9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

Maat: px
Weergave met pagina beginnen:

Download "9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde"

Transcriptie

1 Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek zijn alle zijde,4 keer zo groot als van Ees driehoek. a Ik meet de onderkanten van de koppen, :,4 = :,, :,4 = :,. VERHOUDINGEN 7 : ( + + ) = keer zoveel van alles, dus liter cement, liter zand en liter grind. c driehoeken. WEL OF NIET GELIJKVORMIG a De grote foto is ij 7, cm, dus 0% van de originele foto. De kleine foto is ij 4, cm en dat si 0% van de originele afmetingen. De foto gaat van 0 naar cm, dus het neemt af met 4 cm, dat is een afname van 40%. Dus instellen op 0%. Hoogte foto = 0% van = cm. c Nee, want de hoogte is eerst, keer zo groot als de reedte (namelijk : 0). De nieuwe afmetingen worden ij cm, en : is niet,. De reedte van de eerste H is, cm en de reedte van de tweede H is 0, cm, dat is een afname van, cm., :,4 00 =,%. a Van alles, maal zoveel. 00 : =, keer zoveel, dus, =, pannenkoeken., + 4 is ongeveer, dus 7 Vlamingen en 4 Walen. 0 a Grotere hoeveelheden zijn meestal relatief goedkoper, omdat men liever meer verkoopt. De handelingen om te verkopen en de verpakkingen zijn minder dan twee keer die ij halve hoeveelheden. 0, 4 =,, dus 0 frikadellen in de kleinverpakking kosten meer dan 0 frikadellen in de grootverpakking. acde 4 a Nee, de reedte lijft hetzelfde maar de lengte niet, ehalve als de zon precies onder een hoek van 4 staat. Nee, een tennisal is rond en een rugyal is ovaalvormig. c Nee, het gat van een donut is in verhouding kleiner dan die van een fietsand. d, en 0, en 4,,, 7, en e Door te meten, ijv. de lengte en de reedte meten en dat te delen op elkaar. Komt daar hetzelfde getal uit dan zijn ze gelijkvormig. f De sterren zijn niet gelijkvormig, want de ene is vijfpuntig en de andere zespuntig. De kruisen zijn niet gelijkvormig, want de ene heeft vier even lange poten en de andere niet. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

2 Alles is daar 4 maal zo groot. Dus de zitting is 0 ij 0 cm en de hoogte is 00 cm. 4 a factor = 4 Van de Crazilla is alles 4 maal zo groot, dus de gewone spinkra is meter groot. De poten zijn dan ( m cm) : = 4 cm lang. a A = 0 0 = R = 0 0 = De driehoeken heen dezelfde hoeken. factor = 4 c PQ = 7 = d AC = : = e factor van klein naar groot = x = 7 = 40 y = : = 4 0. a De schaduw is altijd maal zo groot als a zijn hoogte. Hoogte oom = : = 4 m Schaduw lantaarnpaal = 7 = 0, m a 70 = 0 cm =, m 0 = 0 cm =, m a 0 : 7 0 =,- : 77 = 0 dagen c : =, dagen 7 a , 0, , a , 0 0, 0,,4.4 REKENEN AAN GELIJKVORMIGE FIGUREN a maal zo hoog, dus, maal zo hoog, dus 7, c, maal zo groot, dus ij d twee derde van 4 ij 4 is ij 0 a Vijf driehoeken Ze heen allemaal dezelfde hoeken. deel van, en is, en c deel van, en is, en 4 DB = AB, dus AC = 4 = 0 c BC = =, dus EC = 4 = 4 a Alle zijden van de grote driehoek zijn : = maal zo groot als die van de kleine driehoek. Lengte andere zijden zijn: 0 : = en : = 7,. x = 0 0 : = 4 y = : = 4, c a = 0 7, =, = = a factor = : 0 =, x = 0 :, = y =, = a Omdat ze alleei B heen en alleei een rechte hoek heen, namelijk A = BED, moet BDE ook gelijk zijn aan C. Dus de driehoeken heen gelijke hoeken. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

3 BD = 0 en BC =, dus alle zijden van de driehoek BAC zijn maal zo groot als de. zijden van driehoek BED. Factor = c y = = AB = =, dus x = 0 = a : 0 = 0,7 en, : = 0,7 Oppervlakte A4-tje = 0 = 0 Oppervlakte ladspiegel =, =, Dus, : 0 00 = % c 0% van 0% = 4% a 7 a : = van 4 = en van 4 = a Van de middelste driehoek is de schuine zijde : 4 =, en de hoogte : 4 = 0,7. Van de rechter driehoek is de schuine zijde : =, en de hoogte : =,. Dus de horizontale zijde wordt gesneden in stukken van, en, en,. a Factor = 4 : 0 = 4 DE = 4 = 4 EC = 4 = 0 a Factor van BED naar ABC is 0 : 4 =, factor van BED naar DFA is : 4 =, x = :, = y =, = 7,.4 OPPERVLAKTE EN INHOUD a c 4 keer d 4 keer e kleiner rooster maken 4 a De oppervlakte wordt 4 keer zo groot, dus 4π. De oppervlakte wordt keer zo groot, dus π. De oppervlakte wordt 00 keer zo groot, dus 00π. De oppervlakte wordt r keer zo groot, dus r π = πr. a keer zo zwaar c 7 keer zo zwaar a = 4 cm = cm 4 = 44 cm = 4 cm 7 a Als :, dus de rien van de grote kuus zijn, maal zo lang als die van de kleine kuus. Ook, maal zo lang. c,, =, maal zo groot d,,, =,7 maal zo groot Dus 4 en keer. Ook weer 4 en keer. a 0 0 = 00 keer = 000 keer a De zijdes worden allemaal maal zo lang, dus de inhoud wordt = maal zo groot, dus de inhoud wordt =. De zijdes worden allemaal, maal zo lang, dus de inhoud wordt,,, =, maal zo groot, dus de inhoud wordt, =. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

4 c De zijdes worden allemaal, maal zo lang, dus de inhoud wordt,,, =,7 maal zo groot, dus de inhoud wordt,7 = 4. d De zijdes worden allemaal, maal zo klein, dus de inhoud wordt,,, =,7 maal zo klein, dus de inhoud wordt :,7 = a De inhoud wordt = 7 maal zo groot, dus 7 = π cm. De inhoud wordt = maal zo groot, dus = π cm. De inhoud wordt 0 = 000 maal zo groot, dus 000 = π cm. Inhoud ol = π r 4 a De reedte gaat van meter naar 0 meter, dat is 0 : =, keer zo lang. Factor is,. De hoogte wordt, keer zo hoog, dus, = 4 m. c = ton d De kleine piramide past,,, =, maal in de piramide van Cheops, dus ook, maal zo zwaar. Gewicht piramide van Cheops =, = ton SUPER OPGAVEN 4 a I juist II juist III juist IV juist I juist II onjuist ijvooreeld een vierkant van ij en een rechthoek van ij heen gelijke hoeken (alle hoeken zijn 0 ), maar zijn niet gelijkvormig. III juist IV onjuist ijvooreeld een vierkant van ij en een ruit van ij hoeven niet gelijkvormig te zijn. 7 a De schuine zijde (van ) is : = maal zo groot als de hoogte van. Dus de schuine zijde van de kleine driehoek = a, dan is het andere stuk a. De asis van driehoek is 4, de hoogte is, dus de asis is 4 : = maal zo groot als de hoogte, dus de stippellijn is a. cd De hoogte van de driehoek is 4 van de asis, dus de hoogte van de kleine driehoek = 4 a. Dat is de lengte van de stippellijn. De schuine zijde is, maal de asis, dus de schuine zijde van de kleine driehoek =,a. De horizontale zijde wordt verdeeld in een stuk van 4,a en,a. a 0 = 0.0 kg kg : (4 4 4) = 0,4 kg = 4 gram, want de gewone spinkra past = 4 keer in Crazilla.. EXTRA OPGAVEN m : 0 = 0 cm lang a Nee, het zijn rechthoeken waarvan de hoogte steeds hetzelfde is en de reedte verandert. Ja, het zijn alle regelmatige driehoeken. c niet gelijkvormig wel gelijkvormig d Nee, want de lengtes zijn hetzelfde en de reedtes niet. e Nee. f 4 keer a 4 m Als hij even steil staat moet hij 4 meter van de muur staan. Hij staat dichter ij de muur, dus staat hij steiler. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO 4

5 4 a deel, dus EB is deel de verhouding is dus :. EC = van =, EB = van =, AD = van 7 =, CD = 4 van 7 =. 4 a Driehoek ASB is een uitvergroting van driehoek CSD met factor. De zijden AB CD van die driehoeken verhouden zich dan ook als :. Ook SF : SE = :, dus SE =. x is deel van AD, want CE is ook deel van EB, dus van = 0. a Ook twee keer zo lang. Ook twee keer zo lang. c Vier keer zo groot. a,, keer zoveel karton Ook,, =, maal zo zwaar. c,,, =,7 maal zo veel d Ook,,, =,7 maal zo zwaar. DVEF is een ruit (vier gelijke zijden), dus DV is evenwijdig met FP. Omdat ook nog FP = DV is ook CP = CV. Dus ligt P twee keer zo ver van C als V. 7 a Ja, want ze heen alle gelijke hoeken. Nee, in het algemeen niet, veronderstel dat je met een rechthoek van ij egint en je haalt er aan alle kanten een strook van af, dan houd je een rechthoek van ij over. a = 0 mm ( ) = 0 c ( ) 0,4 =, gram a en 4 zijn, je kunt ijvooreeld het grondvlak gelijk houden en de hoogte veranderen. Alle regelmatige veelvlakken zijn gelijkvormig. Alle regelmatige veelhoeken zijn gelijkvormig. Alle ellipsen zijn gelijkvormig. Alle geodriehoeken zijn gelijkvormig. waar 0 Driehoek DEC en driehoek CAB zijn gelijkvormig. CE is 0 en CB is 0, oftewel alle zijden van driehoek CAB zijn, maal zo lang als die van driehoek DEC. y = 40 :, = de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

H15 GELIJKVORMIGHEID VWO

H15 GELIJKVORMIGHEID VWO Hoofstuk 5 Gelijkvormighei VWO 5 Vergroten en verkleinen a 5 a 9 riehoekjes, zie plaatje: a 0,5:,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m 6,9 0,7 m 9 e 6 a a Die van ij Die van 0 ij 0, ie van 8 ij

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO Hoofdstuk 13 SYMMETRIE VWO 13.0 INTRO 1 a Rechtsoven staat het woord in spiegelschrift Linksonder staat het woord ondersteoven Rechtsonder staat het woord achterstevoren en ondersteoven. Alleen de H, I,

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

vlieger rechthoek ruit parallellogram vierkant

vlieger rechthoek ruit parallellogram vierkant 4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Hoofdstuk 6 - Oppervlakte en inhoud

Hoofdstuk 6 - Oppervlakte en inhoud Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk - Oppervlakte en inhoud ladzijde 0 V-a Er passen vierkanten in de puzzel dus één vierkant neemt -deel in eslag. De oppervlakte van de puzzel is = 44

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte.

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte. Deze toets bestaat uit 11 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn 2 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek. Een spiraal In deze opgave bekijken we rechthoekige stroken van breedte en oneven lengte:, 3, 5,..., 99. Door deze stroken op een bepaalde manier aan elkaar te leggen, maken we een spiraal. In figuur is

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p.

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p. Hoofdstuk VERGELIJKINGEN havo. INTRO pond druiven Een appel kost, en een kiwi,. Ton is jaar, Janneke is jaar en Gerd is jaar.. WAT IS HET GETAL X? 6 - of - géén oplossingen -9 -. DE WEEGSCHAALMETHODE 8

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

2 Inproduct. Verkennen. Uitleg

2 Inproduct. Verkennen. Uitleg 2 Inproduct Verkennen Inproduct Inleiding Verkennen Het begrip arbeid komt uit de natuurkunde. Bekijk de applet zorgvuldig. Als je de rode stippellijn laat samenvallen met de beweging van A naar B dan

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

7.1 Symmetrie[1] Willem-Jan van der Zanden

7.1 Symmetrie[1] Willem-Jan van der Zanden 7.1 Symmetrie[1] Al de drie figuren hierboven zijn lijnsymmetrisch; Je kunt ze op één of meerdere manieren dubbelvouwen zodat de ene helft het spiegelbeeld van de andere helft is; De vouwlijn heet de symmetrieas/spiegelas;

Nadere informatie

Luc Gheysens - Extremumvraagstukken p.1

Luc Gheysens - Extremumvraagstukken p.1 EXTREMUMVRAAGSTUKKEN 1 Bepaal twee getallen x en y waarvan de som 144 is en waarvoor het product maximaal is. En voor welke waarden is het product x 3. y 2 maximaal? 2 Aan de vier hoeken van een vierkantig

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-GL en TL. wiskunde CSE GL en TL. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. xamen VMO-GL en TL 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CS GL en TL ij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a - Als je gedeelten van hokjes ij elkaar telt tot hele hokjes, dan passen op eiland A ongeveer 12 roosterhokjes. Op eiland B passen ijna 14 roosterhokjes. V-2a - Eiland A: ongeveer 22 m

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde

1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Junior Wiskunde Olympiade 2006-2007: eerste ronde 1 Welke ongelijkheid is juist? (A) 3 5 < 2 6 (C) 5 6 < 3 (B) 3 7 < 2 (D) 5 7 < 2 10 (E) 5 < 6 7 2 Hoeveel vierkante meter is 1600 vierkante centimeter?

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde

Vlaamse Wiskunde Olympiade 2007-2008: tweede ronde Vlaamse Wiskunde lmpiade 2007-2008: tweede ronde 1 Jef mit cola met whisk in de verhouding 1 : In whisk zit 40% alcohol Wat is het alcoholpercentage van de mi? () 1, (B) 20 (C) 25 () 0 (E) 5 2 ver jaar

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 17 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2014 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

Erik de Bruin werd in 1990 met een worp van 64,46 m tweede bij de Europese kampioenschappen.

Erik de Bruin werd in 1990 met een worp van 64,46 m tweede bij de Europese kampioenschappen. 79 10.0 INTRO Gebieden en afstanden 1 Hiernaast zie je (van bovenaf gezien) het gebied waarbinnen een discuswerper zijn schijf moet gooien. De schaal is 1:1000. a Hoeveel meter is 1 cm op de kaart? Erik

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

Hoofdstuk 9 - Ruimtemeetkunde

Hoofdstuk 9 - Ruimtemeetkunde oderne wiskunde 9e editie vwo deel 2 Voorkennis: wee soorten tekeningen ladzijde 254 V-1a d wee lijnen zijn evenwijdig als ze elkaar nooit snijden, hoe ver je de lijnen ook doortrekt. In werkelijkheid

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Examen HAVO. wiskunde B 1,2

Examen HAVO. wiskunde B 1,2 wiskunde 1, Examen HVO Hoger lgemeen Voortgezet Onderwijs Tijdvak Woensdag 1 juni 13.30 16.30 uur 0 06 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit 18 vragen. Voor elk vraagnummer

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2014 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Examen VWO. wiskunde B1

Examen VWO. wiskunde B1 wiskunde B Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Dinsdag 3 mei 3.3 6.3 uur 5 Voor dit eamen zijn maimaal 87 punten te behalen; het eamen bestaat uit vragen. Voor elk vraagnummer is

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 18 juni 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2013 tijdvak 2 dinsdag 18 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 3

Uitwerkingen oefeningen hoofdstuk 3 Uitwerkingen oefeningen hoofdstuk 3 3.4.1 Basis Tijd meten 1 Juli heeft 31 dagen. Wanneer 25 juli op zaterdag valt, valt 31 juli dus op een vrijdag. Augustus heeft ook 31 dagen. 1 augustus valt dus op

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Meetkundige constructies Docenthandleiding

Meetkundige constructies Docenthandleiding Meetkundige constructies Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inhoud Inleiding... 3 Inhoud modules... 6 Module 1: De basisconstructies...

Nadere informatie

Hoofdstuk 6 - Vergelijkingen

Hoofdstuk 6 - Vergelijkingen Voorkennis V-a Bedrijf A rekent 7 8 + 5 = 6 euro en bedrijf B rekent, 5 8 + 60 = 0 euro. Hij is goedkoper uit bij bedrijf B. b Dat kan met de vergelijking 7a + 5 =, 5a + 60 waarbij a het aantal m zand

Nadere informatie

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel.

Construeer telkens twee hoeken waarvan de cosinus of sinus gegeven is. Teken voor elke opgave een andere goniometrische cirkel. Herhalingsoefeningen Driehoeksmeting Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Construeer

Nadere informatie

Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken.

Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken. 1 Een kijkdoos Op het werkblad staat de uitslag van een kijkdoos, die omstreeks 1980 als doos gebruikt is om gebak bij een bakker in te pakken. Knip de uitslag uit. Breng op de aangegeven plaatsen gleuven

Nadere informatie

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 =

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 = les 23 en 24 blok 4 41 Teken de afstanden. 1 cm is in het echt 10 km. Van Amsterdam naar Alkmaar: 40 km. Controleer met je liniaal. aa Van Amsterdam naar Den Helder: 80 km. 8 cm b Van Almelo naar Utrecht:

Nadere informatie

a. De hoogte van een toren bepalen met behulp van een stok

a. De hoogte van een toren bepalen met behulp van een stok Gelijkvormigheid in de 17 de - en 18 de -eeuwse landmeetkunde Heb jij enig idee hoe hoog dat gebouw of die boom is die je uit het raam van je klaslokaal ziet? Misschien kun je de hoogte goed schatten,

Nadere informatie

Biljarten op een ellips. Lab kist voor 3-4 vwo

Biljarten op een ellips. Lab kist voor 3-4 vwo Biljarten op een ellips Lab kist voor 3-4 vwo Dit lespakket behoort bij het ellipsvormige biljart van de ITS Academy. Ontwerp: Pauline Vos, in opdracht van Its Academy Juni 2011 Leerdoelen: - kennismaken

Nadere informatie

Je kunt in de grafiek aflezen wat de gewichtstoename is van schapen die zwanger zijn van één, twee of drie lammetjes.

Je kunt in de grafiek aflezen wat de gewichtstoename is van schapen die zwanger zijn van één, twee of drie lammetjes. Zwanger schaap Een schaap is gemiddeld 147 dagen (21 weken) zwanger. Tijdens de zwangerschap neemt het gewicht van het schaap toe. Je kunt in de grafiek aflezen wat de gewichtstoename is van schapen die

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx

Nadere informatie

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5 Reken je wijs De kunst van het leren rekenen Niveau 1F 2F 3F aantal x 1000 18000 20 15000 12000 4,5 9000 6000 3000 0 0 1960 1970 1980 1990 2000 tijd in jaren inen: 5 = 24 k Benito Kaarsbaan ij k ex e m

Nadere informatie

Extra oefeningen: de cirkel

Extra oefeningen: de cirkel Extra oefeningen: de cirkel 1. Gegeven een cirkel met middelpunt M en straal r 5 cm en. De lengte van de raaklijnstukken PA PB uit een punt P aan deze cirkel bedraagt 1 cm. Bereken de afstand PM. () PAM

Nadere informatie

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is.

tafel, inclusief de speelruimte, te plaatsen, volgens het advies van de leverancier afgerond 31 m 2 is. Tafeltennistafel Op de foto hiernaast staat een betonnen tafeltennistafel voor buiten. De tafel bestaat uit 2 onderdelen: een cilindervormige poot en een blad dat hierop bevestigd is. Het massieve blad

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

AFSTANDEN IN PERSPECTIEF

AFSTANDEN IN PERSPECTIEF ESECTIEFTEKENEN AFLEVEING 2 In de eerste aflevering over perspectieftekenen, afgelopen november in ythagoras, hebben we het tekenen van evenwijdige lijnen geïntroduceerd. In deze aflevering denken we na

Nadere informatie

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I WISKUNDE. MAVO-D / VMBO-gt

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I WISKUNDE. MAVO-D / VMBO-gt UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VAK: NIVEAU: WISKUNDE MAVO-D / VMBO-gt EXAMEN: 2002-I De uitgever heeft ernaar gestreefd de auteursrechten te regelen volgens de wettelijke

Nadere informatie

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11.

2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. Uitwerkingen wizbrain 2013 1. E 2. E Het getal is 38: 24 = 3 x 8. Tel je de cijfers op, dan krijg je 3 + 8 = 11. 3. C De vetgedrukte kaarsen in de volgende tabel branden na 55 minuten: begin 0 10 20 30

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde

Vlaamse Wiskunde Olympiade 2011-2012: tweede ronde Vlaamse Wiskunde Olympiade 011-01: tweede ronde 1. Op hoeveel manieren kan deze ronde van de wiskunde olympiade opgelost worden met precies één antwoord dat foutief of blanco is? () 0 () 10 (C) 150 (D)

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

Een boekje met wiskundige vragen en opdrachten voor Havo 3

Een boekje met wiskundige vragen en opdrachten voor Havo 3 Een boekje met wiskundige vragen en opdrachten voor Havo 3 Gemaakt door: Harm Bakker Peter Vaandrager April 2002. Met dank aan mevr.o. De Meulemeester van KSO Glorieux uit Ronse in België. Geschiedenis

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

De wiskunde van de beeldherkenning

De wiskunde van de beeldherkenning De wiskunde van de beeldherkenning Op zoek naar wat er niet verandert! In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek c Faculteit Wiskunde en Informatica, TU/e Inhoudsopgave

Nadere informatie

TEKENEN OP SCHAAL 1. Veronderstel: AP = 200 meter en APB = 39. schaal 1 : 40000. » Maak hiernaast de tekening op schaal van driehoek

TEKENEN OP SCHAAL 1. Veronderstel: AP = 200 meter en APB = 39. schaal 1 : 40000. » Maak hiernaast de tekening op schaal van driehoek TEKENEN OP SCHAAL 1 Kanaalbrug Tussen twee peilers A en B ligt een brug over een kanaal. De peilers staan aan de oevers van het kanaal. De brug steekt het kanaal recht over. Je wilt de afstand tussen de

Nadere informatie

1 Analytische meetkunde

1 Analytische meetkunde Domein Meetkunde havo B 1 Analytische meetkunde Inhoud 1.1. Coördinaten in het vlak 1.2. Vergelijkingen van lijnen 1.3. Vergelijkingen van cirkels 1.4. Snijden 1.5. Overzicht In opdracht van: Commissie

Nadere informatie

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2013 tijdvak 1 woensdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2014 tijdvak 1 maandag 19 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax

2010-I. A heeft de coördinaten (4 a, 4a a 2 ). Vraag 1. Toon dit aan. Gelijkstellen: y= 4x x 2 A. y= ax 00-I De parabool met vergelijking y = 4x x en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong en in punt. Zie de figuur. y= 4x x y= ax heeft de coördinaten

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Examen VBO-MAVO-D Wiskunde

Examen VBO-MAVO-D Wiskunde Examen VBO-MAVO-D Wiskunde Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 20 juni 13.30 15.30 uur 20 01 Voor dit examen zijn maximaal 87 punten te behalen;

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie