9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

Maat: px
Weergave met pagina beginnen:

Download "9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde"

Transcriptie

1 Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek zijn alle zijde,4 keer zo groot als van Ees driehoek. a Ik meet de onderkanten van de koppen, :,4 = :,, :,4 = :,. VERHOUDINGEN 7 : ( + + ) = keer zoveel van alles, dus liter cement, liter zand en liter grind. c driehoeken. WEL OF NIET GELIJKVORMIG a De grote foto is ij 7, cm, dus 0% van de originele foto. De kleine foto is ij 4, cm en dat si 0% van de originele afmetingen. De foto gaat van 0 naar cm, dus het neemt af met 4 cm, dat is een afname van 40%. Dus instellen op 0%. Hoogte foto = 0% van = cm. c Nee, want de hoogte is eerst, keer zo groot als de reedte (namelijk : 0). De nieuwe afmetingen worden ij cm, en : is niet,. De reedte van de eerste H is, cm en de reedte van de tweede H is 0, cm, dat is een afname van, cm., :,4 00 =,%. a Van alles, maal zoveel. 00 : =, keer zoveel, dus, =, pannenkoeken., + 4 is ongeveer, dus 7 Vlamingen en 4 Walen. 0 a Grotere hoeveelheden zijn meestal relatief goedkoper, omdat men liever meer verkoopt. De handelingen om te verkopen en de verpakkingen zijn minder dan twee keer die ij halve hoeveelheden. 0, 4 =,, dus 0 frikadellen in de kleinverpakking kosten meer dan 0 frikadellen in de grootverpakking. acde 4 a Nee, de reedte lijft hetzelfde maar de lengte niet, ehalve als de zon precies onder een hoek van 4 staat. Nee, een tennisal is rond en een rugyal is ovaalvormig. c Nee, het gat van een donut is in verhouding kleiner dan die van een fietsand. d, en 0, en 4,,, 7, en e Door te meten, ijv. de lengte en de reedte meten en dat te delen op elkaar. Komt daar hetzelfde getal uit dan zijn ze gelijkvormig. f De sterren zijn niet gelijkvormig, want de ene is vijfpuntig en de andere zespuntig. De kruisen zijn niet gelijkvormig, want de ene heeft vier even lange poten en de andere niet. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

2 Alles is daar 4 maal zo groot. Dus de zitting is 0 ij 0 cm en de hoogte is 00 cm. 4 a factor = 4 Van de Crazilla is alles 4 maal zo groot, dus de gewone spinkra is meter groot. De poten zijn dan ( m cm) : = 4 cm lang. a A = 0 0 = R = 0 0 = De driehoeken heen dezelfde hoeken. factor = 4 c PQ = 7 = d AC = : = e factor van klein naar groot = x = 7 = 40 y = : = 4 0. a De schaduw is altijd maal zo groot als a zijn hoogte. Hoogte oom = : = 4 m Schaduw lantaarnpaal = 7 = 0, m a 70 = 0 cm =, m 0 = 0 cm =, m a 0 : 7 0 =,- : 77 = 0 dagen c : =, dagen 7 a , 0, , a , 0 0, 0,,4.4 REKENEN AAN GELIJKVORMIGE FIGUREN a maal zo hoog, dus, maal zo hoog, dus 7, c, maal zo groot, dus ij d twee derde van 4 ij 4 is ij 0 a Vijf driehoeken Ze heen allemaal dezelfde hoeken. deel van, en is, en c deel van, en is, en 4 DB = AB, dus AC = 4 = 0 c BC = =, dus EC = 4 = 4 a Alle zijden van de grote driehoek zijn : = maal zo groot als die van de kleine driehoek. Lengte andere zijden zijn: 0 : = en : = 7,. x = 0 0 : = 4 y = : = 4, c a = 0 7, =, = = a factor = : 0 =, x = 0 :, = y =, = a Omdat ze alleei B heen en alleei een rechte hoek heen, namelijk A = BED, moet BDE ook gelijk zijn aan C. Dus de driehoeken heen gelijke hoeken. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

3 BD = 0 en BC =, dus alle zijden van de driehoek BAC zijn maal zo groot als de. zijden van driehoek BED. Factor = c y = = AB = =, dus x = 0 = a : 0 = 0,7 en, : = 0,7 Oppervlakte A4-tje = 0 = 0 Oppervlakte ladspiegel =, =, Dus, : 0 00 = % c 0% van 0% = 4% a 7 a : = van 4 = en van 4 = a Van de middelste driehoek is de schuine zijde : 4 =, en de hoogte : 4 = 0,7. Van de rechter driehoek is de schuine zijde : =, en de hoogte : =,. Dus de horizontale zijde wordt gesneden in stukken van, en, en,. a Factor = 4 : 0 = 4 DE = 4 = 4 EC = 4 = 0 a Factor van BED naar ABC is 0 : 4 =, factor van BED naar DFA is : 4 =, x = :, = y =, = 7,.4 OPPERVLAKTE EN INHOUD a c 4 keer d 4 keer e kleiner rooster maken 4 a De oppervlakte wordt 4 keer zo groot, dus 4π. De oppervlakte wordt keer zo groot, dus π. De oppervlakte wordt 00 keer zo groot, dus 00π. De oppervlakte wordt r keer zo groot, dus r π = πr. a keer zo zwaar c 7 keer zo zwaar a = 4 cm = cm 4 = 44 cm = 4 cm 7 a Als :, dus de rien van de grote kuus zijn, maal zo lang als die van de kleine kuus. Ook, maal zo lang. c,, =, maal zo groot d,,, =,7 maal zo groot Dus 4 en keer. Ook weer 4 en keer. a 0 0 = 00 keer = 000 keer a De zijdes worden allemaal maal zo lang, dus de inhoud wordt = maal zo groot, dus de inhoud wordt =. De zijdes worden allemaal, maal zo lang, dus de inhoud wordt,,, =, maal zo groot, dus de inhoud wordt, =. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

4 c De zijdes worden allemaal, maal zo lang, dus de inhoud wordt,,, =,7 maal zo groot, dus de inhoud wordt,7 = 4. d De zijdes worden allemaal, maal zo klein, dus de inhoud wordt,,, =,7 maal zo klein, dus de inhoud wordt :,7 = a De inhoud wordt = 7 maal zo groot, dus 7 = π cm. De inhoud wordt = maal zo groot, dus = π cm. De inhoud wordt 0 = 000 maal zo groot, dus 000 = π cm. Inhoud ol = π r 4 a De reedte gaat van meter naar 0 meter, dat is 0 : =, keer zo lang. Factor is,. De hoogte wordt, keer zo hoog, dus, = 4 m. c = ton d De kleine piramide past,,, =, maal in de piramide van Cheops, dus ook, maal zo zwaar. Gewicht piramide van Cheops =, = ton SUPER OPGAVEN 4 a I juist II juist III juist IV juist I juist II onjuist ijvooreeld een vierkant van ij en een rechthoek van ij heen gelijke hoeken (alle hoeken zijn 0 ), maar zijn niet gelijkvormig. III juist IV onjuist ijvooreeld een vierkant van ij en een ruit van ij hoeven niet gelijkvormig te zijn. 7 a De schuine zijde (van ) is : = maal zo groot als de hoogte van. Dus de schuine zijde van de kleine driehoek = a, dan is het andere stuk a. De asis van driehoek is 4, de hoogte is, dus de asis is 4 : = maal zo groot als de hoogte, dus de stippellijn is a. cd De hoogte van de driehoek is 4 van de asis, dus de hoogte van de kleine driehoek = 4 a. Dat is de lengte van de stippellijn. De schuine zijde is, maal de asis, dus de schuine zijde van de kleine driehoek =,a. De horizontale zijde wordt verdeeld in een stuk van 4,a en,a. a 0 = 0.0 kg kg : (4 4 4) = 0,4 kg = 4 gram, want de gewone spinkra past = 4 keer in Crazilla.. EXTRA OPGAVEN m : 0 = 0 cm lang a Nee, het zijn rechthoeken waarvan de hoogte steeds hetzelfde is en de reedte verandert. Ja, het zijn alle regelmatige driehoeken. c niet gelijkvormig wel gelijkvormig d Nee, want de lengtes zijn hetzelfde en de reedtes niet. e Nee. f 4 keer a 4 m Als hij even steil staat moet hij 4 meter van de muur staan. Hij staat dichter ij de muur, dus staat hij steiler. de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO 4

5 4 a deel, dus EB is deel de verhouding is dus :. EC = van =, EB = van =, AD = van 7 =, CD = 4 van 7 =. 4 a Driehoek ASB is een uitvergroting van driehoek CSD met factor. De zijden AB CD van die driehoeken verhouden zich dan ook als :. Ook SF : SE = :, dus SE =. x is deel van AD, want CE is ook deel van EB, dus van = 0. a Ook twee keer zo lang. Ook twee keer zo lang. c Vier keer zo groot. a,, keer zoveel karton Ook,, =, maal zo zwaar. c,,, =,7 maal zo veel d Ook,,, =,7 maal zo zwaar. DVEF is een ruit (vier gelijke zijden), dus DV is evenwijdig met FP. Omdat ook nog FP = DV is ook CP = CV. Dus ligt P twee keer zo ver van C als V. 7 a Ja, want ze heen alle gelijke hoeken. Nee, in het algemeen niet, veronderstel dat je met een rechthoek van ij egint en je haalt er aan alle kanten een strook van af, dan houd je een rechthoek van ij over. a = 0 mm ( ) = 0 c ( ) 0,4 =, gram a en 4 zijn, je kunt ijvooreeld het grondvlak gelijk houden en de hoogte veranderen. Alle regelmatige veelvlakken zijn gelijkvormig. Alle regelmatige veelhoeken zijn gelijkvormig. Alle ellipsen zijn gelijkvormig. Alle geodriehoeken zijn gelijkvormig. waar 0 Driehoek DEC en driehoek CAB zijn gelijkvormig. CE is 0 en CB is 0, oftewel alle zijden van driehoek CAB zijn, maal zo lang als die van driehoek DEC. y = 40 :, = de Wageningse Methode Antwoorden H GELIJKVORMIGHEID HAVO

5 ab. 6 a. 22,9 25,95 cm

5 ab. 6 a. 22,9 25,95 cm Hoofdstuk 5 GELIJKVORMIGHEID VWO 5 Vergroten en verkleinen a d 5 a 9 driehoekjes, zie plaatje: a 0,5 :,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m d 6,9 0,7 m 9 e a Die van ij Die van 0 ij 0, die van

Nadere informatie

H15 GELIJKVORMIGHEID VWO

H15 GELIJKVORMIGHEID VWO Hoofstuk 5 Gelijkvormighei VWO 5 Vergroten en verkleinen a 5 a 9 riehoekjes, zie plaatje: a 0,5:,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m 6,9 0,7 m 9 e 6 a a Die van ij Die van 0 ij 0, ie van 8 ij

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

Hoofdstuk 5 Oppervlakte uitwerkingen

Hoofdstuk 5 Oppervlakte uitwerkingen Kern Vlakke figuren a Rechthoek, parallellogram, driehoek Oppervlakte rechthoek = lengte reedte = d Oppervlakte parallellogram = lengte hoogte = d Oppervlakte driehoek = asis hoogte = d a Knip de parallellogram

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1 H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO Hoofdstuk 13 SYMMETRIE VWO 13.0 INTRO 1 a Rechtsoven staat het woord in spiegelschrift Linksonder staat het woord ondersteoven Rechtsonder staat het woord achterstevoren en ondersteoven. Alleen de H, I,

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 16 HAAKJES VWO 16.0 INTRO 16.2 TREK AF VAN 8 a 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 1111d 1 2-2 2-1 2= -0,75-3,75 = 3 2 b De uitkomsten zijn allemaal 2. c n 2 +

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus

Nadere informatie

vlieger rechthoek ruit parallellogram vierkant

vlieger rechthoek ruit parallellogram vierkant 4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

Hoofdstuk 6 - Oppervlakte en inhoud

Hoofdstuk 6 - Oppervlakte en inhoud Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk - Oppervlakte en inhoud ladzijde 0 V-a Er passen vierkanten in de puzzel dus één vierkant neemt -deel in eslag. De oppervlakte van de puzzel is = 44

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

Oppervlakte en inhoud van ruimtelijke figuren

Oppervlakte en inhoud van ruimtelijke figuren 4 Oppervlakte en inhoud van ruimtelijke figuren BALK EN KUBUS hoogte Figuur lengte reedte In figuur is een alk getekend. Bij een alk zijn steeds de twee tegenover elkaar liggende vlakken gelijk. Alle vlakken

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte 1 a loo 4 /d 6 1 212 1 313 414 c loo 1: 180 loo 2: 180 loo 3: 90 loo 4: 90 d alle loo s zijn puntsymmetrisch 7 a 2 a lijnsymmetrisch draaisymmetrisch puntsymmetrisch A B nee C

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken

Nadere informatie

H23 VERBANDEN havo de Wageningse Methode 1

H23 VERBANDEN havo de Wageningse Methode 1 H23 VERBANDEN havo 23.0 INTRO a - de oven- en ondergrens van de aeroe zone. 2 Op plaats 503 23. VERBANDEN IN DE PRAKTIJK 3 a km t 0 6 2 5 8 36 a 0 2 5 6 2 d k = 30 t + 0 e k = 30 t + 20 f Zie assenstelsel

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vwo VWO Reht, sherp of stomp? a AB 7 AC BC 8 6 6 Nee, de optelling van de kwadraten klopt niet, want 6 6 en geen 6. Nee, nabc is geen rehthoekige driehoek, want de optelling van de kwadraten klopt

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x

21 Oppervlakte. oppervlakte parallellogram = = 750. Noem de lengte van de lange zijde x, dan oppervlakte parallellogram = 20x 2 Oppervlakte 3 32 2 oppervlakte parallellogram = 25 30 = 750 Noem de lengte van de lange zijde, dan oppervlakte parallellogram = 20 Dus 20 = 750, dus = 37. 45 Oppervlakte kwartcirkel = 3 π 2 2 = π Oppervlakte

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

Hoofdstuk 6 Inhoud uitwerkingen

Hoofdstuk 6 Inhoud uitwerkingen Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte

Nadere informatie

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte.

Teken een diagonaalvlak naar keuze in de originele kubus. Teken dit diagonaalvlak plat op je blad op ware grootte. Deze toets bestaat uit 11 opgaven. Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Er zijn 2 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden B-1a Blok - Vaardigheden Blok - Vaardigheden Extra oefening - Basis De getallen 16 en 16 6 ijn asolute aantallen. De percentages ijn relatieve aantallen. c aantal mensen 16 6 000 16 60 9 686 percentage

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 11 a,b 12 a Middelloodlijn b Bissectrice 13 a 0, 1 of 3 b Gelijkbenige driehoek

b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 11 a,b 12 a Middelloodlijn b Bissectrice 13 a 0, 1 of 3 b Gelijkbenige driehoek 1.0 INTRO Hoofdstuk 1 SYMMETRIE 1 a Rechtsoven staat het woord in spiegelschrift Linksonder staat het woord ondersteoven Rechtsonder staat het woord achterstevoren en ondersteoven. lleen de H, I, O en

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 8 tijdvak woensdag 8 juni 3.3-6.3 uur wiskunde B, Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a d e 128 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rehthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 5 28 roostervierkantjes.

Nadere informatie

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is. 1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,

Nadere informatie

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN

SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KRACHTEN OPGAVEN 1 HOODSTUK SAMENSTELLEN EN ONTBINDEN VAN SNIJDENDE KACHTEN OPGAVEN.4. Opgaven 1. Bepaal grafisch en analtisch de richting en grootte van de resultante, in volgende gevallen; 1 = 4 kn = 7 kn : 1) = 30 )

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

Hoofdstuk 7 Goniometrie

Hoofdstuk 7 Goniometrie V-1a 4 Voorkennis 5 C A 5 m B C = 10 5 = 9 ABC is geen rehthoekige driehoek. V-2a 76 14 K m L d M = 10 14 76 = 90 L 0 De rehthoeksn zijn de n LM en KM. De langste is KL. d LM = 0 KM = 16 KL = 900 256 +

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde

1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1 Junior Wiskunde Olympiade 2010-2011: tweede ronde 1. Het quotiënt 28 is gelijk aan 82 (A) 2 0 () 2 1 (C) 2 2 (D) 2 3 (E) 2 4 2. Het resultaat van de vermenigvuldiging 1 3 5 7 9 2011 eindigt op het cijfer

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens Dag van de wiskunde Kortrijk 26 november 2009 Ideeën voor de klaspraktijk Spreker: E. Jennekens 1. De provincie West-Vlaanderen is 3144 km² groot. Kun je de hele wereldbevolking, 6,7 miljard, verwelkomen

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 20 tijdvak 2 woensdag 22 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Tonregel van Kepler In het verleden gebruikte men vaak een ton voor het opslaan en vervoeren van goederen. Tonnen worden ook nu nog gebruikt voor bijvoorbeeld de opslag van wijn. Zie de foto. foto Voor

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek.

Ook de volledige spiraal van de stroken van lengte 1, 3, 5,, 99 past precies in een rechthoek. Een spiraal In deze opgave bekijken we rechthoekige stroken van breedte en oneven lengte:, 3, 5,..., 99. Door deze stroken op een bepaalde manier aan elkaar te leggen, maken we een spiraal. In figuur is

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3

G&R havo B deel 3 10 Aanzichten en doorsneden C. von Schwartzenberg 1/16. 1a Het bovenaanzicht van het voorwerp is een cirkel. 3 & havo deel 0 anzichten en doorsneden. von chwartzenberg / a et van het voorwerp is een cirkel. b Je moet tegen het (rechter of linker) zijaanzicht aankijken. rechterzijaanzicht I (opg. ) vooraanzicht

Nadere informatie

Je moet nu ook met delen van eenheidskubussen rekenen. Waarom?

Je moet nu ook met delen van eenheidskubussen rekenen. Waarom? Opgave 1 Dit is een exemplaar van de kuus van Ruik, edacht door de Hongaarse architect en ontwerper Ernö Ruik. Zie ook ruiks.com. Uit hoeveel kleine kuussen estaat hij? (Let op: er is geen middelste kuus!)

Nadere informatie

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2001 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Iemand bevindt zich te A en moet per fiets naar B, waar hij om precies 4 uur wil aankomen.

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

2.9 Stelling van Pythagoras

2.9 Stelling van Pythagoras Auteur hannie janssen Laatst gewijzigd 24 March 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/74171 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25.

8 want 5,8 2 = 33,64 > 33 5 want 7,5 2 = 56,25 > 56,2 5 want 2,5 2 = 6,25. Hoofdstuk WORTELS. ZIJDE EN OPPERVLAKTE VAN EEN VIERKANT a z a 9 + + + + 9 Lagzamer a Nee Hij doet alsof de oppervlakte gelijkmatig toeeemt. Je moet als zijde eme. z 0, 0, z a a 0,09 0,9 z a 0 / 00 0,

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Hoofdstuk 2 Oppervlakte en inhoud

Hoofdstuk 2 Oppervlakte en inhoud Hoofdstuk 2 Oppervlakte en inhoud Les 1 Aant. 2.1 Oppervlakte van vlakke figuren Theorie A: Oppervlakte van vlakke figuren Oppervlakte driehoek = ½ zijde bijbehorende hoogte Oppervlakte parallellogram

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek

handleiding pagina s 241 tot Handleiding 1.1 Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies 2 Werkboek week 8 les 5 toets en foutenanalyse handleiding pagina s 2 tot 29 nuttige informatie Handleiding. Kopieerbladen pagina 59: wandelplannen pagina 60: grondplannen constructies.2 Huistaken huistaak 5: bladzijde

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Havo B deel Uitwerkingen Moderne wiskunde Blok - Vaardigheden ladzijde a AB + AB AB PQ + PQ PQ PQ is diagonaal van een vierkant met zijde en AB is diagonaal in een vierkant met zijde. Dus is PQ vier keer

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv oofdstuk 0 - oeken en afstanden Voorkennis: Verhoudingen ladzijde 78 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde factor. Zijde met lengte wordt vergroot

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268

Driehoeken vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie. http://maken.wikiwijs.nl/74268 Auteur VO-content Laatst gewijzigd Licentie Webadres 24 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74268 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein

Nadere informatie