16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "16 a. b a. b 6a. de Wageningse Methode Antwoorden H21 OPPERVLAKTE HAVO 1"

Transcriptie

1 Hoofdstuk OPPERVLAKTE HAVO 5 a De rechthoeken zijn bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers.. INTRO Oppervlakte snelweg = 0 km 8 m = m 8 m = m. Zijde vierkant = = 600 m. a Bij de stip rechtsboven b 99 cm 3 a ( ) = 550 mm b 50 = 500 mm 4 a ( ) 3 = 600 mm b = 475 mm. LENGTE EN OPPERVLAKTE 5 a Even lang, want alle verticale stukken van de trap zijn samen net zo lang als de hele hoogte, en alle horizontale stukken van de trap zijn samen net zo lang als de hele breedte. b Dezelfde omtrek. 6 Omtrek vierkant = omtrek gelijkzijdige driehoek = omtrek rechthoek = 4 9 = 36 cm Zijde gelijkzijdige driehoek = 36 : 3 = cm Zijde rechthoek = (36 ) : = 6 cm 7 Zijde driehoek = 36 : = 3 cm Omtrek zeshoek = 6 3 = 8 cm 8 a 4 = 8 cm b 6,5 = 9 cm 9 Nee, het verschil is (30 0) = 0 cm 0 a,5 m = 5 dm, dus 5 tegels langs de korte zijde; 3, m = 3 dm, dus 3 tegels langs de lange zijde b 5 3 = 480 tegels c Oppervlakte één tegel = dm, dus oppervlakte plein = 480 dm 0 : = 5 m is de lengte van de bloemen 30 : 5 = 6 m is de breedte van de tuin Opp. bonen = (5 3)(6 ) = 8 m Opp. tegel = 6 6 = 0, 375 m 8 b Respectievelijk 6, 0 en eenheden (Een eenheid is het vierkant dat je met vier lucifers kunt leggen.).3 OPPERVLAKTES VERGELIJKEN 6 a b 6 7 De vier kwartcirkels in de hoeken van het vierkant vormen samen een cirkel. Dus de hoeveelheid grijs binnen het vierkant is dat van cirkels, dus 5 deel. 8 a a 3 a 7 3 = tegels b 3 4 = 4 blokken 4 Oppervlakte wit = = 43 Oppervlakte grijs = 9 43 = 65 b 6a de Wageningse Methode Antwoorden H OPPERVLAKTE HAVO

2 9 Door de twee stippellijnen (zie figuur) er bij te tekenen is de parallellogram verdeeld in maal 4 even grote driehoeken. Elk stuk bestaat uit een # en een. 0 3 = 6 = 4,5 # # # # 3.4 OPPERVLAKTE VAN ALLERLEI FIGUREN 4 0, 0, 6, 5, 0 5 F: 5 3 7,5,5 = 5 G: ,5 = 8,5 H: 8 7 7,5 0,5,5 7,5 0 = 8 I; 5 3 7,5,5 = 5 J: 4 4 = 8 6 a Alle vier de parallelogrammen hebben oppervlakte hokjes. b hokjes. 7 a 3,7 = 7,4 dm b 5 : =,5 dm a b cm ; cm In de verdeling zie je dat het grijze gedeelte bestaat uit 4 van de 8 trapezia. Dus de helft is grijs. 3 a 4 8 a bij 3 cm, 3,6 bij,75 cm b 3 = 6 cm, 3,6,75 = 6,3 cm 9 a 3 bij,8 cm ; opp. = 3,8 = 8,4 cm b 4 bij, cm ; opp. = 4, = 8,4 cm c 3 bij 3,4 cm ; opp. = 3 3,4 = 0, cm d 4 bij,5 cm ; opp. = 4,5 = 6 cm 30 a opp. ABCD = 0 7,5 = 75 m b 75 : 6 =,5 m = BC 3 Alle drie hebben dezelfde oppervlakte. 3 a b b,7,7 = 7,9 cm, 3,6,8 = 6,48 cm 33 a c d b opp. ABCD = 3 = 6 cm, opp. ABD = 6 : = 3 cm 34 a opp. ABC = 8 : = 48 b zijde BC, want BC 0: = 48 Dus 0BC = 96, BC = 9,6 35 a BC = = 65 BC = 65 = 5 b opp. ABC = 0 5: = 50 c BC AD : = 50 5 AD : = 50 5AD = 300 AD = de Wageningse Methode Antwoorden H OPPERVLAKTE HAVO

3 36 h = 0 6 = 64 h = 64 = 8 opp. driehoek = 8 : = a opp. voor- en achterkant = 5 6 = = 89, 89 = 7, de zijkanten zijn 0 bij 7 dm opp. zijkanten = 0 7 = 680 opp. tentdoek = = 90 dm = 9, m b Inhoud = = 400 dm : = 3, : : = = 750 cm 40 a lange diagonaal = + 5 = 3 b opp. vlieger = 5 = 60 c 3 korte diagonaal : = 60 3 korte diagonaal = 0 0 korte diagonaal = = 9 4 a Zie plaatje: x = 5 x = 48 y = = 304 = 44 y = Dus het andere latje is 48 + = 69 cm. b 40 69=760 cm c 760 : = 380 cm x y 47 6 π 3,43 cm = 343 mm 48 a π,5 =4,5π 4, dm 3, dus ong. 4 liter b Opp. zijkant = π 5 0=600π cm Opp. onderkant = π 5 =5π cm Opp. totaal 59 cm 49 Oppervlakte=π : π = π cm 34 mm Omtrek=π + π + π = 4π cm 6 mm OKEROPGAVEN Je begint in een stip. Vandaar ga je naar een naburige stip. Dan ga je weer naar een naburige stip. Enzovoort. Je moet zo 99 stappen doen om alle stippen in één koord te verbinden, en alle stappen zijn even groot. 4 Vouw de kaart dubbel; zeg dat hij nu 7, bij 5 cm is. Maak elf knippen van 4,5 cm lang. Doe dat om en om vanaf de vouw en vanaf de andere kant: zes kniplijnen vanaf de vouw en vijf van de andere kant. Neem als onderlinge afstand tussen de kniplijnen 0,6 cm. De vouwlijn is nu verdeeld in zeven stukken. De buitenste twee zijn 0,6 mm, de binnenste vijf zijn, cm. Knip de binnenste vijf door. Je hebt nu een gat met een omtrek van 9 cm = 99 cm. Daar kun jij gemakkelijk doorheen : = 6 cm 43 a Dat betekent dat de teller zes vakjes heeft. Als je ermee 0 km hebt afgelegd, springt de teller weer op 0.000,00. b Omtrek = π 6,8 m c Omtrek wiel = 5,9 π = 50,0 Aantal keren rond = 00 : 50,0 = 44 a omtrek 8 halve cirkels = omtrek 4 hele cirkels = 4 π = 8π 5, cm b 4 4 = 6 cm, zie figuur. 45 a r en 4r b 7 Alle witte driehoeken rondom de grijze zeshoek zijn gelijkzijdig (want alle hoeken zijn 60 ). Als we de zijden van de grijze zeshoek vervangen volgens de pijlen, dan zien we dat de omtrek van de zeshoek gelijk is aan de twee vet getekende zijden, dus aan 8 : 3 =. 8 8 : 8 = m vouw c π =4π cm ; 5π 5=5π cm 46 wateroppervlakte = π 50 π m 9 Als je de routes van 7 km en km beide één keer rijdt, dan heb je precies de route van 0 km en de kleine onbekende route gereden. Je hebt dan 7+ = 9 km gereden. De kleine onbekende route is daarom 9 0 = 9 km. de Wageningse Methode Antwoorden H OPPERVLAKTE HAVO 3

4 Elk van de 9 vierkanten bestaat uit 00 kleine vierkantjes. 900 kleine vierkantjes hebben samen oppervlakte, het kleine zwarte vierkantje heeft oppervlakte Het witte vierkant bestaat uit 3 3 = 9 kleinere vierkantjes. De hoogte van de rechthoek = 3 8 = 4, dus de zijde van het kleinere vierkant = 4 : 4 = 6. Zijde witte vierkant = 3 6 = 8. 7 Verdeel driehoek BCD in twee driehoeken zoals in de figuur hier-naast. Je ziet dan dat de uitstekende drie-hoeken samen even groot zijn als het grijze gebied. Dat grijze gebied is zelf weer de helft van rechthoek ABCD. Dus rechthoek DBEF heeft oppervlakte cm. 8 Oppervlakte grijze gebied = ( ) =. Zie de figuur. 0 Teken drie horizontale en drie verticale lijnstukken als hiernaast. Je ziet dan dat de oppervlakte van de witte delen samen de oppervlakte van drie grijze vierkantjes is. Het hele vierkant is dus even groot als 8 grijze vierkantjes. De omtrek van de grijze twaalfhoek is 36 cm, dus de zijde van zo'n grijs vierkantje is 3 cm. De oppervlakte van een grijs vierkantje is 9 cm, van het hele vierkant dus 7 cm. 3 a Alledrie hebben ze oppervlakte. b De oppervlakte ligt tussen de 0 en de 4, met 0 en 4 inbegrepen. 38 Driehoek ACD en driehoek BCD hebben beide dezelfde basis, namelijk CD; ook de hoogte van de driehoeken is hetzelfde. Dus de driehoeken ACD en BCD hebben dezelfde oppervlakte. Dus dan zijn de oppervlaktes van de driehoeken ASD en BSC ook even groot. (Je haalt van de driehoeken ACD en BCD, driehoek SCD af.) 43 a Omtrek = a + π a = a + πa b 400 = a + πa = a( + π), dus a = m + π 48 (π 0,5 π 0,3 ) 0 8,9 =,57 kg D 3 cm F A 4 cm B C E EXTRA OPGAVEN a Omdat BAS = DCS en ABS = CDS (Z-hoeken); gelijkvormigheidskenmerk hh. b De gelijkvormigheidsfactor van driehoek CDS naar driehoek ABS is (dat zie je aan de zijden CD en AB). Dus is de hoogte van driehoek ABS ook keer zo groot als die van driehoek CDS. Omdat de hoogtes samen 3 zijn, zijn de hoogtes afzonderlijk en. c opp. ABS = 6 : = 6 en opp. CDS = 3 : =,5 d De oppervlakte van de driehoeken ABD en ABC is 6 3 : = 9. Trek daar de oppervlakte van driehoek ABS vanaf en je vindt de oppervlakte van de driehoeken ADS en BCS: 9 6 = 3. De stukken, en 3 samen zijn even groot als de stukken 4, 5 en 6 samen. De stukken en 4 zijn even groot en de stukken 3 en 6 zijn even groot. Dus zijn de stukken en 5 ook even groot Teken de hoogtelijn en bereken de hoogte h van de driehoek met de stelling van Pythagoras. h = 7 8 = 5, dus h = 5. opp. driehoek = 6 5 : = 0 4 a opp.parallellogram = = 8 ; opp. driehoek = 4 4 : = 8. Dus is de oppervlakte van het trapezium = 6. b opp ene driehoek = 6 4 : = ; opp. andere drieheoek = 4 : = 4. Dus is de oppervlakte van het trapezium + 4 = 6. c Het parallellogram heeft basis 6 + en heeft oppervlakte 8 4 = 3. Het trapezium is de helft daarvan en heeft dus oppervlakte a We berekenen eerst de hoogte h van een driehoekig zijvlak met de stelling van Pythagoras. h = 4 +,5 = 8,5, dus h = 8,5 4,3 cm. Nu kunnen we een uitslag tekenen (schaal : ): h 6 de Wageningse Methode Antwoorden H OPPERVLAKTE HAVO 4

5 De oppervlaktes van de vierkanten zijn, 8, 49 en 5 cm. Noem de oppervlakte van de witte stukken (de overlappingen) van links naar rechts: x, y en z. De blauwe oppervlakte is dan ( x) + (49 y z) = 70 x y z en de oker oppervlakte is (8 x y) + (5 z) = 06 x y z. De oppervlaktes verschillen dus 64. b opp. driehoekig zijvlak = 3 8,5 :. de totale oppervlakte van het karton is ,5 : = 7, ,6 cm. 6 a Driehoek ADC is even hoog als driehoek DBC, maar heeft een keer zo grote basis, dus een keer zo grote oppervlakte. Die is dus 4. b Driehoek AED is even hoog als driehoek ECD, maar de bases verhouden zich als 4 : 3. Hun oppervlaktes verhouden zich dus ook als 4 : 3. Dus is driehoek DCEdriezevende deel van driehoek ADC. Zijn oppervlakte is dus 37 4 = 8. 3 De oppervlakte van het vierkant is 6 cm. De twee kwartcirkels vormen samen een halve cirkel, waarvan de oppervlakte is π : = π. De blauwe oppervlakte is dus 6 π 9,7. 4 De strook bestaat uit drie rechthoeken (elk met oppervlakte 4 ) en drie sectoren die samen een volle cirkel vormen. 7 De oppervlakte van het rechter parallellogram is = 3 keer zo grote oppervlakte. De oppervlaktes verhouden zich dus als 3 :. 8 ; 8 ; 3 ; 9 ; 4π ; 4 9 a CD 4 : = 84, dus CD =. b BD = BC CD = 5 = 8, dus BD = 9 ; AD = 4 9 = 5. c AC = AD + CD = 5 + = 69, dus AC = 3. De oppervlakte van de strook is dus π = + π 5,4. 0 De twee witte driehoeken vormen een rechthoek van 5 bij,5. Door deze en het kleine vierkant van het grote vierkant weg te halen, houdt je de oker pijl over. Zijn oppervlakte is: 5 3,5 5,5 = 5,5. a De trapezia hebben hoogte 3. Hun oppervlakte is,5x +,5y. Dit is één derde van het hele vierkant. Dus,5x +,5y =. Delen door,5 geeft x + y = 8. b Het middenstuk heeft oppervlakte 36 : 3 =. De grijze driehoek is de helft daarvan en heeft dus oppervlakte 6. De hoogte van die driehoek is 3, dus is zijn basis 4. Dus liggen A en B 4 cm van elkaar. A B de Wageningse Methode Antwoorden H OPPERVLAKTE HAVO 5

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x 2 Oppervlakte 3 32 2 oppervlakte parallellogram = 25 30 = 750 Noem de lengte van de lange zijde, dan oppervlakte parallellogram = 20 Dus 20 = 750, dus = 37. 45 Oppervlakte kwartcirkel = 3 π 2 2 = π Oppervlakte

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken

Nadere informatie

Hoofdstuk 5 Oppervlakte uitwerkingen

Hoofdstuk 5 Oppervlakte uitwerkingen Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram

Nadere informatie

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600.

START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. START WISKUNDE-ESTAFETTE RU 2007 Je hebt 60 minuten voor 20 opgaven. Het totaal aantal te behalen punten is 600. Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal

Nadere informatie

Oppervlakte van een rechthoek is: lengte breedte

Oppervlakte van een rechthoek is: lengte breedte 134 Meten en berekenen 4.7 Gemengde opgaven Ten slotte volgt hier een aantal kangoeroeopgaven waarin meetkundige figuren voorkomen. Soms moeten er hoeken uitgerekend worden. Bij veel opgaven speelt het

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je

Leest hij eerst de eerste kolom van boven naar beneden, dan de tweede enzovoorts, dan hoor je Estafette-opgave 1 (20 punten, rest 580 punten) Vier bij vier. In een schema van vier maal vier vierkantjes schrijft iemand letters. In iedere rij en in iedere kolom komt zo één A, één B en één C, zodat

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Eindexamen vmbo gl/tl wiskunde I

Eindexamen vmbo gl/tl wiskunde I Beoordelingsmodel Snelwandelen maximumscore 4 50 km is 50 000 meter 3 uur, 35 minuten en 47 seconden is gelijk aan 947 seconden 50 000 = 3,86 (m/s) 947 Het antwoord: 3,9 (m/s) maximumscore maximale snelheid

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTFETTE 2014 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 00 1 (20 punten) Gegeven zijn drie aan elkaar rakende cirkels met straal 1. Hoe groot is de (donkergrijze) oppervlakte

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Hoofdstuk 2 Oppervlakte en inhoud

Hoofdstuk 2 Oppervlakte en inhoud Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 16 HAAKJES VWO 16.0 INTRO 16.2 TREK AF VAN 8 a 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 1111d 1 2-2 2-1 2= -0,75-3,75 = 3 2 b De uitkomsten zijn allemaal 2. c n 2 +

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-II

Eindexamen wiskunde B1 vwo 2008-II Een eponentiële functie De functie f is gegeven door f( ) = e. is het snijpunt van de grafiek van f met de y-as. B is het snijpunt van de raaklijn aan de grafiek van f in met de -as. Zie figuur 1. figuur

Nadere informatie

Opvouwbare kubus (180 o )

Opvouwbare kubus (180 o ) Workshop Verpakkingen NWD 18 februari 2012 hm / rvo Opvouwbare kubus (180 o ) - Een bouwplaat van de kubus en een voorbeeldfoto - Als je een mooi wilt maken: een A4-tje 160 g wit papier en een schutblad,

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Junior Wiskunde Olympiade : eerste ronde

Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 18 juni uur Eamen VWO 008 tijdvak woensdag 18 juni 13.30-16.30 uur wiskunde B1 Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 84 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud

Les 1 Oppervlakte driehoeken. Opl. Les 2 Tangens, sinus en cosinus. Aantekening HAVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud antekening HVO 4B Hoofdstuk 2 : Oppervlakte en Inhoud Les 1 Oppervlakte driehoeken Oppervlakte driehoek = ½ basis hoogte Oppervlakte parallellogram = basis hoogte Oppervlakte trapezium = ½ (basis + top)

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010

EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 2010 EXAMEN SCHAKELCURSUS MIDDELBARE LASTECHNIEK WISKUNDE 010 Datum: 13 januari 010 Aantal opgaven: 6 Beschikbare tijd: 100 minuten De maximale score is 90 punten, vooraf 10 punten: totaal 100 punten. Aantal

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 50 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

Junior Wiskunde Olympiade : eerste ronde

Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde Olympiade 2007-2008: eerste ronde 1 30% van 300 is (A) geen van de volgende (B) 10 (C) 90 (D) 100 (E) 9000 2 Hoeveel getallen zijn het product van 2 verschillende getallen uit de verzameling

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31,

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31, Hoofdstuk.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7 of 5

Nadere informatie

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte.

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte. Deze toets bestaat uit 11 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn 2 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

1 Junior Wiskunde Olympiade: eerste ronde

1 Junior Wiskunde Olympiade: eerste ronde Junior Wiskunde Olympiade: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

handleiding pagina s 956 tot 964 1 Handleiding

handleiding pagina s 956 tot 964 1 Handleiding week 32 les 1 toets en foutenanalyse handleiding pagina s 956 tot 964 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina s 726 en 727: oppervlakte ruimtefiguren pagina 778: tijdstip en tijdsduur

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3 & havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht

Nadere informatie

1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart.

1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart. Uitwerkingen wizprof 2014 1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart. 2. A 75 km = 75000 m;. 3. C 2013, 2012, 2011 en 2010 hebben de

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 00-0: eerste ronde. e uitdrukking a b 4 is gelijk aan () ab () ab () ab 6 () ab 8 (E) ab 6. e uitdrukking (a b) is gelijk aan () a b () (b a) () a + b ab () a + b + ab (E) (a

Nadere informatie

Eindexamen vmbo gl/tl wiskunde 2011 - I

Eindexamen vmbo gl/tl wiskunde 2011 - I OVERZICHT FORMULES: omtrek cirkel = diameter oppervlakte cirkel = straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte grondvlak

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie