7 College 30/12: Electrische velden, Wet van Gauss

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "7 College 30/12: Electrische velden, Wet van Gauss"

Transcriptie

1 7 College 30/12: Electrische velden, Wet vn Guss Berekening vn electrische flux Alleen de component vn het veld loodrecht op het oppervlk drgt bij n de netto flux. We definieren de electrische flux ls volgt: Φ E = E da Φ E is de netto lding E is het electrisch veld in het opperlvlkte-elementje d A. d A is een vector die in grootte gelijk is n het oppervlkelementje da, en wrvn de richting per definitie loodrecht stt op het oppervlk. Het inproduct zorgt er dus voor dt de bijdrge n de integrl uitsluitend bepld wordt door de component vn E die loodrecht stt op het oppervlkelementje da. De integrl is over een gesloten oppervlk rond de lding Φ E. Vk wordt dit ngegeven met een symbool: Φ E = E da Deze vergelijking legt een kwntittief verbnd tussen de flux en de electrische veldsterkte. Mr hoe stt de flux in verbnd met de grootte vn de lding binnen het gesloten oppervlk? puntlding We weten dt voor een puntlding geldt dt E = 1 R 2. ALs we de puntlding in het middelpunt vn een denkbeeldige bol pltsen met strl R, dn stt E loodrecht op het oppervlk vn de pol in elk punt vn het oppervlk. Bovendien is E in elk punt vn het boloppervlk even groot. Onder deze condities geldt de wet vn Guss: Φ E = E da = E da = E Dit is de wet vn Guss voor een puntlding: Φ E = E da = ɛ da = 1 R 2 (4πR2 ) = ɛ De flux wordt uitsluitend bepld door de lding binnen de bol. De flux is onfhnkelijk vn de strl vn de bol. (Wnt: E 1/r 2, en A r 2, dus het product vn E en A is constnt). In feite geldt de wet vn Guss niet lleen voor een bolvormig oppervlk, mr voor elk gesloten oppervlk onfhnkelijk vn de vorm. Bovendien geldt de wet vn Guss niet lleen voor een puntlding, mr voor een willekeurige ldingsverdeling binnen het ingesloten volume. We kunnen nl. de totle lding Q encl ltijd 1

2 schrijven ls de som vn puntldingen: Q encl = i i. Het totle veld is de som vn de velden vn lle puntldingen, en dus: Φ E = E da = E i da = E i da = i = Q encl ɛ i i i ɛ Meer lgemeen luidt de wet vn Guss dus: Φ E = E da = Q encl ɛ Toepssingen. een geleidende bol met electrische lding : Het veld in de bol is nul: E(r < R) = 0 (ls de ldingsverdeling in evenwicht is wordt er geen netto krcht uitgeoefend, er is dus geen netto verpltsing vn lding). De bolvormige symmetrie impliceert dt extr lding homogeen over het oppervlk vn de bol is verdeeld. Bovendien is drom het veld rdil gericht: ls de bol gedrid wordt blijft het ptroon vn het electrisch veld onvernderd. Voor r > R is het veld dus gelijk n dt vn een puntlding een lnge geleidende drd met lding: E(r R) = 1 R 2 Voor een lnge, rechte drd (r << lengte) stt de richting vn het el. veld loodrecht op de drd (zie onderstnde figuur). In een vlk loodrecht op de drd is het veld op de omtrek vn een circel met strl r rond de drd overl even sterk. Beschouw een cilinder met lengte l en strl r rond de drd, met Q encl = λ/l: Φ E = E (2πrl) = Q encl ɛ = λl ɛ, en dus: E = 1 λ 2πɛ r 2

3 lding op een grote, geleidende plt: Het veld stt ook hier loodrecht op het vlk. Positieve lding: het veld is nr buiten gericht, negtieve lding: het veld is nr de plt toe gericht. Beschouw een denkbeeldige cilinder met strl die door het pltte vlk steekt met de s loodrecht op het vlk. Het product E A is lleen nul voor de boven en onderknt vn de cilinder. 2E A = σa ɛ A is het oppervlk vn de loodrechte doorsnede vn de cilinder, σ is de lding per eenheid oppervlk (de ldingsdichtheid, C/m 2 ), σa is de ingesloten lding. E = σ 2ɛ Twee evenwijdige plten met tegengestelde lding, onderlinge fstnd klein t.o.v. de fmetingen vn de plten: buiten de plt compenseren de velden vn de negtieve en positieve plt elkr. Tussen de plten tellen ze op: E = σ ɛ Veld vn een uniform gelden bol: Uniform wil zeggen dt de ldingsdichtheid ρ (= lding per volumeëenheid) overl in de bol (strl R) hetzelfde is. Q ρ = 4πR 3 /3 Voor r < R: Q encl = ρv encl = ( ) ( ) Q 4 4πR 3 /3 3 πr3 = Q r3 R 3 Binnen de bol is het veld evenredig met r, de fstnd tot het middelpunt: Ldingen in geleiders E = 1 4πr 2 Qr 3 R 3 1 ɛ = Q r 4πR 3 ɛ Extr ldingen in een geleider bevinden zich ltijd n het oppervlk. Als de geleider bolvormig (strl R) is volgt dt binnen in de bol (r < R) de sterkte vn het veld gelijk is n nul, ook ls de bol hol is Electrische potentil Arbeid verricht door een krcht: W b = F d s = F cos θ ds Voor een conservtieve krcht: W b = U U b = U U is de verndering in potentiële energie ls de krcht F rbeid verricht over de verpltsing vn nr b. Als de krcht in dezelfde richting is ls de verpltsing is de verrichte rbeid positief, en dus neemt de potentiële energie f. Vergelijk een voorwerp dt onder invloed vn de zwrtekrcht nr het rdoppervlk vlt: de verrichte rbeid is positief, de potentële energie (= mgh) 3

4 neemt f en de kinetische energie (= 1 2 mv2 )neemt toe. Omdt de krcht conservtief is blijft ook de totle energie (= kinetisch + potentiëel) behouden: K + U = K b + U b Coulombkrchten zijn ook conservtief. Voorbeeld: een positief gelden deeltje in een uniform electrisch veld. F = E W b = F (y b y ) = E(y b y ) U = E(y b y ) U = Ey W b is positief ls positief is, en dus neemt de potentiële energie f, de kinetische energie zl toenemen. Merk op dt in dt gevl de verpltsing in dezelfde richting is ls de op de lding uitgeoefende krcht. Als de lding vn het deeltje negtief zou zijn ondervindt het een krcht die tegengesteld is n de richting vn het veld. Bij de verpltsing vn nr b beweegt het deeltje dus in een richting tegengesteld n die vn de krcht: de potentiële energie neemt nu toe. Voorbeelden vn beweging vn gelden deeltjes in el. veld kthodestrlbuis, geigerteller (meten vn rdioctiviteit) electronenspectroscopie LCD (liuid crystl disply) Potentiële energie vn twee puntldingen Krcht tussen twee puntldingen en : F r = 1 r 2 Als de fstnd toeneemt vn r nr r b lngs de verbindingslijn (dus rdiëel) wordt rbeid verricht door de krcht: rb rb 1 W b = F r dr = r r r = rb 1 2 r r = ( 1 1 ) 2 r r b W b is lleen fhnkelijk vn begin en eindpunt, en dus onfhnkelijk vn de gevolgde weg. Consistent ls we de potentiële energie definiëren ls volgt: U = 1 r Dit is dus de electrische potentiële energie vn twee ldingen en. De uitdrukking geldt zowel voor positieve ls negtieve ldingen, of voor een combintie drvn. Wnneer we 4

5 te mken hebben met een systeem vn meerdere puntldingen kunnen we het superpositieprincipe toepssen (het veld in een bepld punt is de vector som vn de velden vn lle individuele ldingen), en dn volgt: U = Dit is de potentiële energie vn een lding in het veld vn de ldingen { i }. We kunnen het nulpunt vn potentiële energie vrij kiezen. Een hndige keus voor electrosttische problemen is U = 0 ls de fstnd tussen gelden deeltjes oneindig is. Een beplde ldingsverdeling { i } heeft dus een intrinsieke potentiële energie, en wel gelijk n de rbeid die moet worden verricht om de ldingen { i } bij elkr te brengen. Dt kunnen we één voor één doen, en dn de potentiële energie vn elk gelden deeltje optellen bij het totl. Dt levert: U = 1 r ij is de fstnd tussen ldingen i en j, en de som gt over termen met i < j zodt we niet elk pr dubbel tellen. Voorbeeld: Wt is de potentiële energie vn de ldingsverdelingen in vrgstuk 2.20? i i<j i r i i j r ij Links: U = 1 i<j i j = 1 ) (4 2 r ij = 1 ( 4 + 2) 2 2 Rechts: U = 1 i<j i j = 1 ) (2 2 r ij = 1 ( 2) 2 2 De potentiële energie in het linkse gevl is dus veel lger dn rechts! In beide gevllen is de potentiële energie negtief, d.w.z. het kost energie ls we groter zouden willen mken. N.B. De potentiële energie vn één deeltje bestt niet. Potentiële energie heeft ltijd te mken met een wisselwerking tussen deeltjes of voorwerpen. Potentiële energie hngt f vn de ruimtelijke verdeling vn b.v. mss s (grvittie) of ldingen (Coulomb-wisselwerking). V.b.: moleculen, een btterij, een ldingsverschil over een biologisch membrn. 7.1 Electrische potentil We definiëerden een electrische veld ls de krcht per eenheid lding, en we kunnen zo n veld beschouwen ls een (ruimtelijke) eigenschp vn een gelden voorwerp. Zols we hebben gezien is met een conservtieve krcht, en dus ook met een electrisch veld, ltijd een potentiële energie gessociëerd. Anloog n het begrip electrisch veld definiëren we nu de electrische potentil ls de potentiële energie per eenheid vn lding: Per definitie: V = U Eenheid vn U is J, vn V is volt (V), en dus 1 V = 1 volt = 1 J/C = 1 joule/coulomb 5

6 De electrische potentil is gedefiniëerd ls de potentiële energie per ldingseenheid. Het potentilverschil tussen twee punten en b is dus gelijk n de hoeveelheid rbeid die verricht moet worden om één eenheid lding vn nr b te verpltsen: W b = U ( Ub = U ) = (V b V ) = V V b De verndering vn de energie vn een deeltje met de lding vn een electron tussen twee punten met een potentilverschil vn 1 V is gelijk n U U b = ( C)(1 V) = J Deze hoeveelheid energie is gedefiëerd ls 1 electron volt (ev): 1 ev = J Voor de potentiële energie vn een testlding in het veld vn één ndere puntlding gold U = 1 r Druit volgt eenvoudig de potentil vn een puntlding: V = U = 1 r Als negtief is, is de potentil overl negtief; een positieve lding heeft overl een positieve potentil. Op oneindige fstnd is de potentil in beide gevllen gelijk n nul. Voor een verzmeling puntldingen geldt nloog: V = U = 1 Deze vergelijking stelt ons in stt om de potentil vn een willekeurige ldingsverdeling te berekenen op een willekeurige plts in de ruimte. We kunnen een gelden voorwerp ltijd opdelen in infinitesiml klein elementjes d, wrvoor de bijdrge n de potentil gegeven wordt door de vergelijking vn de puntlding geldt. De potentil wordt dn verkregen door deze bijdrgen op te tellen, in integrlvorm V = 1 i d r i r i 6

7 Potentil vn een bol Tussen twee plten met tegengestelde lding Er bestt een rechtstreeks verbnd tussen de potentil en het electrisch veld. Immers, de rbeid die het veld verricht bij verpltsing vn een puntlding vn nr b is gelijk n het verschil in potentële energie met een min-teken: W b = F ds = Volgens de definitie vn de potentil geld dus: V V b = E ds = E ds = U U b E cos θds Als E constnt is, en er verder geen krchten werken, vereenvoudigd deze vergelijking tot V = V V b = E s = E cos θ s We kunnen deze vergelijking ook nders schrijven, met nme ls mthbf E evenwijdig is n s: E = V s In een gebied wr V sterk verndert met de fstnd zl dus het elektrisch veld erg sterk zijn. Voorbeeld: de potentil vn een puntlding. We kunnen deze bendering generliseren in de limiet dt s nr nul gt, en het dot-product op een ndere mnier te schrijven: dv = E x dx + E y dy + E z dz Stel dt de verpltsing evenwijdig is n de x-s, zodt dy = dz = 0, dn geldt dv = E x dx, of E x = (dv/dx) y,z constnt. Dit is precies de uitdrukking voor de prtiële fgeleide vn V. De y en z-componenten zijn op dezelfde mnier gerelteerd n V, zodt 7

8 E x = V x, E = E y = V y, ( î V x + ĵ V y E z = V z. ) V + ˆk z Voor een rdiëel veld: Voorbeeld: puntlding E = V E r = V r E r = V r = ( ) 1 = 1 r r r 2 Voorbeeld 1: 1 = +7.50µC: vst 2 = +3.00µC: mss 2 g, beweegt in de richting vn 2, v = 22.0 m/s op een fstnd vn 0.80 m. Verwrloos de zwrtekrcht. Wt is de snelheid vn 2 op een fstnd vn 0.50 m? b. Wt is de kortste fstnd tussen 1 en 2?. Energiebehoud gebruiken. E i = K i +U i = 1 2 (0.002 kg)(22.0 m/s)2 +( ) ( C)( C) = J 0.80m E f = 1 2 mv2 +k 1 2 = 1 2(0.737 J J) r 2 mv J v = = 18.2 m/s kg b. Op de kortste fstnd is de snelheid nul: k 1 2 r = J r = ( ) ( C)( C) J = m 8

9 Voorbeeld 2: b. V = 1 Potentil V in de oorsprong? lt zien dt op een punt lngs de x-s V = x 2 Teken een grfiek vn V rond de oorsprong Wt is de potentil ls x? c. Volgens de tekening: V = 1 r = 1 2πɛ x 2 d. e. Als x >>, dn is V = 1 2 x Voorbeeld 3: Potentil ls functie vn x? Grfiek vn V (x)? Wt ls de ldingen verwisseld worden?. Potentil = 0 overl op de x-s: V (x) = 1 ( r + ) r b. V (x) = 0 c. Zelfde resultt ls ldingen verwisseld worden. Voorbeeld 4: Zelfde ls bij voorbeeld 3, mr nu voor de potentil op de y-s. y < : V = 1 ( + y + ) = 1 2y y (y 2 2 ) y > : V = 1 ( + y + ) = 1 2 y (y 2 2 ) y < : V = 1 ( y + ) = 1 2 y + (y 2 2 ) y >> : V = 1 ( y + + ) = 1 2 y y 2 9

10 Voorbeeld 5: Wt is de potentil in het middelpunt vn de ldinsgverdelingen in fig. 2.20? 10

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

ELEKTROMAGNETISME 1-3AA30

ELEKTROMAGNETISME 1-3AA30 ELEKTROMAGNETISME - 3AA3 9 rt 8, 4. 7. uur Geef bij iedere toepssing vn een kring- of oppervlkte-integrl duidelijk n lngs welke weg of over welk oppervlk wordt geïntegreerd Het forulebld en beoordelingsforulier

Nadere informatie

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar.

Hertentamen. Elektriciteit en Magnetisme 1. Woensdag 14 juli :00-12:00. Schrijf op elk vel uw naam en studentnummer. Schrijf leesbaar. Hertentmen Elektriciteit en Mgnetisme 1 Woensdg 14 juli 2011 09:00-12:00 Schrijf op elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke opgve op een prt vel. Dit tentmen bestt uit 4 vrgen. Alle vier

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel.

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel. Tentmen Elektriciteit en Mgnetisme 1 Woensdg 11 juli 1 9:-1: Leg uw collegekrt n de rechterknt vn de tfel. Schrijf o elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke ogve o een rt vel. Dit tentmen

Nadere informatie

Primitieve en integraal

Primitieve en integraal Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 4 Primitieve en integrl Een motivtie om nr de fgeleide vn een functie f te kijken is het beplen vn de richtingscoëfficiënt vn de rklijn

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

m p Tabel: I plaat 3 m pa 2

m p Tabel: I plaat 3 m pa 2 VRIJE UNIVERSITEIT BRUSSE FACUTEIT TOEGEPASTE WETENSCHAPPEN MECHANICA Een e kndidtuur Burgerlijk Ingenieur-Architect Acdeiejr -3 Zterdg juni 3 Vrg O R Bovenstnd voorwerp werd gevord door uit een vlkke

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Keuze van het lagertype

Keuze van het lagertype Keuze vn het lgertype Beschikbre ruimte... 35 Belstingen... 37 Grootte vn de belsting... 37 Richting vn de belsting... 37 Scheefstelling... 40 Precisie... 40 Toerentl... 42 Lgergeruis... 42 Stijfheid...

Nadere informatie

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Oefeningen Analyse I

Oefeningen Analyse I Inleiding Oefeningen Anlyse I Wil je de eventuele foutjes melden. Met dnk, Ynnick Meers e-mil: meers@skynet.be Hoofdstuk 5: Integrlen Oefening Gegeven: f is continu op [, b] en f(x) > in [, b] Drnst is

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Toepassingen op Integraalrekening

Toepassingen op Integraalrekening Toepssingen op Integrlrekening ) Oppervlktes vn vlkke figuren erekenen De meest voor de hnd liggende toepssing vn integrlrekening is uiterrd de reden wrom ze is ingevoerd, nmelijk het erekenen vn oppervlktes

Nadere informatie

In samenwerking met. Selexyz.nl

In samenwerking met. Selexyz.nl In smenwerking met Seleyz.nl Frns vn Liempt Ntuurkundeboek B Studentensupport Studentensupport.nl 007 Frns vn Liempt & Studentensupport Downlod grtis op ISBN 978-87-768-5- Studentensupport Studentensupport.nl

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

Integralen en de Stelling van Green

Integralen en de Stelling van Green Integrlen en de Stelling vn Green Les Functies vn twee vernderlijken Les ubbelintegrl Les 3 Lijnintegrl Les 4 Stelling vn Green en toepssingen Rob e Stelen sptie Een ster genereert mgnetische velden door

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Werken met. vectoren. Hoofdstuk 1 Werken met vectoren 9

Werken met. vectoren. Hoofdstuk 1 Werken met vectoren 9 Hoofdstuk Werken met vectoren 9 Werken met vectoren In Lthen in Duitslnd evindt zich de testn vn de Trnsrpid, een mgneettrein die over een specile n zweeft Stukken mgnetisch weekijzer in de n en elektromgneten

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Tentamen Biomechanica

Tentamen Biomechanica Tentmen Biomechnic woensdg 18 juni 2008, 9.00-12.00 u Code: 8W020, BMT 1.3 Fculteit Biomedische Technologie Technische Universiteit Eindhoven Dit exmen bestt uit 5 opgven. Het ntl punten dt behld kn worden

Nadere informatie

Eindexamen wiskunde B vwo 2011 - I

Eindexamen wiskunde B vwo 2011 - I Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

Examen Klassieke Mechanica

Examen Klassieke Mechanica Exmen Klssieke Mechnic Herbert De Gersem, Eef Temmermn 25 jnuri 2012, 8u30, cdemiejr 11-12 IW2 NAAM: RICHTING: vrg 1 (/4) vrg 2 (/4) vrg 3 (/5) vrg 4 (/4) vrg 5 (/3) TOTAAL (/20) Verloop vn het exmen Het

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk I. Lineire Algebr Les 4 Eigenwrden en eigenvectoren In het voorbeeld vn de verspreiding vn de Euro-munten hebben we gezien hoe we de mix vn munten n floop vn n jr uit de n-de mcht A n vn de overgngsmtrix

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck Antwoorden Doeboek 1 Kijk op kegelsneden Rob vn der Wll en Liesbeth de Clerk 1 De 3 4 ) 5 Een 6 Als 7 8 ) 9 De Nee, lle punten die 1 entimeter vn het midden liggen, liggen op de irkel. gevrgde figuur bestt

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Methode symmetrische componenten, revisie 1

Methode symmetrische componenten, revisie 1 Methode symmetrische componenten, revisie 9-69 pmo mrt 9 Phse to Phse V trechtseweg 3 Postbus 68 rnhem T: 6 35 37 F: 6 35 379 www.phsetophse.nl 9-69 pmo Phse to Phse V, rnhem, Nederlnd. lle rechten voorbehouden.

Nadere informatie

De 42 st Internationale Natuurkunde Olympiade Bangkok, Thailand Theoretische toets Dinsdag, 12 Juli 2011

De 42 st Internationale Natuurkunde Olympiade Bangkok, Thailand Theoretische toets Dinsdag, 12 Juli 2011 De 42 st Interntionle Ntuurkunde Olympide Bngkok, Thilnd Theoretische toets Dinsdg, 12 Juli 2011 Lees dit eerst: 1. Voor de theorie toets is 5 uur beschikbr. Er zijn drie opgven die elk 10 punten wrd zijn.

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

De noodzakelijke voorwaarden voor een evenwicht kunnen derhalve samengevat worden als: F = 0 geen resulterende kracht in x richting.

De noodzakelijke voorwaarden voor een evenwicht kunnen derhalve samengevat worden als: F = 0 geen resulterende kracht in x richting. 1. EVENWICHT Zols in het eerste gedeelte over krchten en momenten reeds n de orde is gesteld werken op een lichm meestl meerdere krchten tegelijkertijd. We zeggen dt het lichm onderhevig is n een stelsel

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

8 College 08/12: Magnetische velden, Wet van Ampere

8 College 08/12: Magnetische velden, Wet van Ampere 8 College 08/12: Magnetische velden, Wet van Ampere Enkele opmerkingen: Permanente magneten zijn overal om ons heen. Magnetisme is geassociëerd met bewegende electrische ladingen. Magnetisme: gebaseerd

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Uitwerking herkansing Functies en Reeksen

Uitwerking herkansing Functies en Reeksen Uitwerking herknsing Functies en Reeksen 3 jnuri 14, 9: - 1: uur Opgve 1 () De functie ' is prtieel differentieerbr, met prtiële fgeleiden @'.x; y/ D.1; 1/T en @x @' @y.x; y/ D. v; v/t : Deze prtiële fgeleiden

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme CIRKELS EN BOLLEN Kls 7N Wiskunde 5 perioden K. Temme INHOUDSOPGAVE. DE VERGELIJKING VAN EEN BOL.... DE SNIJCIRKEL VAN EEN BOL EN EEN VLAK... 5. DE CIRKEL DOOR PUNTEN... 7. DE BOL DOOR GEGEVEN PUNTEN...

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

Breuken en verhoudingen

Breuken en verhoudingen WISKUNDE IN DE BOUW Breuken en verhoudingen Leerdoelen N het estuderen vn dit hoofdstuk moet je in stt zijn om: te rekenen met reuken en verhoudingen; reuken toe te pssen in erekeningen vn onder ndere

Nadere informatie

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur Fculteit Biomedische Technologie Tentmen OPTICA (8N040) 15 ugustus 013, 9:00-1:00 uur Opmerkingen: 1) Lijsten met de punten toegekend door de corrector worden op OASE gepubliceerd. De ntwoorden vn de opgven

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

K4 Relativiteitstheorie

K4 Relativiteitstheorie K4 Reltiviteitstheorie Ruimtetijd vwo Uitwerkingen bsisboek K4. INTRODUCTIE 2 3 De golflengte vn rdiostrling is groter dn die vn liht. b Uit λ f volgt dt de frequentie vn de fotonen vn rdiostrling lger

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel A Clculus Anbevolen ctergrondlitertuur met veel opgven (en oplossingen): Frnk Ayres: (Scum s Outline of Teory nd Problems of) Clculus. McGrw-Hill Compnies, 999, 578 p., ISBN: 749736. Micel Spivk:

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde

1 Vlaamse Wiskunde Olympiade : Tweede ronde 1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 2012 van 14u00-17u00 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Elektromagnetisme 3 (3NC30) donderdag 5 juli 202 van 4u00-7u00 Dit tentamen bestaat uit 5 opgaven met elk 3 onderdelen. Voor elk

Nadere informatie

Overal NaSk 1-2 vwo / gymnasium Uitwerkingen Hoofdstuk 2 Licht

Overal NaSk 1-2 vwo / gymnasium Uitwerkingen Hoofdstuk 2 Licht Overl NSk 1-2 vwo / gymnsium Uitwerkingen Hoofdstuk 2 Licht 2.1 Licht en zicht A1 Het voorwerp weerktst licht dt drn in je oog terechtkomt. b Nee, de mn is geen lichtbron. De mn zendt zelf geen licht uit,

Nadere informatie

Spiegelen, verschuiven en draaien in het vlak

Spiegelen, verschuiven en draaien in het vlak 2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

2 de Bachelor IR 2 de Bachelor Fysica

2 de Bachelor IR 2 de Bachelor Fysica de Bchelor IR de Bchelor Fysic jnuri 4 Er worden 5 vrgen gesteld. Vul o ieder bld je nm in. Motiveer of bewijs iedere uitsrk. Los lle vrgen o, o een rt bld! Het exmen duurt u. Veel succes!. Bereken lle

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

MET VOLLE KRACHT VOORUIT

MET VOLLE KRACHT VOORUIT MET VOLLE KRACHT VOORUIT VERSIE PR O EF KRACHT, ENERGIE EN VERMOGEN WEZO3_1u_them4.indd 3 15/04/16 09:48 HOOFDSTUK 1 KRACHTEN 1.1 Uitwerking vn een krcht p 5 1.2 Meten vn een krcht p 7 1.3 Kenmerken vn

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit

1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit Hoofdstuk 2 Elektrostatica Doelstellingen 1. Weten wat potentiaal en potentiaalverschil is 2. Weten wat capaciteit en condensator is 3. Kunnen berekenen van een vervangingscapaciteit 2.1 Het elektrisch

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie