Hoofdstuk 4: Meetkunde

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 4: Meetkunde"

Transcriptie

1 Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012

2 Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair verband Begrippen Maten Grafieken Kwadratisch verband Figuren Verhoudingstabel Snijpunten Exponentieel verband Toepassingen Procenten Formules Wortelverband Breuken Machtsverband Aannames Periodiek verband 2

3 Begrippen Begrippen Punten en lijnen Hoeken en koershoeken Begrippen Zijde Snijpunt Evenwijdig Loodrecht Diagonalen Snijpunt Diagonaal Zijde Loodrecht Evenwijdig 3

4 Punten en lijnen Hoe teken ik een evenwijdige lijn? Teken een lijn. Leg een evenwijdige lijn van je geodriehoek op de getekende lijn en teken een nieuwe lijn. Nu heb je twee evenwijdige lijnen. Hoe teken ik een lijn loodrecht op de ander? Teken een lijn. Leg de nullijn van je geodriehoek op de getekende lijn. Nullijn Teken een lijn langs je geodriehoek. Evenwijdige lijn 4

5 Punten en lijnen Wat is de afstand van een punt tot een lijn? De afstand van een punt tot een lijn is de kortst mogelijke lengte ertussen. Deze afstand kun je vinden door een loodrechte lijn te tekenen door het punt en de lijn. Wat is een deellijn? Een deellijn verdeelt een hoek in twee even grote hoeken. Wat is een hoogtelijn? Een hoogtelijn is een lijn die vanuit het hoekpunt loodrecht op de overstaande zijde staat. Deellijn Hoogtelijn 5

6 Punten en lijnen Wat is een grensvlak? Een grensvlak is een vlak van het ruimtefiguur. Grensvlak Wat is een grensvlakdiagonaal? Grensvlakdiagonaal Een diagonaal in een grensvlak is een grensvlakdiagonaal. Wat zijn iso-hoogtelijnen? Met iso-hoogtelijnen is het verschil tussen hoog en laag op een kaart zichtbaar. Een iso-hoogtelijn verbindt alle punten op dezelfde hoogte met elkaar. Een voorbeeld is een weerkaart met de luchtdruk. 6

7 Hoeken en koershoeken Begrippen Wat is een hoek? Punten en lijnen Hoeken en koershoeken Elke hoek heeft twee benen, die samenkomen in een hoekpunt. Je kan de benen langer maken, de hoek verandert niet. Je kan in plaats van hoek A ook zeggen: A A Been Verschillende hoeken Rechte hoek: precies 90 Stompe hoek: groter dan 90 Scherpe hoek: kleiner dan 90 Wat is een gestrekte en volle hoek? Gestrekte hoek: precies 180 Volle hoek: precies

8 Hoeken en koershoeken Hoe construeer je een driehoek? Als er drie zijden gegeven zijn: zijde AB = 9 cm, AC = 6 cm en BC = 6 cm. Teken de langste zijde (AB) en maak de passeropening 6 cm. Trek een cirkelboogje op 6 cm vanaf punt A. Trek een cirkelboogje op 6 cm vanaf punt B. Maak de driehoek ABC af. Als er een zijde en twee hoeken gegeven zijn: zijde AB = 4 cm, A = 40 en B = 80 Teken de gegeven zijde AB. Teken B. Teken A. Teken driehoek ABC A B 8

9 Hoeken en koershoeken Wat is een koers en wat is een koershoek? Koersen kun je aangeven met windrichtingen zoals Noord, Zuid, Noordwest. N Om een koers nauwkeurig aan te geven gebruik je een koershoek in graden. Een koershoek meet je altijd vanaf het noorden. Hiernaast is een koershoek van 38 getekend. 38 Hoe kan je een plaats op de kaart vinden met twee koershoeken? Teken vanuit de twee plaatsen de koers met je kompasroos. De plaats die je zoekt is het snijpunt van beide lijnen. Voorbeeld Vanuit A is de koershoek 110 en vanuit B is de koershoek

10 Hoe meet je een hoek? Leg het midden van de kompasroos precies op het hoekpunt. Leg de 0 van je kompasroos op één van de benen van de hoek. Doe dit zo dat je het andere been kunt meten in de richting van de wijzers van de klok. Lees bij het andere been af hoe groot de hoek is. Hoe meet je een koershoek? Trek een lijn tussen twee plaatsen. Leg het middelpunt van je kompasroos op de plaats van vertrek met het Noorden naar boven. Lees af hoe groot de hoek is. Voorbeeld Hoeken en koershoeken N 10

11 Hoeken en koershoeken Bijzondere hoeken Overstaande hoeken: als twee lijnen elkaar snijden zijn de overstaande hoeken gelijk. Z-hoeken + + o x x o F-hoeken * * De gelijke tekens in de figuren betekenen dat de hoeken precies even groot zijn. Let op: de lijnen moeten wel evenwijdig zijn! 11

12 Kijkhoek Wat is een kijklijn? Een kijklijn is een lijn waarlangs iemand kijkt, dit is altijd een rechte lijn. Wat is een kijkhoek? Een kijkhoek is de hoek waarnaar je kan kijken. Je kan je kijkhoek vergroten door je plaats te veranderen. Voorbeeld De kijklijnen voor plek 1 en plek 2 zijn weergegeven. Door van plek 1 naar plek 2 te gaan heb je een grotere kijkhoek en zie je meer

13 Driehoek Figuren Driehoek Cirkel Ruimtefiguren Hoeken in een driehoek en vierhoek In elk driehoek zijn de drie hoeken samen precies 180. In elk vierhoek zijn de vier hoeken samen precies 360. Als je in een driehoek twee hoeken weet kan je de derde uitrekenen. Als je in een vierhoek drie hoeken weet kan je de vierde uitrekenen. C? A B C= =

14 Driehoek Driehoeken Er zijn verschillende driehoeken te onderscheiden: Gelijkzijdige driehoek, alle zijden zijn even lang en alle hoeken zijn even groot. Gelijkbenige driehoek, heeft twee even lange zijden en hoeken. Rechthoekige driehoek, heeft één hoek van 90 graden. Gelijkzijdig Gelijkbenig Rechthoekig Bijzondere vierhoeken Vlieger, is een vierhoek waarvan één diagonaal symmetrieas is. Ruit, is een vlieger waarvan beide diagonalen symmetrieassen zijn. Parallellogram, is een vierhoek waarvan de diagonalen elkaar middendoor delen. Vlieger Ruit Parallellogram 14

15 Driehoek Overstaande en aanliggende rechthoekszijde. De overstaande rechthoekszijde van P staat tegenover P. De aanliggende rechthoekszijde van P ligt vast aan P. P Wat is de sinus, cosinus en tangens? Bij berekeningen in een rechthoekige driehoek kun je gebruik Maken van de verhoudingen sinus, cosinus of tangens. Aanliggende rechthoekszijde van P. Overstaande rechthoekszijde van P. sin A = cos A = overstaande _ rechthoekszijde schuine _ zijde aanliggende _ rechthoekszijde schuine _ zijde overstaande _ rechthoekszijde tan A = aanliggende _ rechthoekszijde o s s a c s o t a P l avan P ovan P 15

16 Driehoek Hoe bereken je een hoek in een rechthoekige driehoek? Kijk wat de overstaande, aanliggende en lange zijde zijn. Kies uit de ezelsbruggetjes de juiste verhouding. Vul de verhouding in en bereken de hoek. Voorbeeld Er is gegeven: overstaande rechthoekszijde van P en de langste zijde. Dus gebruik het ezelsbruggetje sol. Sin P = Sin P = QR PR 3 7 P = 25 P 7 R 3 Q 16

17 Driehoek Hoe bereken je een zijde in een rechthoekige driehoek? Kijk wat de overstaande, aanliggende en lange zijde zijn. Kies uit de ezelsbruggetjes de juiste verhouding. Vul de verhouding in en bereken de zijde. Voorbeeld C Bereken zijde AB. Zijde AB is de aanliggende zijde, zijde AC is de overstaande zijde en zijde BC is de lange zijde. 10 A? 31 B Omdat de overstaande zijde bekent is en we de aanliggende zijde willen weten is het handig om de tangens te gebruiken. ( toa ) tan B = AC AB 10 AB 10 tan 31 tan 31 = AB = = 16,6 17

18 Driehoek Een andere manier om te rekenen met driehoek is de stelling van Pythagoras. Wat is de stelling van Pythagoras De stelling van Pythagoras kan je gebruiken voor berekeningen in een rechthoekig driehoek. Let op: Er moet dus een hoek van 90 zijn! Rechthoekszijde De stelling van Pythagoras: rechthoekszijde 2 x rechthoekszijde 2 = schuine zijde 2 Rechthoekszijde Hoe bereken je een zijde? Maak een schema. Bereken de kwadraten. Bereken de lengte van de zijde. Voorbeeld zijde kwadraat KM = 5 25 KL = LM =? 169 M 5 cm K? 12 cm L LM = 169 = 13cm 18

19 Cirkel Figuren Driehoek Cirkel Ruimtefiguren Wat is een cirkel? Het middenpunt wordt aangegeven met de M. Een lijn door het middenpunt is de middellijn. De middellijn verdeelt de cirkel in twee gelijke stukken. De middellijn noem je ook wel de diameter. straal De straal is hetzelfde als een halve diameter. De omtrekis gelijk aan π diameter M diameter 19

20 Ruimtefiguur Figuren Driehoek Cirkel Ruimtefiguren Wat zijn ruimtefiguren? Kubus Balk Prisma Piramide Bol Cilinder Kegel 20

21 Einde presentatie 4A Voorbeeldopgave blok4a 21

22 Wat moet je ermee kunnen? De volgende toepassingen worden besproken: - Omtrek - Oppervlakte - Inhoud - Uitslag - Aanzichten - Doorsneden - Coordinaten - Vergroting - Gelijkvormig - Symmetrie Dit zijn toepassingen van de in de vorige presentatie genoemde theorie. 22

23 Omtrek Hoe bereken je een omtrek? Omtrek heeft te maken met de lengte om iets heen. Zorg dat je de lengte van alle zijden van de figuur weet. Tel al die lengten bij elkaar op, het antwoord is de omtrek van de figuur. Voorbeeld 1 3 m De bovenste zijde is 5 3 = 2m 2 m De onbekende verticale zijde is 2 1,5m = 0,5m De omtrek is dan: , ,5 + 5 = 14 meter 5 m 1,5 m Hoe bereken je de omtrek van een cirkel? De omtrek van de cirkel bereken je met deze formule: Omtrek cirkel = diameter x π Het getal spreek je uit als pi en is ongeveer 3,14. π Voorbeeld 2 Bereken de omtrek van de cirkel: Diameter x = omtrek π π 18 x = 56,5 cm 18 cm 23

24 Oppervlakte Hoe bereken je de oppervlakte van een driehoek? Als de basis en hoogte bekend zijn, dan bereken je de oppervlakte van een driehoek met: 1 Oppervlakte driehoek = basis x hoogte x 2 Hoogte Voorbeeld Bereken de oppervlakte van driehoek ABC. C AB is de basis, AB = 7 cm CD is de hoogte, CD = 4 cm Basis A 4 cm 2 cm 5 cm B De oppervlakte is: 7 x 4 x 1:2 = 14 cm 2 Hoe bereken je de oppervlakte van een parallellogram? Basis en hoogte zijn wederom belangrijk, de hoogte staat wederom loodrecht op de basis. De formule voor de oppervlakte is: Oppervlakte parallellogram = basis x hoogte Hoogte Basis 24

25 Oppervlakte Hoe bereken je de oppervlakte van een balk? Bovenvlak Bereken de oppervlakte van het bovenvlak, het voorvlak en het zijvlak. Vermenigvuldig deze oppervlakten met 2. De totale oppervlakte vind je door deze uitkomsten op te tellen Hoe bereken je de oppervlakte van een cirkel? De oppervlakte van een cirkel kun je berekenen met de formule: Voorvlak Zijvlak Oppervlakte cirkel = straal straal π Hoe bereken je de oppervlakte van een cilinder? Schets de uitslag van de cilinder. Bereken de lengte van de rechthoek door de omtrek van de cirkel te berekenen. Bereken de oppervlakte van de rechthoek. Bereken de oppervlakte van de cirkel. Bereken de oppervlakte van de cilinder door alles bij elkaar op te tellen. 25

26 Oppvervlakte Samengestelde figuren Figuren kunnen ook bestaan uit meerdere vormen. Je kan de oppervlakte dan uitrekenen door de figuren op te splitsen in figuren die je kent: Oppervlakte rechthoek = lengte x breedte Oppervlakte driehoek = basis x hoogte x Oppervlakte parallellogram = basis x hoogte Oppervlakte cirkel = straal x straal x π 1 2 Voorbeeld huisje Verdeel figuur in bekende figuren Bereken de bekende figuren Kijk welke vlakken je dubbel hebt 26

27 Inhoud Hoe kun je de inhoud van een balk, cilinder of prisma berekenen? Bereken de oppervlakte van de bodem. Bereken de inhoud door het grondoppervlak te vermenigvuldigen met de hoogte. Schrijf de juiste inhoudsmaat achter je antwoord. (cm 3, dm 3, m 3 etc.) Hoe reken je om naar liters? Reken de gegeven lengtematen om in dm. Bereken de inhoud in dm 3. Schrijf je antwoord op in liter. Gebruik: 1 dm 3 = 1 liter Inhoud kegel en piramide Dit bereken je met de formule: 1 3 Inhoud = x oppervlakte bodem x hoogte Voorbeeld 1 Bereken de inhoud van de balk in liter. 3,5 m 0,8 m 160 cm 3,5 m = 35 dm 160 cm = 16 dm 0,8 m = 8 dm Oppervlakte bodem is 35 x 16 = 560 dm 2 De inhoud is 560 x 8 = 4480 dm 3 De inhoud is 4480 liter. 27

28 Uitslag en doorsnede Wat is een uitslag? Een uitslag is een bouwplaat, als je deze dichtvouwt moet je het ruimtefiguur krijgen. Met een uitslag van een ruimtefiguur kun je goed zien welke vorm de vlakken hebben. Wat is een doorsnede? Als je een voorwerp recht doorsnijdt, noem je het platte snijvlak een doorsnede. Als je een voorwerp meerdere keren evenwijdig doorsnijdt krijg je twee doorsneden die evenwijdig aan elkaar zijn: evenwijdige doorsneden. Je tekent de doorsnede altijd in zijn echte vorm, de vorm die je ziet als je er recht voor staat. 28

29 Aanzichten Aanzichten Vooraanzicht: dan kun je zien hoe een ruimtefiguur er van voren uitziet. Bovenaanzicht: dan kun je kijken hoe een ruimtefiguur er van boven uitziet. Zijaanzicht: dan kun je zien hoe een ruimtefiguur er van de zijkant uitziet. Bovenaanzicht Cilinder Vooraanzicht (en in dit specifieke geval ook zijaanzicht) 29

30 Plaats in de ruimte Hoe kun je een plaats in de ruimte aangeven? Twee coördinaten: een plaats op een plat vlak kun je aangeven met (afstand, richting). Drie coördinaten: een plaats in de ruimte kun je aangeven met (afstand, richting, hoogte). Hoe kun je een punt met drie coördinaten in de ruimte aangeven? Begin in het punt O. De eerste coördinaat geeft aan hoeveel plaatsen je naar voren moet. De tweede coördinaat geeft aan hoeveel plaatsen je naar rechts moet. De derde coördinaat geeft aan hoeveel plaatsen je naar boven moet. 30

31 Vergroten en gelijkvormigheid Wat is een vergroting? Als je een figuur vergroot, dan moeten alle lengten met hetzelfde getal vermenigvuldigd worden. Let op: de vorm moet gelijk blijven! De hoeken blijven ook gelijk. Wat is een factor? Het getal waar je steeds mee vermenigvuldigt heet de factor. Dit getal geeft aan hoeveel keer zo groot de afmetingen van een figuur worden. Is het getal groter dan 1? Dan wordt het figuur groter. Is het getal kleiner dan 1? Dan wordt het figuur kleiner. Hoe reken je een factor uit? Bepaal wat de oude en nieuwe maat is. Bereken de factor. Voorbeeld Oude waarde = 10 euro Nieuwe waarde = 15 euro Met welk factor is de oude waarde toegenomen? Bereken dit door: 10 1,5 15 = De oudewaardex factor = nieuwewaarde 31

32 Vergroten en gelijkvormigheid Wat gebeurt er met de afmetingen van een vergroting? De omtrek van een vergroting wordt een factor k groter. De oppervlakte van een vergroting wordt een factor k 2 groter. De inhoud van een vergroting wordt een factor k 3 groter. Wat is een schaal? Een schaal is een manier om een maat van een tekening om te rekenen naar de werkelijkheid. Hoe bereken je de schaal van een tekening? Meet in de tekening een lengte van een voorwerp waarvan je de werkelijke maat weet. Maak een rekenschema. Bereken de factor. Schrijf de schaal op. Voorbeeld Een bureau is op de tekening 2,5 cm en in het echt 200 cm. cm in tekening x factor = cm in werkelijkheid 2,5 x factor = 200 De factor is dus 200 : 2,5 = 80 De schaal is dus 1 :

33 Symmetrie Wat is symmetrie? Een figuur noem je symmetrisch als een of meerdere delen bestaan die elkaars spiegelbeeld zijn. Lijnsymmetrie: je kaneenfiguurmet eenlijndoor middensnijdenen de twee helftenzijn dan precies gelijk. Draaisymmetrie: je kanhet figuuromeenpunt draaienmet eenbepaaldehoekzodathet figuur dezelfde vorm behoudt. Puntsymmetrie: je draaiteenfiguurmet 180 o om een punt en het figuur heeft dan dezelfde vorm. Lijnsymmetrisch met verschillende symmetrieassen Draaisymmetrisch om punt C. 33

34 Tips & Tricks Formules die gegeven zijn op het examen π - Omtrek cirkel = x diameter π - Oppervlakte cirkel = x straal x straal - Inhoud prisma = oppervlakte grondvlak x hoogte - Inhoud cilinder = oppervlakte grondvlak x hoogte 1 - Inhoud kegel = x oppervlakte grondvlak x hoogte Inhoud piramide = x oppervlakte grondvlak x hoogte Inhoud bol = x π xstraal x straal x straal 3 34

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16

PTA wiskunde KBL - Bohemen Media (Statenkwartier)- cohort 14-15-16 Wiskunde Het schoolexamen in het vierde leerjaar (2015-2016) wordt ook toegepast binnen de locatie Statenkwartier. Schooljaar 2014-2015 ( leerjaar 3 ) Kader Schoolexamen 1 SE 1 De volgende onderdelen worden

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B

Netwerk 3 kader docentenhandleiding. Docentenhandleiding deel 3A en 3B vmbo kader. Inhoud deel 3A. Inhoud deel 3B Docentenhandleiding deel 3A en 3B vmbo kader Inhoud deel 3A Hoofdstuk 1 Vlakke meetkunde Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Rekenen Hoofdstuk 4 Statistiek Hoofdstuk 5 Ruimtemeetkunde Hoofdstuk

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl.

Noorderpoortcollege School voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 Periode 1 2012-2013. M. van der Pijl. Noorderpoortcollege School voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 Periode 1 2012-2013 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen

Nadere informatie

3 Pythagoras 90. 4 Statistiek 128

3 Pythagoras 90. 4 Statistiek 128 2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde

Nadere informatie

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16

PTA wiskunde GL/TL - Bohemen Houtrust Kijduin Media - cohort 14-15-16 Wiskunde Schooljaar 2014-2015 ( leerjaar 3 ) Theoretische en Gemengde leerweg Schoolexamen 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand 301T

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2014 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3 & havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 19 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 19 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2012 tijdvak 2 dinsdag 19 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 1 dinsdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 1 dinsdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-GL en TL 205 tijdvak dinsdag 9 mei 3.30-5.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten te

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en):

Novum, wiskunde LTP leerjaar 1. Wiskunde, LTP leerjaar 1. Vak: Wiskunde Leerjaar: 1 Onderwerp: In de Ruimte H1 Kerndoel(en): Wiskunde, LTP leerjaar 1 Onderwerp: In de Ruimte H1 26 De leerling leert te werken met platte en ruimtelijke vormen en structuren, leert daarvan afbeeldingen te maken en deze te interpreteren, en leert

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

HOOFDSTUK 2 TRANSFORMATIES

HOOFDSTUK 2 TRANSFORMATIES HOOFDSTUK 2 TRANSFORMATIES Verschuiven, roteren, spiegelen, vergroten/verkleinen zijn manieren om bij een figuur een 'beeldfiguur' te bepalen. Deze manieren noem je 'transformaties'. 2.1 LIJNSPIEGELING

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

3 Hoeken en afstanden

3 Hoeken en afstanden Domein Meetkunde havo B 3 Hoeken en afstanden Inhoud 3. Cirkels en hun middelpunt 3. Snijden en raken 3.3 Raaklijnen en hoeken 3.4 Afstanden berekenen 3.5 Overzicht In opdracht van: Commissie Toekomst

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2009 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2009 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

Meten en Meetkunde 2. Doelgroep Meten en Meetkunde 2. Omschrijving Meten en Meetkunde 2

Meten en Meetkunde 2. Doelgroep Meten en Meetkunde 2. Omschrijving Meten en Meetkunde 2 Meten en Meetkunde 2 Muiswerk Meten en Meetkunde 2 besteedt aandacht aan de uitbreiding van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, en coördinaten. In niveau 2 komen de

Nadere informatie

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte

oppervlakte grondvlak hoogte oppervlakte grondvlak hoogte Examen Wiskunde VMBO-GL en TL 2007 wiskunde CSE GL GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Hoofdstuk 2 Vlakke meetkunde

Hoofdstuk 2 Vlakke meetkunde Opstap eellijn, hoogtelijn, samen 180 en samen 360 O-1a P 60º R d O-2a O-3a d P x x Q e drie deellijnen van de driehoek gaan inderdaad door één punt. M O Zie opdraht O-2a. U S V T UV is de hoogtelijn op

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2009 tijdvak 2 dinsdag 23 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Voorbereidende sessie toelatingsexamen

Voorbereidende sessie toelatingsexamen 1/34 Voorbereidende sessie toelatingsexamen Wiskunde 2 - Veeltermen en analytische meetkunde Dr. Koen De Naeghel 1 KU Leuven Kulak, woensdag 29 april 2015 1 Presentatie en opgeloste oefeningen zijn digitaal

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B Analytische meetkunde Inhoud.. Coördinaten in het vlak.. Vergelijkingen van lijnen.3. Vergelijkingen van cirkels.4. Snijden.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

Driehoeksmeting in een. Copyright. rechthoekige driehoek

Driehoeksmeting in een. Copyright. rechthoekige driehoek Driehoeksmeting in een opyright rechthoekige driehoek opyright Driehoeksmeting in een rechthoekige driehoek. Goniometrische getallen van een scherpe hoek.... Sinus, cosinus en tangens van een scherpe hoek...

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 21 juni 13:30-15:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 21 juni 13:30-15:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-GL en TL 2016 tijdvak 2 dinsdag 21 juni 13:30-15:30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

De twee schepen komen niet precies op hetzelfde moment in S aan.

De twee schepen komen niet precies op hetzelfde moment in S aan. Gevaar op zee Schepen die elkaar te dicht naderen worden gewaarschuwd door de kustwacht. Wanneer schepen niet op zo n waarschuwing hebben gereageerd, stelt de Inspectie Verkeer en Waterstaat een onderzoek

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

Toetswijzer examen Cool 2.1

Toetswijzer examen Cool 2.1 Toetswijzer examen Cool 2.1 Cool 2.1 1 Getallenkennis: Grote natuurlijke getallen 86 a Ik kan grote getallen vlot lezen en schrijven. 90 b Ik kan getallen afronden. 91 c Ik ken de getalwaarde van een getal.

Nadere informatie

Inleiding goniometrie

Inleiding goniometrie Inleiding goniometrie We bekijken de volgende twee hellingen: 1 2 Duidelijk is dat de tweede helling steiler is dan de eerste helling. Ook zien we dat hellingshoek 2 groter is dan hellingshoek 1. Er bestaat

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

VOORBEREIDINGSWEEK BASISOPDRACHTEN

VOORBEREIDINGSWEEK BASISOPDRACHTEN DEEL I VOORBEREIDINGSWEEK BASISOPDRACHTEN In deze week werk je aan een grote serie opdrachten die gereedschap zullen zijn voor de rest van de periode. Je moet zelf je eigen uitwerking maken in een soort

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie