Hoofdstuk 6 - Vergelijkingen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 6 - Vergelijkingen"

Transcriptie

1 Voorkennis V-a Bedrijf A rekent = 6 euro en bedrijf B rekent, = 0 euro. Hij is goedkoper uit bij bedrijf B. b Dat kan met de vergelijking 7a + 5 =, 5a + 60 waarbij a het aantal m zand is. c, 5a + 5 = 60, 5a = 5 a = d Bij m zand, m zand of m zand ben je bij bedrijf A goedkoper uit. V-a ( x 7) + = 5x 6x + = 5x 6x 7 = 5x x 7 = x = 5 Controle ( 5 7) + = ( 0 7) + = + = 9 + = en 5 5 = 5 = en dat klopt. b 8 ( x) = 6( x ) x = x x = x + 6 = 8x + 8x = 6 x = Controle 8 ( ) = 8 5 = 8 0 = en 6 ( ) + 8 = 6 ( ) + 8 = = = en dat klopt. c x = ( x ) 8x x = 6x 6 8x x = x 6 6x = 6 6x = 5 x = Controle = en ( ) 8 = ( 5 ) 0 = 0 = 9 0 = en dat klopt. d 7( 8 x) x + ( 5x + 6 ) 56 x x + x + 5 x = x + 5 = x + x = 50 x = Controle 7 ( 8 ) = 7 ( 8 ) = 7 = = en 0 + ( ) = 5 + ( ) = 5 + = = en dat klopt.

2 V-a ( 5x 8) = 96 5x = 96 5x x = 8 b Hij komt aan het getal omdat 96 : =. c 5x 8 = 5x = 0 x = 8 V-a ( x 0) = 8 x 0 = 7 x = 7 x = 8 Controle ( 8 0) = ( 7 0) = 7 = 8 en dat klopt. b 5( 9a + ) = 75 9a + = 5 9a = 7 a = Controle 5 ( 9 + ) = 5 ( 7 + ) = 5 5 = 75 en dat klopt. c ( p) = 00 p 0 p = 66 p = Controle ( ) = ( + 66) = 00 = 00 en dat klopt. d ( 6d 5) = 6d 5 = 6d = 9 d = 6 Controle ( 6 6 5) = ( 9 5) = = en dat klopt. e + 6( x ) = 9 6( x ) = 6 x = x = 5 Controle + 6 ( 5 ) = + 6 = + 6 = 9 en dat klopt. f 5 ( m + ) = ( m + ) = m + = m m = Controle 5 ( + ) = 5 ( 0 + ) = 5 = 5 = en dat klopt.

3 V-5a De oplossing is x = 7 of x = 7. b De oplossing is x = of x =. c A 5x + = C x x x 8 x = x = 6 x = of x = x = 6 of x = 6 B 0 x D x + 5 = 0 x 0 x = 5 x = 5 x = 6 x = 5 of x = 5 x = of x = V-6a In de vergelijking ( x + 6) = 6 komt de variabele x op één plaats voor en dan kun je de vergelijking met bordjes oplossen. In de vergelijking x + 6x = 6 komt de variabele x op meer plaatsen voor en dan kun je de vergelijking niet met bordjes oplossen. b ( x + 6) = 6 x + 6 = of x + 6 = x = of x = 0 c x + 6x = 6 x + 6x 6 ( x )( x + 8) x of x + 8 x = of x = 8 V-7a ( x 8) 0 x 8 of x 8 = 0 x = 8 of x = x = 9 of x = b x + 6x + 60 ( x + 6)( x + 0) x + 6 of x + 0 x = 6 of x = 0 c p 7p = p 7p + ( p )( p ) p of p p = of p = d 5 a = 7 a = 8 a = 9 a = of a = e q + q = q + q + ( q + )( q + ) q + of q + q = f x + 8x x( x + ) x of x + x of x = x of x = g m = m m m m( m ) m of m m of m = h b + 5b = b + 5b ( b )( b + 7) b of b + 7 b = of b = 7

4 6- Lineaire en gebroken vergelijkingen a ( 5 x) = 5 x = x = x = b ( 5 x) = 5 6x = 6x = x = c Je kunt deze vergelijking niet met een bordje oplossen omdat de variabele x op meer plaatsen voorkomt. d ( 5 x) = x x = x = 8x + 9 8x = x = a De vergelijkingen A en D kun je met bordjes oplossen. A 9( x + 6) = 7 x + 6 = 8 x = 8 D 6 = ( b + ) b + = 8 b = 9 b = 6 b B 5a = 8a + = a + a = 57 a = 9 C 0 0p = 0p = 60 p = 6 E 8 w = w + 8 = 5w + 5w = 6 w = 5 F 6( t 8) = + ( 9t) t + 8 = + 7t t + 6 = 6 7t 5t + 6 = 6 5t = 0 t =

5 Bij de vergelijking ( x + ) = 7 gebruik je bordjes. x + = 9 x = De coördinaten van het snijpunt zijn (, 7). Bij de vergelijking ( x + ) = 7x 7 gebruik je de balansmethode. x = 7x 7 x 7 0x = 5 x = Invullen van x = geeft y = + = = 0 ( ) en y = 7 7 = 7 = 0. De coördinaten van het snijpunt zijn (, 0 ). Bij de vergelijking 7x 7 = 7 gebruik je de balansmethode of bordjes. 7x x = De coördinaten van het snijpunt zijn (, 7) a b c d 5a b 7. Bij waarden van x ver van 0 nadert de uitkomst van de formule naar de waarde y. x = x = Als x vanaf de positieve kant naar de 0 nadert, dan blijft de grafiek stijgen. Er zal dus een waarde van x bestaan waarbij de uitkomst van de formule gelijk is aan 000. = 000 x x, 00 0 x 5 = 6 x 5 x = x 5 x 05 0 x 5 = x 5 =, x = 7 x = 6, 6a Op het bordje moet het getal 7 staan omdat 5 = 6. 7 b Bij deze stap is gebruik gemaakt van een bordje of van de balansmethode. c 6 7 = 5 (gebruik een bordje of de balansmethode) a 6 = (gebruik een bordje) a a = (gebruik een bordje) a (gebruik een bordje) a 5

6 7a b 6 8 x + = x + = 9 x = 8 x = 6 = 8 6a 0 6a 0 = 6a = 8 a = 6- Kwadratische vergelijkingen 8a In de formule y = x 6 x staat een positief getal voor de x, dus de bijbehorende parabool is een dalparabool. b x 6x x( x 6) x of x 6 x of x = 6 Voor x en voor x = 6 snijdt de parabool de x-as. c De vergelijking x 6x = 8 kun je niet met bordjes oplossen, want de variabele x komt op meer plaatsen voor. De vergelijking ( x 5) = 8 kun je met bordjes oplossen, want de variabele x komt op één plaats voor. d x 6x = 8 ( x 5) = 8 x 6x + 8 ( x 5) = ( x )( x ) x 5 = of x 5 = x of x x = 7 of x = x = of x = 9a x = 00 6x = 50 x = 5 x = 5 of x = 5 b ( a 6) = 9 a 6 = of a 6 = a = 9 of a = a = of a = c 75 ( b 8) = 9 ( b 8) = 6 b 8 = 6 of b 8 = 6 b = of b = c d 00 = 7 + p 7 + p = 5 p = p = = x 5 = 5 x x = 9 x = x = e m + = 70 m + = m + = 5 m = 6 m = f 0 = 5 a 0 a = a = 5 a =

7 0a d 00 p = 86 p = p = 7 p = 7 of p = 7 e 5 = ( 7 m) ( 7 m) = 6 7 m = of 7 m = m = of m = m = of m = 5 f ( 9x + 6) 9x + 6 9x = 6 x = De vergelijkingen A, C, D en F kun je met bordjes oplossen. A ( x + 6) = x + 6 = of x + 6 = x = of x = 8 x = of x = C 5 0p = 75 0p = 70 p = 7 p = 7 of p = 7 D 6 = ( b + ) b + = 6 of b + = 6 b = 5 of b = 7 b = of b = F ( 5a )( 9 + 6a) 5a of 9 + 6a 5a = of 6a = 9 a = of a = 5 b B a 5a = 6 a 5a 6 ( a 6)( a + ) a 6 of a + a = 6 of a = E x + 8 = 9x x 9x + 8 ( x )( x 6) x of x 6 x = of x = 6 7

8 a Roos legt een bordje op ( x 9) en dat moet dan 5 zijn, want 5 = 5. b ( x 9) = 5 (gebruik een bordje) ( x 9) = 5 (gebruik een bordje) x 9 = 5 of x 9 = 5 (gebruik de balansmethode of een bordje) x = of x = (gebruik een bordje) x = 7 of x = a 8( 5 x) = ( 5 x) = 5 x = of 5 x = x = of x = 7 x = of x = b ( 5p + 0) = 00 ( 5p + 0) 0 5p + 0 of 5p + 0 = 0 5p of 5p = 0 p of p = c ( a) = 8 ( a) = 6 a = of a = a = 8 of a = 6 a = of a = d 5 + ( m ) = 96 ( m ) = 8 m = 9 of m = 9 m of m = 8 m = of m = a De lengte van het groene gebied is 0 x cm en de breedte is 6 x cm. De oppervlakte is lengte keer breedte, dus A = ( 0 x)( 6 x). b A = ( 0 x)( 6 x) 8 6 x x x 6x +x A = x 6x + 60 c Je moet dan de vergelijking ( 0 x)( 6 x ) = oplossen. d Nee, je kunt de vergelijking van opdracht c niet oplossen met een bordje omdat de variabele x op meer plaatsen voorkomt. e ( 0 x)( 6 x) = x 6x + 60 = x 6x + 8 ( x )( x ) x of x x = of x = f De oplossing x = is in dit geval niet bruikbaar omdat de breedte van de twee stroken die er van afgehaald worden hoogstens 6 cm kan zijn.

9 a Invullen van a geeft h, 0 0 0, De boog is 0 meter boven punt P vastgemaakt. b 0, 0x 0, 55x + 0 0, 0x 0, 55x 0, 0x( x 55) 0, 0x of x 55 x of x = 55 c De afstand tussen de punten P en Q is 55 meter. d De symmetrieas ligt bij x = 7, 5. Invullen van x = 7, 5 geeft h, 0 7, 5 0, 55 7, = 7, 565 5, =, 75. Het laagste punt van de boog hangt ongeveer, meter boven het wegdek. 6- Exponentiële vergelijkingen 5a In 996 kostte een gemiddelde koopwoning in de stad Groningen e 6.000,- = e 9.000,-. En in 006 was dat e 9.000,- = e 8.000,-. b Tussen 986 en 06 zit 60 jaar. In die periode zal de prijs 6 = 6 keer zo veel geworden zijn. In 06 zal de prijs dan 6 e 6.000,- = e.9.000,- zijn. c De laatste halve eeuw zijn de huizenprijzen in Nederland elke tien jaar verdubbeld, maar het is niet zeker of dat zo door blijft gaan. Door bijvoorbeeld een crisis kunnen de huizenprijzen minder snel stijgen, maar als er bijvoorbeeld een tekort aan huizen ontstaat, dan kunnen de huizenprijzen sneller gaan stijgen. d In 976 was de prijs e 6.000,- : = e.000,- en in 966 was de prijs e.000,- : = e.500,-. In 966 was de prijs (omgerekend) ongeveer e.500,-. 6a Na ongeveer 5 dagen is het aantal algen per m gegroeid tot Invullen van t = 5 geeft N = 8000 = en dat klopt redelijk. 0 b Na tien dagen zijn er algen per m water. 7a Links en rechts delen door 8000 geeft links t en rechts : 8000 = 8. b = 8 c Na drie dagen is het aantal algen gegroeid tot a Links en rechts delen door 0 geeft links x en rechts 60 : 0 = 8. b macht 5 6 uitkomst c Hugh krijgt de oplossing x =. 9a = 79 c x 5 = 5 = 6 = x = 6 = 5 x = 5 b 8 d 8 = = 9 = = = x = x = 9

10 0a Ja, 5 =. b Op het bordje moet het getal 5 staan. 6 c x = 6 x 5 = 6x = 5 x = 5 6 a 0+ Invullen van x geeft y = = = en invullen van x = geeft + 5 y = = =. b 0 c Ze vindt x + = oftewel x =, dus x =. d = 6 = 0 = x + = x + x = x = 9 x = x = macht uitkomst macht 5 uitkomst a 5 = 6 d p+ = 56 5 = p+ = x 5 = p + = x = 8 p p b x = e 5 = 00 x = = 6 x = = x = m = x = c 0 5 f 6 = 096 0a 5 5 = t = 6 0a 5 = 5 = 0a = 0 t = a = 6- Wortel- en machtsvergelijkingen a De zijde van het linker vierkant is 6 = 6. b Een formule is z = A. c Invullen van A = geeft z = =. Invullen van A = geeft z =, 6. d A = 7 A = 5 A = 7 = 9 A = 5 = 5

11 a Je vindt het randpunt als x oftewel x =. Invullen van x = geeft y =. De coördinaten van het randpunt van de grafiek zijn (, 0). b Invullen van x = 85 geeft y = 85 = 8 = 9. c x = 7 x = 9 x = 5 5 Sharon komt daar aan door rechts en links 5 af te trekken. Ze vindt ook x = 9, want 9 = 76. 6a 5x + 9 = 5x + 9 = 69 5x = 60 x = b a = a = a = 6 a = c 5t + = 5t + = 59 5t = 55 t d 0, q 00 = 0, q 00 = 0, q = q 5 e x + 9 = 6 x + 9 = x + 9 = x = 5 7a De inhoud van de vaas met een diameter van cm is 0, 0005, 86 liter. De inhoud van de vaas met een diameter van 8 cm is 0, =, 96 liter. b Bij de vraag van Mary hoort de vergelijking 0, 0005d =. f 8 a + = 0 a + = 5 a + = 5 a = a = 7 g x = x = 8 x = 6 x = 6 h + p = 57 p = p = 6 p = 96 p = 99 i 00 d + 8 = 78 d + 8 = d + 8 = 8 d = 76 d = 95 j 5 8 m = 5 8 m m = 5 m = 5 m = m = 55

12 c Rechts en links delen door 0,0005 geeft links d en rechts : 0, 0005 = d = 8000 d d 0, 0005d, 5 d 00 d 8a x = 7 c a 8 = 56 x = a = 6 x = a = a = b p 5 = d 5 00 t = 57 p 5 = 5 t 5 = p = t 5 = 5 t = 9a Grafiek hoort bij de formule y = x. En grafiek hoort bij de formule y = x 5. b Aan grafiek zie je dat de vergelijking x = 8 twee oplossingen heeft, namelijk één voor een negatieve waarde van x en één voor een positieve waarde van x. De oplossingen zijn x = en x =, want = 8 en ( ) = 8. c De vergelijking x 5 = heeft één oplossing, namelijk x =, want 5 =. d De vergelijking x 6 = 6 heeft twee oplossingen, namelijk x = en x =, want 6 6 = 6 en ( ) = 6. 0a Lotte komt daar aan door rechts en links door 5 te delen. b ( x ) = 8 x = x = 6 c 5( x ) = 5 + ( p + ) = 9 ( x ) = ( p + ) = 8 x = p + = of p + = x = 5 p = of p = Gemengde opdrachten a Tussen januari 00 en januari 00 zitten vier periodes van drie maanden. Op januari 00 kostte een brood 0, 60 = 9, 60 dollar. b Tussen januari 000 en januari 00 zitten 6 maanden. Invullen van t = 6 geeft P ,, 60 = 9, 60 en dat klopt. m 8 c 0, 60 = 76, 80 m 8 = 8 m 8 7 = m 8 = 7 m = 5 m = 5 Dat was 5 maanden, oftewel jaar en 9 maanden, na januari 000. Op oktober 00 was de prijs van een brood 76,80 dollar.

13 a Na vijf dagen is het ijs, 8 5 cm dik. b, 8 t = 9 t = 5 t = 5 Na 5 dagen is het ijs volgens de formule 9 cm dik. c Na vijf dagen is het ijs volgens deze formule = 6 5, 8 cm dik. De formule d = 9t + geeft de grootste ijsdikte na vijf dagen. d 9t + = 9 9t + 9t + 0 9t = 99 t = Na dagen is het ijs volgens de formule die je in opdracht c leerde kennen 9 cm dik. a Op het bordje kunnen de getallen 9 en 9 staan. b ( x 5) = 8 x 5 = 9 of x 5 = 9 x = of x = x = of x = Je vindt twee oplossingen. c ( p ) = 5 p = 5 of p = 5 p = 6 of p = p = of p = Je vindt twee oplossingen. a Invullen van x = 5 geeft y, 5 ( 5 ), 5 ( 0 ), 5 7, 5 9 =, 5. Nee, het punt (5, ) ligt niet op de parabool. b 0, 5( x ) = 8 ( x ) = 6 x = 6 of x = 6 x = 9 of x = x = of x = De coördinaten van de snijpunten zijn (, 8) en (, 8). c Invullen van x geeft y, 5 ( 0 ), 5 ( ), 5 9 =, 5. 0, 5( x ) =, 5 ( x ) = 9 x = of x = x = 6 of x x = of x De coördinaten van punt B zijn (;,5).

14 5a 50 ( 6 y) = 00 ( 6 y) = 6 ( 6 y) = 6 y = y = 6a b b 8 ( p + ) = ( 8p ) 0p 8 p = p 0p 5 p = 6 p 5 + p = p = 6 p = 5 m 5 c 0, 5 = m 5 = 8 m 5 = m 5 = m = 8 Als er in totaal bezoekers zijn, inclusief Ashley, Bill en Cay, dan zijn er bezoekers uitgezonderd Ashley, Bill en Cay. De prijs van een toegangskaartje is dan : 0 = 5 + = 7 euro. Als a het totale aantal bezoekers is, dan is a het aantal bezoekers uitgezonderd Ashley, Bill en Cay. De totale kosten gedeeld door het aantal bezoekers is dan 0 euro. a De prijs van een toegangskaartje is vijf euro plus 0 euro, dus p = a a. c Invullen van a = geeft p = = = = 7 en dat klopt. d Invullen van a 0 geeft p = = , 7 en invullen van a 0 geeft p = = ,. Als het aantal bezoekers toeneemt van 00 naar 00, dan neemt de prijs met ongeveer 7, 7 6, =, 5 euro af. e = 6, 60 a d z = 5 z = 5 z = 5 z = 6 z = 6 e x( x ) = 5x + 7 x x = 5x + 7 x 6x 7 ( x 7)( x + ) x 7 of x + x = 7 of x = 0 60 a =, a = 50 a = 5 Er waren 5 bezoekers van het feest. f Er waren 5 = 50 betalende bezoekers van het feest. Ashley, Bill en Cay hebben 50 e 6,60 = e 990,- voor het goede doel ingezameld. f 00 a + 6 = a + 6 = 5 a = 9 a = 9

15 + 7a Aan het begin zijn er = = = = 0 ratten. t+ b = 90 (gebruik de balansmethode of een bordje) t+ 5 = 880 (gebruik een bordje) t+ = 6 t+ 6 = t + = 6 (gebruik de balansmethode of een bordje) t = 5 (gebruik een bordje) t t+ t+ c = = 090 t+ t+ 5 = = 00 t+ t+ = 8 = 5 t+ 7 t+ 9 = = t + = 7 t + = 9 t = 6 t = 8 t = t = 6 In 6 = weken tijd neemt het geschatte aantal ratten toe van 580 tot 090. Test jezelf T-a 8p 9 = p + 6 0p 9 = 6 0p = 5 p = b 8( r 9) = 56 r 9 = 7 r = 6 c 5b = 5b = 6 5b = 9 b = 5 d + 0 = 6 7h 0 7h = 5 7h = 6 h = 6 7 e = 5( x 7) x 5 x 9 0x = 50 x = f 5 = ( a ) a = 5 a = 6 a = 0 g 5 y + + h 0 5y + = 5y + = 5y = 5 y = 8 = 9 ( m ) ( m ) = m = m = 5

16 T-a De vergelijkingen A, B, D en F kun je met bordjes oplossen. A 0 + b = 6 b = 6 b = 9 b = of b = B ( p)( p + 8) p of p + 8 p = of p = 8 p = of p = D 00 ( a 8) ( a 8) 0 a 8 of a 8 = 0 a = 8 of a = a = 9 of a = F ( 5p) = 69 5p = of 5p = 5p = of 5p = 5 p = of p = 5 5 b C x = 7x + 8 x 7x 8 ( x + )( x 9) x + of x 9 x = of x = 9 E m + 5 = 6m m 6m + 5 ( m )( m 5) m of m 5 m = of m = 5 x+ T-a = 8 x+ = x + = x b + 5a = + 5 a = + 5a = 5a = a = 5 6 x c 5 = x = 5 6 x = x = d 5 a = 5 5 a = 5 a = a = 6 e 7 p = 56 p = 8 p = p = f 0, 5 x = 5 5 x = x = 5 6 x = 6 g 56 q q = 56 q = 8 q = 7 q = 7 h a = 8 a = a = a = 5 a =

17 T-a a + = 9 a + = 8 a = 69 a = b p = p = p = p = c 5 5x 0 5x = 5 5x = 65 x = 5 d + q 7 = 7 q 7 = 5 q 7 = 5 q 7 = 5 q = T-5a Bij een lengte van mm hoort een gewicht van 0, 00 =, 97 gram. Bij een lengte van 8 mm hoort een gewicht van 0, 00 8 = 5, 8 gram. Het gewicht van deze rups neemt dan met 5, 8, 97, 6 gram toe. b 0, 00l = 8 l = 8000 l l Deze rups is volgens de formule 0 mm lang. c Invullen van l = 5 en g =, 5 geeft, 5 = a 5 oftewel 5 65a =, 5, dus a, T-6a Bij grafiek hoort de formule y = x +, bij grafiek hoort de formule y = ( x + 9) en bij grafiek hoort de formule y = x 6. b ( x + 9) = x 6 x + = x 6 = x 6 x x = Invullen van x = geeft y = ( + 9) = 0 = 5 en y = 6 = 5. De coördinaten van het snijpunt van de twee lineaire grafieken is (, 5). c Invullen van x = geeft y = + = 5 = 5 = 5. Ja, het snijpunt ligt ook op de derde grafiek. d Invullen van x = p en y = 9 geeft 9 = p + p + = p + = 69 p = 65 e d = 6 d = d = f 5d = 05 d = 8 d = d = of d = g 000 m 00 m 00 m m 7 h 6 + x = 00 7 x = 8 x 7 = 8 x 7 = 7 x = 7

18 T-7a ( 0q 5) = 5 ( 0q 5) = 5 0q 5 = 5 0q q = 8 b 7 t t = 7 t = 9 t = 8 t = 7 c ( x 8)( 7 6x) x 8 of 7 6x x = 8 of 6x = 7 x = of x = d ( a + 6) = ( 5 a) + a + a 8 8a + a + 6 a = 7a 6 + a = a = 6 a = e m = 68 6 m = 8 m = 8 m = m = f = 5 9 b 50 = 5 9 b 9 b = 6 b = b =

Hoofdstuk 2 - Kwadratische functies

Hoofdstuk 2 - Kwadratische functies Hoofdstuk - Kwadratische functies Hoofdstuk - Kwadratische functies Voorkennis V-1a y = 3(x ) 3 x 3 6x 1 y = 6x 1 b y = 9( 4x 4) 3 4x 4 9 36x 36 y = 36x 36 c y = x( x 7) 3 x 7 x x 7x y = x 7x V-a y = (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1)

Voorkennis. 66 Noordhoff Uitgevers bv 11 0, en y = = ,33 = y = 4x(x 2) y = 19x(1 2x) y = 3x( x + 5) y = 4x(4x + 1) Hoofdstuk 0 - De abc-formule Hoofdstuk 0 - De abc-formule Voorkennis V-a y = 5 = 8 5 = en y = ( ) 5 = 8 5 = b y = + 8 = 6 = 6 en y = + 8 = 0,6 6 8 c y = + ( ) = + = = 6 en y = ( ) + ( ) = 9 6 = 9 + 8 =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Als x 5 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 1 3 5,6 5 67, m. b De lengte is 1 meter, de totale breedte is 5 1 x meter, dus voor de oppervlakte geldt A 5 1(5 1 x).

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Hoofdstuk 1 - Formules en grafieken

Hoofdstuk 1 - Formules en grafieken Voprkennis aantal minuten 0 1 2 3 4 5 6 aantal graden Celsius 20 28 36 44 52 60 68 V_y V_y toename +8 +8 +8 +8 +8 +8 b Bij deze tabel hoort een lineaire formule want de toename in de onderste rij van de

Nadere informatie

worden per stap telkens met 10 vermenigvuldigd. Die as is zo gekozen omdat de getallen erg sterk stijgen en anders wordt de grafiek te hoog.

worden per stap telkens met 10 vermenigvuldigd. Die as is zo gekozen omdat de getallen erg sterk stijgen en anders wordt de grafiek te hoog. 1a b c Verdieping - Verdubbelingstijd De getallen zijn geschreven met komma s zoals dat in Engelse boeken gebeurt. In Nederlandse boeken schijf je bijvoorbeeld 1 miljoen als 1.000.000, maar in Engelse

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Hoofdstuk 10 - Grafieken, vergelijkingen en ongelijkheden

Hoofdstuk 10 - Grafieken, vergelijkingen en ongelijkheden Hoodstuk - Graieken, verelijkinen en onelijkheden Hoodstuk - Graieken, verelijkinen en onelijkheden Voorkennis V-a Zie de raiek hiernaast. b x + = 8 x = x = c x 6 = 8 x = x = 8 d x+ = x 6 x = 9 x = e (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Om het edrag in euro s te erekenen vermenigvuldig je het aantal kwh met 0,08 en tel je er vervolgens 14 ij op. De formule is dus verruik 0,08 + 14 = edrag. De formule ij tarief A kun je

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vaardigheden Extra oefening - Basis B-a De formules a = en s= t 8 zijn lineaire formules. Bij tael A hoort een lineair verand omdat de toename in de onderste rij steeds + is. Bij tael B hoort geen

Nadere informatie

Hoofdstuk 11B - Rekenen met formules

Hoofdstuk 11B - Rekenen met formules Hoofdstuk B - Rekenen met formules Hoofdstuk B - Rekenen met formules Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +

Nadere informatie

Hoofdstuk 4 Machtsverbanden

Hoofdstuk 4 Machtsverbanden Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3

Nadere informatie

29 Parabolen en hyperbolen

29 Parabolen en hyperbolen 39 0 1 9 Paraolen en hyperolen 6 5 5 6 3 3 1 5 h = 0,065 0 = 100 meter + (5 ) = 5 6,5 ; 5 ; 56,5 ; 100 meter ( 3 9 ) + (3 ) = 8 16,96.. afstand PE < afstand P tot de x-as Nee! y (alleen als y > 0) 0,065

Nadere informatie

Kern 1 Lineaire functies

Kern 1 Lineaire functies Kern 1 Lineaire functies 1 a V = 10 kw b V = 0,07 100 + = 7 + = 10 c Alle lijnen beginnen bij V =, alleen het hellingsgetal is verschillend. Bij 15 C geldt V = 0,05 I + Bij 1 C geldt V = 0,06 I + Bij C

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

Zo n grafiek noem je een dalparabool.

Zo n grafiek noem je een dalparabool. V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.

Nadere informatie

Hoofdstuk 9 - Rekenen met functies

Hoofdstuk 9 - Rekenen met functies 5 Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0 = 0 : 6 9 = 5 : 0 = 0 5 = 00 : 0 = 0 e 8 + ( ) = 7 + + = 8 + ( 6) =

Nadere informatie

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1?

Programma. Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Opening Een laatste opmerking over hfst 1 vragen over hfst 1? Voorkennis hfst 2 ontbinden in factoren (waarom ook al weer?) kwadratische functies 1 Opening Een laatste opmerking over hfst 1 vragen over

Nadere informatie

Paragraaf 4.1 : Kwadratische formules

Paragraaf 4.1 : Kwadratische formules Hoofdstuk 4 Werken met formules H4 Wis B) Pagina 1 van 10 Paragraaf 41 : Kwadratische formules Les 1 : Verschillende vormen Er zijn verschillende vormen van kwadratische vergelijkingen die vaak terugkomen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Per deelnemer méér gaat er e 0,- van de prijs per persoon af, dus bij 4 personen zal de prijs per persoon e 500,- zijn, bij 30 personen e 50,- 7 3 e 0,- = e 380,-. b n = 0 geeft p = 0 3

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename

opdracht 1 opdracht 2. opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen uitwerkingen 1 Versie DD 2014 x y toename Algebra Anders Parabolen uitwerkingen 1 Versie DD 014 1 Parabolen herkennen opdracht 1. x - -1 0 1 3 y 4 1 0 1 4 9-3 -1 + 1 + 3 +5 toename tt + + + + a) + b) De toename is steeds een nieuwe rand. De randen

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Eindexamen wiskunde B pilot havo II

Eindexamen wiskunde B pilot havo II Mosselen Driehoeksmosselen (zie de foto) kunnen een bijdrage leveren aan de vermindering van de hoeveelheid algen in het water. Zij filteren het water. De hoeveelheid gefilterd water in ml/uur noemen we

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden B-1a Blok - Vaardigheden Blok - Vaardigheden Extra oefening - Basis De getallen 16 en 16 6 ijn asolute aantallen. De percentages ijn relatieve aantallen. c aantal mensen 16 6 000 16 60 9 686 percentage

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - asis -1a Van trap 1 is de hellingshoek 17. Van trap is de hellingshoek 14. Van trap 1 is het hellingsgetal 60 = 0,. 00 Van trap is het hellingsgetal 0 = 0,. 10 c De tekening hiernaast

Nadere informatie

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014 Algebra Anders Parabolen 1 Versie DD 014 1 Parabolen herkennen opdracht 1 We beginnen heel eenvoudig met y = x Een tabel en een grafiek is snel gemaakt. top x - -1 0 1 3 y 0 1 4 + 1 + 3 toename tt + a)

Nadere informatie

Oplossing zoeken kwadratisch verband vmbo-kgt34

Oplossing zoeken kwadratisch verband vmbo-kgt34 Auteur VO-content Laatst gewijzigd Licentie Webadres 23 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74207 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet. Wikiwijs

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband tussen

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Per deelnemer méér gaat er e 0,- van de prijs per persoon af, dus bij 4 personen zal de prijs per persoon e 500,- zijn, bij 0 personen e 50,- 7 e 0,- 5 e 80,-. b n 5 0 geeft p 5 0 0 980

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a 7 + e 7 + 0 00 0 ( ) 0 f 8 ( + ) 0 0 0 8 0 80 c 7 + 9 7 g 9 0 7 40 0 40 47 d + h + 9 8 0 8 7 9 0 0 0 0 B-a 0,4 8 7, e 0,,, 0,7 8, 8,87 f 0,00 0 0,7 c 0,77 9,4 g 0,004 88,8 d

Nadere informatie

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1 Netwerk HAVO B uitwerkingen, Hoofdstuk, Vergelijkingen Hoofdstuk Vergelijkingen Kern Numeriek oplossen a Teken Y = + 0.* (X) en Y = + 0.00 * X op WINDOW [0,00] [0, 0]. b X = 6.5 en Y =.78. Dus na 6,5 dag

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking,

Nadere informatie

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Voor de kosten in euro s vermenigvuldig je het aantal gehuurde dvd s met 1,50 en tel je er vervolgens de eenmalige kosten van 6 euro voor het pasje ij op. Dat kost 6 + 1,50 20 = 6 + 30

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1. INTRO 1 a De slak klimt een uur met constante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u c,5 m/u d 8 uur en 4 minuten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1.

Hoofdstuk 9: Allerlei functies. 9.1 Machtsfuncties en wortelfuncties. Opgave 1: a. Opgave 2: a. de grafiek van y2. ontstaat uit die van y 1. Hoofdstuk 9: Allerlei functies 9. Machtsfuncties en wortelfuncties Opgave : a. 0,0, c. y en y d. y en y Opgave : a. de grafiek van y ontstaat uit die van y door T 0, T 0,6 y y 6 Opgave : a. T 6,0 T,0 c.

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen. Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.

Nadere informatie

Hoofdstuk 2 - Algebra of rekenmachine

Hoofdstuk 2 - Algebra of rekenmachine Hoofdstuk - Algebra of rekenmachine Voorkennis: kwadratische vergelijkingen bladzijde V-a pp ( + ) b kk ( 0) c xx ( + ) d k( 8k 7) e qq ( + 9) f 0, tt+ ( ) g 7r( 9r) h p( 7p+ ) V-a fx () = x( x + ) b Nt

Nadere informatie

Hoofdstuk 9 - Lineair Programmeren Twee variabelen

Hoofdstuk 9 - Lineair Programmeren Twee variabelen Hoofdstuk 9 - Lineair Programmeren Twee variabelen bladzijde a Twee ons bonbons kost, euro. Er blijft,, =, euro over. Doris kan daarvan, = ons drop kopen., b d is het aantal ons gemengde drop (, euro per

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort

PTA wiskunde TL en GL Bohemen, Houtrust, Kijkduin, Statenkwartier cohort Eindtermen wiskunde TL en GL WI/K/1 Oriëntatie op leren en werken WI/K/2 Basisvaardigheden WI/K/3 Leervaardigheden in het vak wiskunde Algebraïsche verbanden Rekenen, meten en schatten Meetkunde WI/K/7

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a + = + = 7 7 e = 8 b = = 9 f 9 = = = = 7 8 0 0 0 6 6 8 8 c = = 9 g 6 = = = 7 7 7 7 d + = + = h = 6 9 9 9 9 7 9 B-a 0,666 6, = kilogram b 0, = e,0 c Er zijn in totaal + 9 = delen.

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

REKENTECHNIEKEN - OPLOSSINGEN

REKENTECHNIEKEN - OPLOSSINGEN REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6

Nadere informatie

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos 9e editie Moderne wiskunde Uitwerkingen Op stap naar 4 havo Dik Bos Inhoud Hoofdstuk Getallen 000 - Rekenen met reuken 000 - Deimale getallen, proenten en fator 000-3 Kwadraten 000-4 Wortels 000-5 Mahten

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofstuk 6 - Nieuwe grafieken Hoofstuk 6 - Nieuwe grafieken Voorkennis V-a Van lijn k is het hellingsgetal en het startgetal en e formule is = +. Van lijn l is het hellingsgetal en het startgetal en e

Nadere informatie

Nog een eindexamen met veel vaardigheden Eindexamen Wiskunde A havo 2009-I 2 tabel 1 -getal Draagvermogen (kg)

Nog een eindexamen met veel vaardigheden Eindexamen Wiskunde A havo 2009-I 2 tabel 1 -getal Draagvermogen (kg) Nog een eindexamen met veel vaardigheden Eindexamen Wiskunde A havo 2009-I Autobanden Er bestaan veel verschillende merken autobanden en per merk zijn er banden in allerlei soorten en maten. De diameter

Nadere informatie

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10

7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10 B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +

Nadere informatie

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA

Startrekenen Wiskit. Leerwerkboek deel 1 Functies. Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELTE FOLKERTSMA Startrekenen Wiskit Leerwerkboek deel 1 Functies Basisvaardigheden wiskunde SANDER HEEBELS ROB LAGENDIJK JELE FOLKERSMA JASPER VAN ABSWOUDE CYRIEL KLUIERS RIEKE WYNIA Inhoudsopgave evagposduohni Deel 1

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Maandag 27 mei 1.0 16.0 uur 20 02 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Blok 5 - Vaardigheden

Blok 5 - Vaardigheden Extra oefening - Basis B-a De richtingscoëfficiënt is 7 = 8 =. 7 x = en y = 7 invullen in y = x + b geeft 7 = + b 7 = + b dus b =. Een vergelijking is y = x. b De richtingscoëfficiënt is =. 8 5 x = 8 en

Nadere informatie

4 Vergelijkingen. Verkennen. Theorie en Voorbeelden

4 Vergelijkingen. Verkennen. Theorie en Voorbeelden 4 Vergelijkingen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Vergelijkingen Inleiding Verkennen Theorie en Voorbeelden www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo

Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Bijlage 7 Vragen over algebraïsche vaardigheden aan het eind van klas 3 havo/vwo Deze vragen kunnen gebruikt worden om aan het eind van klas 3 havo/vwo na te gaan in hoeverre leerlingen in staat zijn te

Nadere informatie

Hoofdstuk 8 - De afgeleide

Hoofdstuk 8 - De afgeleide Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Examen HAVO 2012. wiskunde B. tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2012. wiskunde B. tijdvak 1 donderdag 24 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 1 donderdag 24 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor

Nadere informatie

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25

x 2x x 4x x 1x x 8x x x 12 = 0 G&R vwo B deel 1 1 Vergelijkingen en ongelijkheden C. von Schwartzenberg 1/25 C. von Schwartzenberg 1/ 1 I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van is steeds ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Beoordelingsmodel VMBO GL/TL 2008-I Vraag Antwoord Scores Golfbaan maximumscore 4 Een kijklijn tekenen van het putje langs de punt van de bosrand 90 m in werkelijkheid komt overeen met 6 cm in de tekening

Nadere informatie