Noordhoff Uitgevers bv

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Noordhoff Uitgevers bv"

Transcriptie

1 6 Etra oefening - Basis B-a 0 y b y = + y O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i + ) s s s s s 6 i i i i 0i r = s + s + 6 h= i + i + b k = ( l+ )( l + ) f a= ( b+ )( + b) l l l l l 0 b b 6b b 0 b k = l + 9l + 0 a= b + 67b + 0 c y= ( + )( + 7 ) g z= ( + a)( a + 8) a 8 a a a 8a y= z= a + 0a + d b= ( c+ 6)( c + 7 ) h p= ( 7q+ )( q + ) c 7 q s c c 7c 7q q q 6 6c q b= c + c + p= q + 7q + Moderne wiskunde 9e editie uitwerkingen A havo/vwo

2 B-a g = 7 a+ g y= ( + a 7 7 a 0 g = 7 a+ 0 y= b w= 9n( 0, + n) h w= ( 8 u) + u 0, n 8 u 9n,7n 9n 8 u w= 7, n 9n w= 8+ u+ u w= 8+ u c y= 8 ( ) i u= 7 + f f + f y= 8 + u= 7+ f y= 9 u= 0 f d d= ( c 7) j v= 8 ( r+ 6) c 7 c r 6 r 6 d= c+ v= 8 r 6 v= r e k = ( b) k t = k 6( k ) 6 b 0 b k 6 k 8 q 6 k = b t = k k + 8 k = 0 b t = k+8 f h= 8s( 6, + s) l p= q+ q + 6 6, s 8s s 8s h= s+ 8s p= q+ q + p= q+ B-a s= ( g+ 6)( g ) e u= ( r )( 8 r) g g g g 6 6g 0 8 r r 0r r r s= g + g 0 u= r + r b n= ( r+ )( r + ) f d= ( k+ 8)( k + ) r r r r r k k k k 8 8k 6 n= r + r + d= k + 0k + 6 Moderne wiskunde 9e editie uitwerkingen A havo/vwo 6

3 66 c w= ( h+ 7)( h ) + h g n= ( c)( c + ) h h h h 7 7h 7 c c 0 c c c w= h + 6h 7+ h n= c c + 0 w= h + 9h 7 d v= ( w+ 9)( w ) h t = + ( e )( e + ) w w w w 9 9w 7 e e e e e 6 v= w + 6w 7 t t = + e + 8e 6 t = e + 8e B-a = 7 = = of = Invullen geeft = = 7 en ( ) = = 7 en dat klopt. b + = = Dit kan niet. De vergelijking heeft geen oplossing. c ( ) + = ( ) = = of = = of = Invullen geeft ( ) + = + = + = en ( ) + = ( ) + = + = en dat klopt. d 9 = 8 = = of = Invullen geeft 9 = 9 = 8 en 9 ( ) = 9 = 8 en dat klopt. e + = 0 = = of = Invullen geeft + = + = 0 en + ( ) = + = 0 en dat klopt. f ( + ) = 9 + = 7 of + = 7 = of = 9 Invullen geeft ( + ) = 7 = 9 en ( 9+ ) = ( 7) = 9 en dat klopt. B-6a prijs in euro s, 7,7 percentage 00 9 Als het bedrag eclusief 9% BTW is, dan is de prijs van de computer e.7,7. b prijs in euro s 0,9... 9,88... percentage 9 9 Als het bedrag inclusief 9% BTW is, dan moet Simon e 9,9 aan BTW betalen. Moderne wiskunde 9e editie uitwerkingen A havo/vwo

4 B-7a De nieuwe prijs van het colbert wordt 0,70 e 79,0 e,6. b Moni krijgt 0% % % korting. De prijs wordt 0,6 e 09,0 e 7,7. Moni moet aan de kassa e 7,8 betalen. B-8a De groeifactor is 0, : 0,0 0,8 : 0,. t 0 h 0,0 0, 0,8,9 7,68 0,7 b De groeifactor is 00 : : 00 0,6. t 0 h ,8 8,88 B-9a Je moet achtereenvolgens vermenigvuldigen met : 00,0, met : <,09, met 79 : <,008 en met 608 : 79 <,00. Je moet telkens ongeveer met,0 vermenigvuldigen, dus de konijnenpopulatie groeit ongeveer % per jaar. b t Een formule is K = 00 0,. c De grafiek erbij is stijgend omdat de groeifactor groter dan is. d Invullen van t = geeft K = 00 0, 990 en invullen van t = geeft K = 00 0, 09. In het jaar zullen er voor het eerst meer dan 000 konijnen zijn. B-0a , 87 0 d = 89, 0 b , 0 e 9 000,, 0 c 76 6, 0 f : 0, , 0 0 Etra oefening Gemengd G- y= ( a+ )( a ) y= ( a+ )( a) a a a a a a a + a + a S y= a - y= a a y= ( a+ )( 7 a) y= ( a+ )( a + ) 7 a a 7a a + +0 a a a a a + a + O y= a + a + 0 U y= a + 6a + y= ( a+ )( a + ) y= ( a+ )( a ) a a a a a a 6a 9a + + a a 6 R y= a + a + T y= 6a a 6 Moderne wiskunde 9e editie uitwerkingen A havo/vwo 67

5 68 y= ( a+ )( 7 a) y= ( a+ )( a) 7 a a a a a E y= a + 9a + y= ( a+ )( a + ) a a a 6a a S y= a + 7a + Je vindt het spreekwoord RUST-ROEST. a a a a T y= a a y= ( a+ )( a + ) a a 6a 9a a 6 R y= 6a + a + 6 G-a 0 y b/c y O 6 y = ( )( + ) 8 y = d De coördinaten van de snijpunten van de grafieken zijn (, ) en (, ). e ( )( + ) = f 9 + 9= = = of = Bij opdracht e heb je de -coördinaten van de snijpunten die je bij opdracht d gevonden hebt berekend. G-a Als a = 0, dan zijn de ribben van de balk 0, 0 en 8. De inhoud van de balk is dan 8 8. b Voor de totale lengte L van de ribben geldt L= ( a+ ) + ( a + ) + 8. a a 8 a a L= a+ 8+ a + + L= 8a+ Moderne wiskunde 9e editie uitwerkingen A havo/vwo

6 c Voor de totale oppervlakte A van de balk geldt A= (( a+ )( a+ ) + 8( a+ ) + 8( a + )). a a a a a 6 a 8 8a 6 a 8 8a A= ( a + a+ 6+ 8a a + ) A= ( a + a + 6) a a 6 a a 9 A= a + a + 9 d Voor de inhoud I van de balk geldt I = 8( a+ )( a + ). a a a a a 6 I = 8( a + a + 6) a a 6 8 8a 0a 8 I = 8a + 0a + 8 G-a Als =, dan wordt van de lengte een strook van cm breed afgeknipt en wordt aan de breedte een strook van 0 cm breed geplakt. De lengte wordt dan 70 cm en de breedte wordt dan cm. De oppervlakte van dit stuk karton wordt dan cm. b Voor de oppervlakte A in cm geldt A= ( 70 )( 8+ ). c A De oppervlakte is maimaal voor = cm. d Die maimale oppervlakte is 80 cm. Moderne wiskunde 9e editie uitwerkingen A havo/vwo 69

7 70 G-a De aanbieding is onduidelijk. Als Carla de % kassakorting krijgt over het oorspronkelijke bedrag, dan krijgt ze 0% % % korting. Maar als ze de % kassakorting krijgt over het afgeprijsde artikel, dan krijgt ze minder dan % korting. b In het eerste geval moet Carla het oorspronkelijke bedrag met 0,7 vermenigvuldigen. In het tweede geval moet Carla het oorspronkelijke bedrag met 0,90 0,8 0,76 vermenigvuldigen. c In het eerste geval krijgt Carla 0, e 6,9 < e 6, korting. In het tweede geval krijgt Carla 0, e 6,9 < e,6 korting. d Nee, dat maakt niet uit. In het eerste geval is 0% % % 0% % en in het tweede geval is 0,90 0,8 0,8 0,90 0,76. G-6a b c In één week wordt de oppervlakte van het kroos 7 8 keer zo groot. Op de dertigste dag is de hele vijver bedekt met kroos. Eén dag eerder, dus op de negenentwintigste dag, was nog maar de helft van de vijver met kroos bedekt. En twee dagen eerder, dus op de achtentwintigste dag, was nog maar een kwart van de vijver met kroos bedekt. G-7a Bij deze groeifactor hoort grafiek,want de groeifactor is kleiner dan en daarbij hoort een dalende grafiek. b De groeifactor bij grafiek is, want als met één toeneemt, dan wordt y twee keer zo groot. c Een formule bij grafiek is y = 0,. Een formule bij grafiek is y = 0 0,. 0 d Invullen van = 0 in formule geeft y = 0,, Invullen van = 0 in formule geeft y = 0 0, 888, 0. G-8a Na één keer stuiteren komt het balletje 60 = 8 cm hoog. b De groeifactor is kleiner dan omdat het balletje steeds minder hoog komt. k c Een formule is H = 60 ( ). d Na twaalf keer stuiteren komt het balletje H = 60 ( ) cm hoog. e Invullen van k = geeft H = 60 ( ) 0, 0 en invullen van k = geeft H = 60 ( ) 0, 08. Ze kan het balletje keer zien stuiteren. Complee opdrachten C- Voor de oppervlakte A in cm van de eerste rechthoek geldt A= oftewel A= 8. Voor de oppervlakte A in cm van de tweede rechthoek geldt A= ( )( + ). 8 De formule bij de tweede rechthoek kun je schrijven als A= 8. Beide oppervlakten zijn dus even groot. Moderne wiskunde 9e editie uitwerkingen A havo/vwo

8 C- snelheid snelheid = 7 snelheid snelheid = snelheid snelheid = 700 snelheid snelheid =800 snelheid = snelheid = Het verschil in snelheden van deze auto s is ongeveer km per uur. C- Voor de oppervlakte A in cm van het overgebleven stuk geldt A= 0 0 oftewel A= 00. Je moet dan de vergelijking 00 = 7 oplossen. = = 6, =, of =, Een negatieve lengte bestaat niet, dus voor =, cm is de oppervlakte van het overgebleven stuk 7 cm. C- Neem AB, dan is BC. AB AC 8 BC 6 ( ) Optellen van de kwadraten geeft + 6 = ( + ) + 6 = = + = 60 = De lengte van AB is cm en de lengte van BC is 7 cm. C- De luchtdruk neemt per km hoogte met,% af. Per km hoogte moet je met de groeifactor 0, 0,877 vermenigvuldigen. 6 Op een hoogte van zes km is de luchtdruk 00 0, 877, % en op een hoogte 7 van zeven km is de luchtdruk 00 0, 877 9, 9% van de luchtdruk op zeeniveau. De berg is ongeveer zeven km hoog. C-6 Bij één keer verkleinen hoort de groeifactor 0,8. 7 Na zeven keer verkleinen worden de afmetingen 08,, cm en na acht keer 8 verkleinen worden de afmetingen 08,, cm. Na zeven keer op 80% moet hij het nog één keer op een ander percentage verkleinen. Fons moet de tekening acht keer verkleinen om het gewenste formaat te krijgen. C-7 In 8 8 minuut legt het licht =, 0 meter af. 8 De afstand van de aarde tot de zon is, 0 : 000 =, 0 km. Het licht doet er 778, 0 :( 0 8 ) = 9 seconden over. Het licht van de zon doet er 9 : 60 minuten over om Jupiter te bereiken. Moderne wiskunde 9e editie uitwerkingen A havo/vwo 7

9 7 C-8 Het bedrag van 0 gulden is omgerekend 0 :,07 < 9,8 euro. 0 Bij % rente is het bedrag gegroeid tot 9, 8 0, 86 euro. 0 Bij,% rente is het bedrag gegroeid tot 9, 8, 0 00 euro. De rente is per jaar ongeveer,0% geweest. Technische vaardigheden T- De oppervlakte van driehoek ADC is : 6. De oppervlakte van driehoek BDC is : 0. De oppervlakte van driehoek ABC is KN MN... KM 9 6 MN 6 = De oppervlakte van driehoek NLM is ( ) : 6. De oppervlakte van driehoek NKM is : 6. De oppervlakte van driehoek KLM is PS RS... PR RS 6 = RS QS... QR QS De oppervlakte van driehoek PSR is : 8. De oppervlakte van driehoek QSR is : =. De oppervlakte van driehoek PQR is 8+. T-a 9 = 9 = e = 6 = 00 b = = 6 f 7 7 = 7 9 = c 7= 7 = 7 g ( ) + = + = 69 d ( 7 + ) = 70 = 900 h ( ) + = + = T-a 8 = d 7 7= 7 b = 0 e 7 7 = c 0 = f = 6 9 Moderne wiskunde 9e editie uitwerkingen A havo/vwo

10 T-a b c d De toename in de onderste rij is steeds,. Er hoort een lineaire formule bij. Het startgetal is 7. Een formule is P =, t 7. De toename in de onderste rij is steeds 6. Er hoort een lineaire formule bij. Het startgetal is en het hellingsgetal is 6 :. Een formule is y= +. De getallen in de onderste rij worden steeds met vermenigvuldigd. Er hoort een eponentiële formule bij. De beginwaarde is :,. Een formule is y =,. Als je in de bovenste rij naar rechts gaat, dan is de toename in de onderste rij steeds,. Er hoort een lineaire formule bij. Het startgetal is, 7. Een formule is V =, t 7. T-a 9p + = 0 g 0 = d + 0 9p = d = 0 p = d = 0 b r = h 0 = 60 + a r = 9 a = 90 r = a = 6 c 0, k = i ( + h ) = 0 k = 0 + h = 0 h = 0 h = d b + = j b = 0 b = 9 a = e p + 7 = k t = 7 p + 7= t = p = 8 p = t = 60 t = f n + = l ( a ) + = 8 n = 6 a + = 8 n = a = 8 a = 0 a = 6 T-6a AB AC BC... 6 BC De omtrek van driehoek ABC is + + = 9+. LM,8 KM... KL 9,, 7,8 90, KM 7, 8 De omtrek van driehoek KLM is 8, + 9, + 7, 8 =, + 78,. Moderne wiskunde 9e editie uitwerkingen A havo/vwo 7

11 7 PR 6 QR 6 PQ PQ 7 De omtrek van driehoek PQR is = + 7. b /A 90, /B 9 en /C /K, /L 66 en /M 90 /P, /Q en /R 90 T-7a p= ( a ) e v= ( t+ )( t + 7) a t 7 a t t 7t p= a t v= t + 0t + b d= r( r + ) f j = ( b )( b + ) r b r r r b b 8b d= r + r b j = b + b c q= ( a+ ) a g d= ( e 6)( e + ) a e a e e 6e q= a+ a 6 6e q= a+ d= e d g = t+ ( + 6t) h m= + ( n 7)( n + ) g = t + 6 t n g = 7t n n n 7 7n T-8a ( 0) = 6 = 6 6 = b ( ) = ( ) = = = c 6+ ( : ) = 6+ ( ) = 6+ 9= d + ( 0 : ) = + = + = e 8 ( ) = 8 6= f ( 7) + : = 9+ 6: = 9 8= 7 g 8 = 6 9= 6+ = 9 h ( 0 : ) = 8 ( 00 : ) = 8 = m= + n n m= n n Moderne wiskunde 9e editie uitwerkingen A havo/vwo

12 T-9a = 6 = of = Invullen geeft = 6 en ( ) = 6 en dat klopt. b t = t = 8 t = 9 of t = 9 Invullen geeft 9 = 8 = en ( 9) = 8 = en dat klopt. c 0, n = 7 n = n = of n = Invullen geeft 0, = 0, = 7 en 0, ( ) = 0, = 7 en dat klopt. d a + = a = 0 Dit kan niet. De vergelijking heeft geen oplossing. e f = f = 8 f = 8 of f = 8 Invullen geeft 8 = 8 = en ( 8) = 8 = en dat klopt. f k 6= k = 8 k = 6 k = 6 of k = 6 Invullen geeft 6 6= 6 6= 8 6= en ( 6) 6= 6 6= 8 6= en dat klopt. T-0a /A b /B 80 8 /B 90 8 /B /B Door elkaar D-a /A /B 90 en /B /B 90, dus /A /B /C /B 90 en /B /B 90, dus /C /B Verder geldt in driehoek ABD en in driehoek BCD dat /D /D 90, dus alle overeenkomstige hoeken zijn gelijk. b BD AD... AB AD = 69 n van ABD AB AD BD n van BCD BC... BD CD... De factor van driehoek ABD naar driehoek BCD is, dus BC = en CD =. Moderne wiskunde 9e editie uitwerkingen A havo/vwo 7

13 D-a y L O b K 0 De tabel hierboven geldt zowel voor OK als voor OL, dus OK OL 0. c Zie de tekening op de vorige blad. De coördinaten van het snijpunt zijn (, ). d De tabel hierboven geldt zowel voor de afstand van punt O tot KL als voor de lengte van KL. Beide zijn even groot, namelijk. D-a A y= ( ) A y= B y= ( + ) B y= + B y= + C y= + C y= D y= ( ) + D y= + D y= E y= + ( + ) + E y= + + E y= + De formules A, C en D horen bij grafiek en de formules B en E horen bij grafiek. Moderne wiskunde 9e editie uitwerkingen A havo/vwo

14 b De grafiek bij de formule y= snijdt de horizontale as in het punt (, 0) en snijdt de verticale as in het punt (0, ). De stapgrootte bij de horizontale as is en de stapgrootte bij de verticale as is. D-a De oppervlakte van vierkant ABCD is 6, dus de n zijn 6 = 6. De verhouding RC : DR :, dus DR 6= en RC 6=. b De oppervlakte van driehoek APS is :. De oppervlakte van PQRS is dan Of: AP AS PS PS 0 De oppervlakte van PQRS is dan 0 0 = 0. 0 D-a Direct na het inschenken is de temperatuur T = , = = 80 C. b Als je voor t een heel groot getal invult, dan wordt 0,9 t ongeveer nul en neemt de koffie de temperatuur van de kamer aan. De kamer heeft een temperatuur van 0 C. c t in minuten 0 T in C ,6 6,7 9,66,9 d De toename is achtereenvolgens 6;,;,86;,7 en,966, dus de temperatuur van de koffie daalt steeds langzamer. Invullen van t = in de formule geeft dat de temperatuur van de koffie van Marieke als ze hem opdrinkt 6,7 C is. Invullen van t = in de formule geeft dat de temperatuur van de koffie van Dirk als hij hem opdrinkt,9 C is. Het temperatuursverschil is 6,7,9 8,06 C en dat is ongeveer 8, C. D-6 A t = s+ 0 A t = 0 + s B t = ( + s) + s 6 s B t = 6 + s+ B t = 8 + s C t = 0 + ( + s) s 0 s C t = s C t = 0 + s Nico heeft geen gelijk. De formules A en C kloppen, maar formule B klopt niet. Moderne wiskunde 9e editie uitwerkingen A havo/vwo 77

15 D-7 78 m m spin m 9 m 8 m vlieg De kortste route is in de uitslag hierboven aangegeven De kortste route van de spin naar de vlieg is 7 0, 8 meter. D-8 Sander liegt nooit, dus Sander kan de rechter niet zijn, want die zegt dat de middelste Sander is. Sander kan ook de middelste niet zijn, want die zegt dat hij Youri is. Sander is de linker. Sander zegt dat de middelste Sergin is en Sander liegt nooit, dus dat moet waar zijn. Sander is de linker, Sergin is de middelste en Youri is de rechter. 6 m Moderne wiskunde 9e editie uitwerkingen A havo/vwo

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vaardigheden Extra oefening - Basis B-a De formules a = en s= t 8 zijn lineaire formules. Bij tael A hoort een lineair verand omdat de toename in de onderste rij steeds + is. Bij tael B hoort geen

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

n: x y = 0 x 0 2 x 0 1 x 0 1 x 0 4 y -6 0 y 1 0 y 0 1 y 2 0 p =. C. von Schwartzenberg 1/10

n: x y = 0 x 0 2 x 0 1 x 0 1 x 0 4 y -6 0 y 1 0 y 0 1 y 2 0 p =. C. von Schwartzenberg 1/10 1a 1b G&R havo B deel C. von Schwartzenberg 1/10 Tien broden kosten 16 euro blijft over voor bolletjes 60 16 = euro. Hij kan nog = 110 bolletjes kopen. 0,0 90 bolletjes kosten 6 euro blijft over voor broden

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1)

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1) Hoofdstuk 0 - De abc-formule Hoofdstuk 0 - De abc-formule Voorkennis V-a y = 5 = 8 5 = en y = ( ) 5 = 8 5 = b y = + 8 = 6 = 6 en y = + 8 = 0,6 6 8 c y = + ( ) = + = = 6 en y = ( ) + ( ) = 9 6 = 9 + 8 =

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Hoofdstuk 1 - Formules en grafieken

Hoofdstuk 1 - Formules en grafieken Voprkennis aantal minuten 0 1 2 3 4 5 6 aantal graden Celsius 20 28 36 44 52 60 68 V_y V_y toename +8 +8 +8 +8 +8 +8 b Bij deze tabel hoort een lineaire formule want de toename in de onderste rij van de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus

Nadere informatie

Blok 5 - Vaardigheden

Blok 5 - Vaardigheden Extra oefening - Basis B-a De richtingscoëfficiënt is 7 = 8 =. 7 x = en y = 7 invullen in y = x + b geeft 7 = + b 7 = + b dus b =. Een vergelijking is y = x. b De richtingscoëfficiënt is =. 8 5 x = 8 en

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Als x 5 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 1 3 5,6 5 67, m. b De lengte is 1 meter, de totale breedte is 5 1 x meter, dus voor de oppervlakte geldt A 5 1(5 1 x).

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

worden per stap telkens met 10 vermenigvuldigd. Die as is zo gekozen omdat de getallen erg sterk stijgen en anders wordt de grafiek te hoog.

worden per stap telkens met 10 vermenigvuldigd. Die as is zo gekozen omdat de getallen erg sterk stijgen en anders wordt de grafiek te hoog. 1a b c Verdieping - Verdubbelingstijd De getallen zijn geschreven met komma s zoals dat in Engelse boeken gebeurt. In Nederlandse boeken schijf je bijvoorbeeld 1 miljoen als 1.000.000, maar in Engelse

Nadere informatie

Hoofdstuk 7 Goniometrie

Hoofdstuk 7 Goniometrie V-1a 4 Voorkennis 5 C A 5 m B C = 10 5 = 9 ABC is geen rehthoekige driehoek. V-2a 76 14 K m L d M = 10 14 76 = 90 L 0 De rehthoeksn zijn de n LM en KM. De langste is KL. d LM = 0 KM = 16 KL = 900 256 +

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Eindexamen wiskunde B 1-2 havo 2004-II

Eindexamen wiskunde B 1-2 havo 2004-II Eindexamen wiskunde B - havo 004-II 4 Beoordelingsmodel Bacteriecultuur Maximumscore beschrijven hoe met de GR het maximum van N = 00t 3 + 300t + 900t + 000 voor 0 t 4 kan worden berekend Het aantal bacteriën

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a 7 + e 7 + 0 00 0 ( ) 0 f 8 ( + ) 0 0 0 8 0 80 c 7 + 9 7 g 9 0 7 40 0 40 47 d + h + 9 8 0 8 7 9 0 0 0 0 B-a 0,4 8 7, e 0,,, 0,7 8, 8,87 f 0,00 0 0,7 c 0,77 9,4 g 0,004 88,8 d

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

H20 COÖRDINATEN de Wageningse Methode 1

H20 COÖRDINATEN de Wageningse Methode 1 H0 COÖRDINATEN abd 0.0 INTRO c 3 OL, 0 NB 0. HET PLATTE VLAK 6 a A(-3,) ; B(,4) ; C(-,) ; D(,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b 0. DE WERELD IN KAART cd 3 B 4 abc d 90 NB H0 COÖRDINATEN de Wageningse

Nadere informatie

5 abd. 6 a A(-3,5) ; B(2,4) ; C(-2,2) ; D(5,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b

5 abd. 6 a A(-3,5) ; B(2,4) ; C(-2,2) ; D(5,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b Hoofdstuk 0 COÖRDINATEN VWO 0.0 INTRO abd c 3 OL, 0 NB 0. HET PLATTE VLAK 6 a A(-3,) ; B(,4) ; C(-,) ; D(,0) ; E(0,-3) ; F(-6,-4) ; G(6,-4) b cd 0. DE WERELD IN KAART 3 B 4 abc e d 90 NB de Wageningse

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a d e 128 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rehthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 5 28 roostervierkantjes.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Per deelnemer méér gaat er e 0,- van de prijs per persoon af, dus bij 4 personen zal de prijs per persoon e 500,- zijn, bij 0 personen e 50,- 7 e 0,- 5 e 80,-. b n 5 0 geeft p 5 0 0 980

Nadere informatie

5.5 Gemengde opgaven. Gemengde opgaven 159

5.5 Gemengde opgaven. Gemengde opgaven 159 Gemengde opgaven 159 5.5 Gemengde opgaven Opgave 40 a) Teken de lijn l waarvan alle punten dezelfde x- en -coördinaat hebben. Geefdeformulevan l. b) Tekendelijnkloodrechtopl endooro. Geefdeformule van

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Per deelnemer méér gaat er e 0,- van de prijs per persoon af, dus bij 4 personen zal de prijs per persoon e 500,- zijn, bij 30 personen e 50,- 7 3 e 0,- = e 380,-. b n = 0 geeft p = 0 3

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Hoofdstuk 6 - Vergelijkingen

Hoofdstuk 6 - Vergelijkingen Voorkennis V-a Bedrijf A rekent 7 8 + 5 = 6 euro en bedrijf B rekent, 5 8 + 60 = 0 euro. Hij is goedkoper uit bij bedrijf B. b Dat kan met de vergelijking 7a + 5 =, 5a + 60 waarbij a het aantal m zand

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Zo n grafiek noem je een dalparabool.

Zo n grafiek noem je een dalparabool. V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

Hoofdstuk 9 - Rekenen met functies

Hoofdstuk 9 - Rekenen met functies 5 Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0 = 0 : 6 9 = 5 : 0 = 0 5 = 00 : 0 = 0 e 8 + ( ) = 7 + + = 8 + ( 6) =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 0 Hoofdstuk - Werken met algera. Oplossen door ontinden ladzijde a ( )( ) 0 0 of 0 of of of of. 0 ( )( ) 0 0 of 0 of. ( )( ). a 0( )( ) 0 of,, of 0 stel a a a a 0( a )( a ) 0 a of a a of a De oplossingen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv B-1a Extra oefening - Basis 1 2 3 4 5 De figuren 1, 2, 3 en 4 zijn draaisymmetrisch. c Figuur 1 is draaisymmetrisch over 120 en 240. Figuur 2 is draaisymmetrisch over 180. Figuur 3 is draaisymmetrisch

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vwo VWO Reht, sherp of stomp? a AB 7 AC BC 8 6 6 Nee, de optelling van de kwadraten klopt niet, want 6 6 en geen 6. Nee, nabc is geen rehthoekige driehoek, want de optelling van de kwadraten klopt

Nadere informatie

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1 Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = 0.000 m 8 m = 360.000 m. Zijde vierkant = 360. 000 = 600

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12.

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12. Blok Vaardigheden bladzijde 8 a l gaat door (0, 8) dus startgetal 8 l gaat door (0, 8) en (8, ), dus 8 naar rechts en omlaag ofwel naar rechts en 0, omlaag. Het hellingsgetal is dan 0, b y- 0, x 8 c Evenwijdig

Nadere informatie

Paragraaf 9.1 : Twee soorten groei

Paragraaf 9.1 : Twee soorten groei Hoofdstuk 9 Exponentiële Verbanden (H5 Wis A) Pagina 1 van 9 Paragraaf 9.1 : Twee soorten groei Les 1 Lineaire en exponentiele groei Definitie Lijn = LINEAIRE GROEI Algemene formule van een lijn : y =

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a + = + = 7 7 e = 8 b = = 9 f 9 = = = = 7 8 0 0 0 6 6 8 8 c = = 9 g 6 = = = 7 7 7 7 d + = + = h = 6 9 9 9 9 7 9 B-a 0,666 6, = kilogram b 0, = e,0 c Er zijn in totaal + 9 = delen.

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

2.9 Stelling van Pythagoras

2.9 Stelling van Pythagoras Auteur hannie janssen Laatst gewijzigd 24 March 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74171 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

Hoofdstuk 4 Machtsverbanden

Hoofdstuk 4 Machtsverbanden Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - asis -1a Van trap 1 is de hellingshoek 17. Van trap is de hellingshoek 14. Van trap 1 is het hellingsgetal 60 = 0,. 00 Van trap is het hellingsgetal 0 = 0,. 10 c De tekening hiernaast

Nadere informatie

H27 WORTELS VWO ; 1,96 ; 7 ; INTRO. 7 a Als je onder elkaar zet en vermenigvuldigt: Dan krijg je op het eind een 9.

H27 WORTELS VWO ; 1,96 ; 7 ; INTRO. 7 a Als je onder elkaar zet en vermenigvuldigt: Dan krijg je op het eind een 9. H7 WORTELS VWO 7.0 INTRO a a Zijden grotere vierkant zijn. Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

Hoofdstuk 11B - Rekenen met formules

Hoofdstuk 11B - Rekenen met formules Hoofdstuk B - Rekenen met formules Hoofdstuk B - Rekenen met formules Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0

Nadere informatie

Antwoordmodel - In de ruimte

Antwoordmodel - In de ruimte Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 21 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 07 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 4 vragen. Voor dit eamen zijn maimaal 7 punten te behalen. Voor elk vraagnummer

Nadere informatie

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1?

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Voorkennis hfst 2 ontbinden in factoren (waarom ook al weer?) kwadratische functies 1 pw en eerste 2 uur vanmorgen science plein hw in orde?

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

10 20 30 leeftijd kwelder (in jaren)

10 20 30 leeftijd kwelder (in jaren) Kwelders De vorm van eilanden, bijvoorbeeld in de Waddenzee, verandert voortdurend. De zee spoelt stukken strand weg en op andere plekken ontstaat juist nieuw land. Deze nieuwe stukken land worden kwelders

Nadere informatie

Examen HAVO. wiskunde B1,2

Examen HAVO. wiskunde B1,2 wiskunde B1,2 Eamen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Woensdag 25 mei 13.30 16.30 uur 20 05 Voor dit eamen zijn maimaal 86 punten te behalen; het eamen bestaat uit 22 vragen. Voor elk

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Vraag Antwoord Scores. Het antwoord: (of 0,1 miljoen) (luciferdoosjes) 1. 11,7 miljoen : Het antwoord: 117 (populieren) 1

Vraag Antwoord Scores. Het antwoord: (of 0,1 miljoen) (luciferdoosjes) 1. 11,7 miljoen : Het antwoord: 117 (populieren) 1 Beoordelingsmodel Vraag Antwoord Scores Lucifers maximumscore Het aantal doosjes is 6000000 60 Het antwoord: 00 000 ( 0, miljoen) (luciferdoosjes) maximumscore 3,7 miljoen 60 = 70 miljoen lucifers 70 miljoen

Nadere informatie

Thema: Stelling van Pythagoras vmbo-kgt12

Thema: Stelling van Pythagoras vmbo-kgt12 Auteur VO-content Laatst gewijzigd 12 August 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/57157 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein.

Nadere informatie

Hoofdstuk 7 - Periodieke functies

Hoofdstuk 7 - Periodieke functies Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 maandag 23 mei 13:30-16:00 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 maandag 23 mei 13:30-16:00 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:00 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 20 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer

Nadere informatie

7 Totaalbeeld. Samenvatten. Achtergronden. Testen

7 Totaalbeeld. Samenvatten. Achtergronden. Testen 7 Totaalbeeld Samenvatten Je hebt nu het onderwerp "Vectormeetkunde" doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet

Nadere informatie