede scores Regels voor de beoordelig

Nadere informatie

Bevolkingsevolutie en prijsevolutie: rijen en de TI-89

Bevolkingsevolutie en prijsevolutie: rijen en de TI-89 Bevolkigsevolutie e prijsevolutie: rije e de TI-89 Joha Deprez, EHSAL Brussel - K.U. Leuve. Ileidig Deze tekst is bedoeld als keismakig met de symbolische rekemachie TI-89 va Texas Istrumets. We geve gee

Nadere informatie

Lineaire algebra-b (2008)

Lineaire algebra-b (2008) Laatst veilig gesteld op: 7-Ja-009 6:34 Lieaire algebra-b 508 (008) Samevattig Dit is mij samevattig/hadleidig bij het vak lieaire algebra-b. Dit vak wordt gegeve uit stewart H7 e appedix H e Lay H5 e

Nadere informatie

EINDVERSLAG van een project met de titel: Algoritmen in de klassenlichamentheorie

EINDVERSLAG van een project met de titel: Algoritmen in de klassenlichamentheorie EINDVERSLAG va ee roject et de titel: Algorite i de klasselichaetheorie docet: drs J Bouw Waterut 4 959 GB Streefkerk eail: bouwj@telel uiversitair cotactersoo: Profdr P Stevehage Matheatisch istituut

Nadere informatie

Handout bij de workshop Wortels van Binomen

Handout bij de workshop Wortels van Binomen Hadout bij de workshop Wortels va Biome Steve Wepster NWD 014 Verbeterde versie 1 Historische achtergrod Klassieke Griekse meetkude: I de klassieke Griekse meetkude zoals we die bijvoorbeeld bij Euclides

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Steekproeftrekking Onderzoekspopulatie Steekproef

Steekproeftrekking Onderzoekspopulatie Steekproef Steekproeftrekkig I dit artikel worde twee begrippe beschreve die va belag zij voor het uitvoere va ee oderzoek. Het gaat om de populatie va het oderzoek e de steekproef. Voor wat betreft steekproeve lichte

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eame VWO 200 tijdvak 2 woesdag 23 jui 3.30-6.30 uur wiskude B Bij dit eame hoort ee uitwerkbijlage. Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 80 pute te behale. Voor elk vraagummer staat

Nadere informatie

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED

DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED DE ROL VAN GIS BIJ DE HEDONISCHE WAARDEBEPALING VAN VASTGOED Prof. ir. P. Ampe, Prof. dr. ir. A. De Wulf, ig. J. De Corte. 1. Ileidig e probleemstellig. Sedert deceia gebruike schatters zowel i België

Nadere informatie

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran

Aanvulling aansluitingscursus wiskunde. A.C.M. Ran Aanvulling aansluitingscursus wiskunde A.C.M. Ran 1 In dit dictaat worden twee onderwerpen behandeld die niet in het boek voor de Aansluitingscursus staan. Die onderwerpen zijn: complexe getallen en volledige

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling

Opgeloste Oefeningen Hoofdstuk 5: Wet van de grote aantallen en Centrale limietstelling Opgeloste Oefeige Hoofdstuk 5: Wet va de grote aatalle e Cetrale limietstellig 5.. Ee toevalsveraderlijke X is oisso-verdeeld met parameter λ = 00. Bepaal ee odergres voor de waarschijlijkheid (75 X 5).

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

figuur 2.50 Microscoop

figuur 2.50 Microscoop 07-01-2005 10:20 Pagia 1 Microscoop Ileidig Ee microscoop is bedoeld om kleie voorwerpe beter te kue zie, zie figuur 2.50. De bolle les dicht bij het oog (het oculair) heeft ee grote diameter. De bolle

Nadere informatie

1 Het trekken van ballen uit een vaas

1 Het trekken van ballen uit een vaas Het trekke va balle uit ee vaas Combiatorische kasprobleme moete worde aagepakt met ee kasmodel dat bestaat uit ee eidige uitkomsteverzamelig Ω va gelijkwaarschijlijke uitkomste Dit wil zegge dat de kas

Nadere informatie

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. wiskunde A1,2 (nieuwe stijl) wiskude A, (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 04 Tijdvak izede scores Verwerk de scores va de alfabetisch eerste vijf kadidate per school i het programma Wolf

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskude B (ieuwe stijl) Correctievoorschrift VWO Voorbereided Weteschappelijk Oderwijs 0 0 Tijdvak Izede scores Uiterlijk op jui de scores va de alfabetisch eerste vijf kadidate per school op de daartoe

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 3

Wiskunde D Online uitwerking 4 VWO blok 7 les 3 Paragraaf Vergelijkige va vlakke Opgave a Dat zij de pute A, B, E e F e alle pute die verder op de voorkat va de kubus ligge. b Dat zij de pute A, C, E e G e alle pute die i het diagoaalvlak met A, C,

Nadere informatie

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl

Kanstheorie. 2de bachelor wiskunde Vrije Universiteit Brussel. U. Einmahl Kastheorie 2de bachelor wiskude Vrije Uiversiteit Brussel U. Eimahl Academiejaar 2011/2012 Ihoudsopgave 1 Kasruimte 1 1.1 Toevallige experimete................................. 1 1.2 De axioma s va Kolmogorov.............................

Nadere informatie

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7 Hoofdstu Combiatorie. Basisregels Combiatorie is de studie va telprobleme. De ust va het telle bestaat vaa uit het codere of aders voorstelle va het telprobleem, zodat het uiteidelij volstaat om de volgede

Nadere informatie

Schoenen voor diabetes en reuma

Schoenen voor diabetes en reuma Schoee voor diabetes e reuma Comfortschoee gemaakt voor de extra kwetsbare voet Officieel gee vergoedig via zorgverzekeraar. Echter bij ekele zorgverzekeraars is door middel va idividuele aavraag vergoedig

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie