15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO
|
|
- Evelien de Backer
- 6 maanden geleden
- Aantal bezoeken:
Transcriptie
1 Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog gn. Bij de ovenste lijn g je omhoog ls je nr rechts ent gegn. Dus nr rechts etekent omhoog. Omdt en niet gelijk zijn, lopen de lijnen niet evenwijdig. J, het snijpunt is (,, wnt de ovenste lijn gt door de punten (0,6, (6,, (, enz. De middelste lijn door de punten (0,0, (6,, (, enz. En de onderste lijn door de punten (,0, (,, (, enz. Als je vn (0,0 nr (, gt is dt nr rechts en omhoog. Dus nr rechts is dn omhoog. Als je vn (, nr (0, gt is dt nr rechts en 0 omhoog. Dus nr rechts is dn 0 omhoog. Omdt en niet gelijk zijn liggen de punten niet op één lijn. 6. RECHTE LIJNEN IN DE PRAKTIJK Vn lles keer zoveel. Vn lles 00:0 =,6 keer zoveel. c Alleml ook keer zoveel doen. d Je het 00:0 =, keer zoveel kmeel, dus ook, keer zoveel deeg. Dus, 00 = 0 grm deeg. 0 0 e s 0, 0 en t 0, f s 0 s en t t 0 g Je het :0 = keer zoveel suiker, dus he je ook keer zoveel kmeel. Dus 0 = 6 grm kmeel. K = 0 c J, ls je ijvooreeld twee keer zo vk gt, etl je ook twee keer zoveel. e Z = f Nee, ls je ijvooreeld twee keer zo vk gt, etl je niet twee keer zoveel. g Miniml keer. c y = 0, d y = 0, e Het getl wrmee vermenigvuldigd wordt is ij diesel groter. f y = 0, g Die vn de stookolie, wnt 0,9 > 0,. h Formule s t s is dn hndig. t s t de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
2 y = 0, c Omdt in eide formules met hetzelfde getl vermenigvuldigd wordt. d Omdt de tnkwgen leeg meer weegt, wnt.000 > e De grfiek egint lger, mr loopt wel evenwijdig. e 9 y = (twee-derig, y = (drie-derig en y = (tweeling. f Als met toeneemt, neemt y nog steeds met toe. g y = + 6 c Die, wrij het getl wrmee vermenigvuldigd wordt, het grootst is. d = 0 60 = 0 = m = 0 cm 6. y = + 0 y = + 0 (in km 0 y (in euro s c Met het getl. d Met nr oven. Met nr eneden. Met nr eneden. c d y = y = y = e (0, ; (0, ; (0,- f De tweede coördint is het constnte getl in de vergelijking. g Het getl wrmee vermenigvuldigd wordt is ij lle drie hetzelfde. De lijn loopt minder steil, mr egint wel in het punt (0,0. y = + 0 de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
3 - - 0 p: y = q: y = r: y = + 6 d l: y = - + f (0, g p: y = - + s: y = ; ; 0 c - ; ; 0 d (0, ; (0,- ; (0,- c y = + d y = - + e = y = - + = - Het punt is (,-. e Als de richtingscoëfficiënt positief is, is de lijn stijgende. Als je vn links nr rechts kijkt. Als de richtingscoëfficiënt negtief is, is de lijn dlende. Als je weer vn links nr rechts kijkt. Als de richtingscoëfficiënt 0 is loopt de lijn evenwijdig met de horizontle s. f Het constnte getl in de vergelijkingen is hetzelfde, nmelijk. 6 0 c 0 d y = 0 + ce e k: y = + de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
4 c d y = + - = = = 0 lijn p: rc = = = - p: y = (-, en (-, 6. VERGELIJKINGEN VAN LIJNEN OPSTELLEN lijn q: rc = - = - = = q: y = - + lijn r: rc = = + = r: y = + lijn s: rc = 0 0 = s: y = lijn t: geen rc (verticle lijn t: = ; ; ; c y = 9 rc vn lijn q is c y = 9 rc = 0 6 = 9 y = rc =, dt etekent ls je liter gs etr in de fles stopt, het gewicht met een kg toeneemt. De tweede coördint is, dt etekent dt de fles zonder gs een gewicht heeft vn kg. c Dus er zit nog liter gs in de fles.,0,0,0 rc =, 0 (prijs per km 9 =,0,0 =,0 (voorrijdtrief B =,0 +,0 de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
5 9 rc = - = 9 + = l = - t + Als de Engelse mt met toeneemt, neemt de lengte steeds met, cm toe. 6. SNIJPUNTEN BEREKENEN 6 = - + =, klopt = + =, klopt ook. y = 0 + =, dus (0, 0 = + = 6 =, dus (6,0 c,, c rc = 0, d =, 0, =, l = 0,E +, e = 0,E +, 6, = 0,E =,0 = E Dus mt. f d m: y = - + e S(, f = + =, klopt = - + =, klopt ook. 9 g rc = h = F = 9 E + 9 = + 0, = + 0, = 0,0 00 = Dus ij 00 etr kilometers zijn de kosten vn de Hond en Shrn gelijk, nmelijk lleei 99,-. + = - + = - = - y = - + = Snijpunt (-, + = = - + = = y = + = 6 Snijpunt (, = - 6 = -9 = - y = = 9 Snijpunt (-,9 c + = = + 6 = 0 = 0 y = 0 + = Snijpunt (0, MAAL MAAL de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
6 d e y = Snijpunt (, y Snijpunt ( - 6,- - MAAL 6 MAAL 60 = + = = = 9 y = + =, snijpunt (, y = 0 + =, snijpunt (0, c = + - = - =, snijpunt (-, 0 = + - = - =, snijpunt (-,0 0 Bijvooreeld: (-,0, (,0 en (0,0. Dt de tweede coördint (dus y 0 is. c Bijvooreeld: (0,-, (0,- en (0,. d Dt de eerste coördint (dus 0 is. lijn p: y = 0 + =, snijpunt y-s (0, 0 = + - = - =, snijpunt -s (-,0 c Lijn r gt door het punt (0, en (,0. De richtingscoëfficiënt is -, dus = VERBANDEN VAN DE VORM p + q y = r grm y grm c y = 00 d y = 00 + y = DELEN DOOR 00 e + 0 = =, snijpunt -s (,0 0 + y = y =, snijpunt y-s (0, Lijn q: y = =, snijpunt y-s (0, 0 = - + = =, snijpunt -s (,0 Lijn r: y = =, snijpunt y-s (0, 0 = - + = =, snijpunt -s (,0 De lijnen heen lleei dezelfde richtingscoëfficiënt. Dus de lijnen lopen evenwijdig. f Met een kg g rc k = - h + y = y = - + y = - rc = - de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN 6
7 i y grm j y = 60 + y = DELEN DOOR 0 l + y = y = - + y = - m kg hooi en kg iks n - = - y - Dus kg hooi en kg iks. - + y = 0 y = + 0 y = + y 6 -y - 6 y y -y - y -y -y - y -y -y - y - - y - y - y r + g = 9r + g = r + g = 9 r + g = 6 9r + g (r + g = 6 9r + g r g = r = + g = g = 60 g = Dus groene en rode drken. + y = 6 + 9y = y (6 y = y 6 + y = 0y = y = + = = = Snijpunt is (, y + (- + y = + y + y = y = y = = = = 6 Snijpunt is (6, c + y = 6 + y = y + ( + y = 6 + = = + y = 6 y = - Snijpunt is (,- 6 r + g = r + g = 9 r + g = r + g = 9 r = g r = 9 g r = g r = 9 g g = 9 g g = 9g g = r = 9 Dus groene en rode drken. de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
8 ( y y y + + y = y = - y = - = - Snijpunt is (,- c - Dus het snijpunt vn k en l ligt niet op m. f y + 0y = 0 6y = 0 y = 0 = 0 = 0, snijpunt is (0,0 g 0 krtten pijpjes en 0 krtten hlve liters 6.6 LOODRECHT SNIJDEN 0 rc l = c + = =, snijpunt vn p en q is (, = - =, snijpunt vn q en r is (-, ( = - = - = y = - =, snijpunt p en r is (-, c Bsis vn de driehoek = - = Hoogte vn de driehoek = = Oppervlkte = 9 = liter in een krt pijpjes 0 = 0 liter in een krt hlve liters + 0y = 0 d rc n = - - e f rc q = - g h Het product is -. i De -s met de y-s. ce d y = (of y = de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
9 rc BC = rc k = - k = - + = 6 k: y = rc AB = - - rc l = l = = - l: y = rc AC = rc = - m m = m: y = - + c Snijpunt k en m: = - + = 0 = y = =, snijpunt is ( 0, Snijpunt l en k: 6 = y Snijpunt is ( 6, 9 6 Controleren of ( 6, 9 6 een punt op m is: , klopt, dus de 6 hoogtelijnen k, l en m gn door één punt. OKEROPGAVEN 6,0 =,6 0 T Controleren of ( 0, een punt op l is: 0 = =, klopt, dus de middelloodlijnen k, l en m gn door één punt. E,6 6,0,,60,0 c Dn wordt E ook 6 keer zo groot. Dn wordt E ook, keer zo groot. d 0, : =, voor TRL, :, =,0 voor TRL Dus op mei goedkoper. c rc PQ = - - rc 0 l = l = = -6 l: y = 6 rc PR = rc k = - k = - + = k: y = - + rc QR = - rc m = m = - + = m: y = + 0, , ,0 =, B = 0,9 + 0,096 + (00 0,0 B = 0,9 + 0,096 +, 0,0 B =, + 0,0 c Kosten BelBsisonnement = 9 + 0,006 + (00 0,0 =, + 0,06 De kosten ij een BelBsisonnement is voor lle wrden vn lger dn die ij een BelBudgetonnement, dus het is een verstndige keuze ls om overstpt. de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN 9
10 Snijpunt -s y = 0 = -0 60: = -0 Dus (-0,0 Snijpunt y-s = 0 y = = -0 Dus (0,-0 l = 0,E +, l, = 0,E 0 l E F = 9 ( 0 Als v : 00 0 rc = 0 = 0 0 = 0 P = 0v + 0 l + = l Als v > rc =, 0 = 00, = P =,v + 0 km per uur is meter in 60 minuten P = = 0 pssen per minuut In één uur: 60 0 = 0.00 pssen Dus één ps is = 0,9 meter (= 9 cm c Lijn m heeft rc = - en gt door het punt (,0, wnt het hoogteverschil op de verticle s is, dus het lengteverschil op de horizontle s is ook. Dus m: y = - +. Lijn n heeft ook rc = - en gt door het punt (,0. Dus n: y = - +. d De lijn loodrecht op y = + en door (0, is y = - +. De fstnd op de verticle s tussen y = + en y = + c is c of c. Dus de fstnd op de horizontle s is ook c of c. Snijpunt -s vn de lijn y = - + is: 0 = - + =. Snijpunt vn de lijn met de -s is: + ( c of (c. rc = - y = - +? snijpunt -s = + ( c c 0 = - ( + ( c +? = - + +? c c? = + = + Vergelijking: y = - + c = c rc = - y = - +? snijpunt -s = + (c c 0 = - ( + (c +? = - + +? c? = + = + Vergelijking: y = - + c c = c Conclusie: De vergelijkingen vn de vier lijnen zijn: y = + y = + c y = - + y = - + c of y = - + c 6. EXTRA OPGAVEN rc =, = = y = + rc =, = - y = geen rc = de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN 0
11 rc = 0, = y = rc = = + = y = + c + = 9 + y = 9 c rc = -, = - k: y = - c Snijpunt k en l: + + = 6 = =, y = = Snijpunt k en l is (, Snijpunt k en m: = - + = -, y = - = Snijpunt k en m is (-, d rc =, = - + = p: y = + e Snijpunt k en m: - = - + = = y = - = - Snijpunt k en m is (,- Snijpunt k en p: - = + - = - = y = - - = - Snijpunt k en p is (-,- Snijpunt l en m: + = - + = =, y = - + = Snijpunt l en m is (, d n: y = e + = = Snijpunt k en n is (, f Snijpunt k met -s =, dus (,0 Snijpunt m met -s =, dus (,0 sis vn de driehoek = = hoogte vn de driehoek = Oppervlkte = = Snijpunt m en p: - + = + = = y = + 9 = 6 Snijpunt m en p is (, 9 6 de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
12 ( = = - = - =, y = = 0 Snijpunt is (,0 + y + (- + y = + y = 6 y = + = = = 6 Snijpunt is (6, c y ( y = 6 -y = - y = = = = Snijpunt is (, 6, , ,0 = 96,9 B =,99 + 0, + (000 0,0 B =,99 + 0, + 6, 0,0 B = 6,9 + 0,0 c B =,99 + 0,6 + (000 0,06 B =,99 + 0, ,06 B = 66,99 + 0,0 De kosten voor de fmilie vn den Homergh zijn ltijd meer dn de kosten vn fmilie Geurtz. lijn p: rc = -, = 0 + = p: y = - + lijn q: rc =, = - q: y = c - + = 6 = =, y = = - Snijpunt p en q is (,- d y = -y - + = -( 0 = 0 =, y = =, Punt (0, 0 =, y = 0 = -, Punt (0,- c + 9s =, 6c + s =,6 (c + 9s (6c + s =,,6 s =,69 s =,6 c + 9,6 =, c =,0 c =, Col =, en Sins =,6. 9 rc = 0, , = f =,c + de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
13 0 + (y + = 6 + y = 66 + ( + = y 6 + = y ( + y (6 + = 66 y y 0 = 6 y y = y = + = 66 = 0 = 0 Het gewicht = 0 en het gewicht y =. + = 6(y + 0 = 6y y = 0 = 0 = 0 = y = 0 = 0 y = Het gewicht = 0 en het gewicht y =. y = = y y = rc vn de lijn die er loodrecht op stt = - y = - +, door (0, = = Vergelijking is y = - +. rc vn één vn de lijnen = - 0 = - y = - +, door (-, = = Vergelijking is y = - +. rc vn de lijn die er loodrecht op stt = y = +, door (-, = - + = Vergelijking is y = +. de Wgeningse Methode Antwoorden H6 RECHTE LIJNEN
H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO
H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls
Noordhoff Uitgevers bv
Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p
8 a. x K (in euro s) x K (in euro s)
Hoofstuk 6 RECHTE LIJNEN 6.0 INTRO b, =, km c k = l a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn 8 naar rechts gaat ga je omhoog, us als je naar rechts
Werkblad TI-83: Over de hoofdstelling van de integraalrekening
Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5
de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1
H6 RECHTE LIJNEN HAVO 6.0 INTRO a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn naar rechts gaat ga je omhoog, us als je naar rechts zou gaan, zou je omhoog
de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1
H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE
Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h
Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur
1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.
Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Examen VWO. wiskunde B1,2 (nieuwe stijl)
wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor
Noordhoff Uitgevers bv
I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:
de Wageningse Methode Antwoorden H29 PARABOLEN&HYPERBOLEN 1
Hodstuk PARABOLEN & HYPERBOLEN. INTRO. CONFLICTLIJN ; ; d,, Q: Afstnd tot E is 7 Afstnd tot k is R: Afstnd tot E is 7 Afstnd tot k is us Q en R liggen even ver vn E ls vn k. e fstnd tot k is e fstnd tot
Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur
wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor
Over de tritangent stralen van een driehoek
Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven
15 a b
Formules geruiken 7 1 20 79:4 20 2 158 2 79 158 3 237 sinsppels 3 79 237 40 itroenen d 79:2 40 4 14 pkken melk 79:6 13,1 fgerond 14 pkken 5 30 kg 237:8 30 kg 6 krtjes d 30:5 6 krtjes e 38,70 f 6 6,45 38,70
Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur
Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld
Boek 2, hoofdstuk 7, allerlei formules..
Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.
Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde
Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y
Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:
Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige
Q: Afstand tot E is. R: Afstand tot E is
H9 PARABOLEN & HYPERBOLEN VWO 9. INTRO Q: Afstnd tot E is 69 6 7 () ( ) 9. Afstnd tot k is 9. R: Afstnd tot E is (6 ) 6. 669 6 7 Afstnd tot k is 6. us Q en R liggen even ver vn E ls vn k. e fstnd tot k
Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2
Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.
Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad
Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling
Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.
Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel
6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...
113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de
1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.
Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder
CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme
CIRKELS EN BOLLEN Kls 7N Wiskunde 5 perioden K. Temme INHOUDSOPGAVE. DE VERGELIJKING VAN EEN BOL.... DE SNIJCIRKEL VAN EEN BOL EN EEN VLAK... 5. DE CIRKEL DOOR PUNTEN... 7. DE BOL DOOR GEGEVEN PUNTEN...
Noordhoff Uitgevers bv
ldzijde f () Er is geen symmetrie in een vertile lijn. Alle rklijnen heen een positief hellingsgetl. Wrshijnlijk (0, 0). d f () e - ICT - Rklijnen ldzijde Geruik dt d y om de hellingsgetllen vn de rklijnen
Eindexamen wiskunde B1-2 vwo 2007-I
Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00
1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.
Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed
Blok 4 - Vaardigheden
Blok - Vrdigheden ldzijde 0 Dt geldt voor h, len m ; de grfieken zijn symmetrish in de y -s. Die zijn tegengesteld; ijvooreeld g( ) g () De grfiek is symmetrish in de oorsprong. funtie symmetrie in de
= = = = = = = =
0 ld nm Hulp Reken uit met cijferen 0 Reken uit met splitsen Honderdvouden ij elkr en dn de rest ij elkr. + 0 = 0 + = 0 + = 0 + 0 = + 0 = 0 + 0 = 0 + = 0 + = Honderdvouden vn elkr f en dn de rest vn elkr
Eindexamen wiskunde B vwo 2011 - I
Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =
Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml
Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.
Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn
Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.
Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer
Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur
Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord
Hoofdstuk 0: algebraïsche formules
Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24
Bijlage 2 Gelijkvormigheid
ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf
9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde
Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek
Voorbereidende opgaven Kerstvakantiecursus
Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt
Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.
Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De
HOOFDSTUK 1 BASISBEGRIPPEN
I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo
3 Snijpunten. Verkennen. Uitleg
3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls
1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.
Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem
1.0 Voorkennis. Voorbeeld 1:
1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4
wiskunde B pilot vwo 2015-I
wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t
REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM
REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei
Noordhoff Uitgevers bv
Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte
Voorbereidende opgaven Stoomcursus
Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin
MEETKUNDE 5 Cirkels en cilinders
MEETKUNDE 5 Cirkels en ilinders M22 De irkel 254 M23 De ilinder 262 253 M22 De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde
Het kwadraat van een tweeterm a+b. (a+b)²
Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven
9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a
6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5
Moderne wiskunde: berekenen zwaartepunt vwo B
Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen
Extra oefening en Oefentoets Helpdesk
Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein
Getallenverzamelingen
Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.
Merkwaardige producten en ontbinden in factoren
6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm
Eindexamen vwo wiskunde B I
Formules Vlkke meetkunde Verwijzingen nr definities en stellingen die bij een bewijs mogen worden gebruikt zonder ndere toelichting. Hoeken, lijnen en fstnden: gestrekte hoek, rechte hoek, overstnde hoeken,
MEETKUNDE 2 Lengte - afstand - hoeken
MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul
15 4 11 dus punt B ligt niet op lijn k
Hoofdstu 9: Lijnen en iels. 9. Vegelijingen vn lijnen. Ogve :... 6 6 Ogve :.. dus unt ligt o lijn dus unt B ligt niet o lijn 6 7 dus unt C ligt o lijn 6 6 dus unt D ligt o lijn. q q q q 7q q 7 d. doo 6
Noordhoff Uitgevers bv
V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =
Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1
Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten
Noordhoff Uitgevers bv
Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.
Oefeningen. 1 Ga na of de gegeven functie een oplossing is van de gegeven differentiaalvergelijking. (g) y = y x 2. (a) xy = 2y ; y = 5x 2
Oefeningen 1 G n of de gegeven functie een oplossing is vn de gegeven differentilvergelijking. () xy = 2y ; y = 5x 2 (b) (x + y) dx + y dy = 0 ; y = 1 x2 2x (c) y + y = 0 ; y = 3 sin x 4 cos x 2 Zoek een
5.1 Hogeremachtswortels [1]
5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij
de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1
H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk
Blok 5 - Vaardigheden
Extra oefening - Basis B-a De richtingscoëfficiënt is 7 = 8 =. 7 x = en y = 7 invullen in y = x + b geeft 7 = + b 7 = + b dus b =. Een vergelijking is y = x. b De richtingscoëfficiënt is =. 8 5 x = 8 en
8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b
5.1 NZIN N UISLN 2 8 vijfzijdig prisma ; B kuus ; vierzijdige piramide 9 3 a voor oven zij 10 de laatste 1:200 c 11 a Bijvooreeld: voor oven c 1 2 3 = 6 cm 3 12 a, d nne heeft gelijk. In het zij-en oevnaanzicht
6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d
Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1. INTRO 1 a De slak klimt een uur met constante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u c,5 m/u d 8 uur en 4 minuten
Hoofdstuk 7 - Periodieke functies
Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ
1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?
Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.
Noordhoff Uitgevers bv
Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein
Parate kennis wiskunde
Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr
Routeplanning middels stochastische koeling
Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.
Noordhoff Uitgevers bv
Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ
Noordhoff Uitgevers bv
70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm
Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.
Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.
Hoofdstuk 6 Driehoeken en cirkels uitwerkingen
Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten
1. Lineaire functies.
Uitwerkingen hodstuk. Lineire funties. Bij dit hodstuk komen de sisvrdigheden hkjes wegwerken, rekenen met reuken en oplossen vn lineire vergelijkingen uitgereid n de orde. Het kn nodig zijn hier prt voor
de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1
Hoofdstuk GETALLEN EN GRAFIEKEN.0 INTRO a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz.,5 m/u 0,5 m/u d 8 uur en 40 minuten tot 0 gram:
Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.
Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt
Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten?
Opgve 1 Hier zie je een windroos met de windrihtingen er in getekend. Hij is verder verdeeld in 360 hoekjes, elk vn die hoekjes heet 1 grd. Bij het Noorden (N) hoort 0 grden (en dus ook 360 grden). file:
de Wageningse Methode Antwoorden H5 DE RUIMTE IN 1
Hoofdstuk 5 DE RUIMTE IN 6 5. AANZICHTEN EN UITSLAGEN 3 a 7 a kuus ; ol ; c cilinder ; d kegel ; e vijfzijdige piramide ; f alk (vierzijdig prisma) ; g driezijdig prisma ; h zeszijdig prisma ; i alk (vierzijdig
Hoofdstuk 6 - Werken met algebra
Hoofdstuk - Werken met algera Oplossen door ontinden ladzijde a ( )( ) 0 0 of 0 of of of of 0 ( )( ) 0 0 of 0 of ( )( ) a 0( )( ) 0 of,, of 0 stel a a a a 0( a )( a ) 0 a of a a of a De oplossingen zijn
Noordhoff Uitgevers bv
Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x
Verdieping - De Lijn van Wallace
Verdieping - e Lijn van Wallace ladzijde 4 ac - d Nee, want als ijvooreeld en samenvallen dan geldt = op en = op, dus = = maar dan moet ook S met samenvallen, dus ligt S niet uiten de driehoek en dat is
Noordhoff Uitgevers bv
6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +
5. Lineaire verbanden.
Uitwerkingen opgaven hoofdstuk 5 versie 15 5. Lineaire veranden. Opgave 5.1 Recht evenredig lineair verand F (N) 1 9 8 Uitrekking van een veer a = F 9 k = 37,5 x 4 = 7 6 5 4 F 9 N N k = = = 37,5 x 4 cm
1 Vlaamse Wiskunde Olympiade : Eerste Ronde.
Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord
Noordhoff Uitgevers bv
0 Hoofdstuk - Werken met algera. Oplossen door ontinden ladzijde a ( )( ) 0 0 of 0 of of of of. 0 ( )( ) 0 0 of 0 of. ( )( ). a 0( )( ) 0 of,, of 0 stel a a a a 0( a )( a ) 0 a of a a of a De oplossingen
Platte en bolle meetkunde
Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor
Opbouw van het boek: overzicht
Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken
Voorbereidende opgaven Stoomcursus
Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht
MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN
III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende
1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.
1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4
a = 1 b = 0 k = 1 ax + b = lim f(x) lim
BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +
Over de lengte van OH, OZ en OI in een willekeurige driehoek
Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,
Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden
Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode: