Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Maat: px
Weergave met pagina beginnen:

Download "Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2"

Transcriptie

1 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie

2 . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk Het inprodukt en normlvectoren De vergelijking vn een vlk ().... Middelloodvlkken Het snijpunt vn twee lijnen Het snijpunt vn een lijn en een vlk.... De snijlijn vn twee vlkken.... Smenvtting.... Oefenopgven.... Antwoorden...

3 . Coördinten in R³ ) De oorsprong O ( ) en de punten A ( ) C ( ) D ( ) ijn hoekpunten vn de kuus OABC DEFG. ) Noem de coördinten vn i) het punt G ii) het snijpunt vn de digonlen AC en OB. iii) het snijpunt vn BG en CF. iv) het midden vn het lijnstuk OF. ) R is het punt ( ). S is het snijpunt vn de lijn DR met de -s. Bereken de coördinten vn S. c) Teken in de figuur lle punten P op de kuus wrvoor geldt: P =. d) Arceer lle punten Q op de kuus wrvoor geldt: Q =. e) Voor welke punten Q op de kuus geldt: Q = en Q = Q?

4 ) Vn de pirmide T ABCD is het grondvlk ABCD een vierknt. Hoekpunten vn het grondvlk ijn A( ) B( ) C ( ) en T is het punt ( ). ) Teken de pirmide. ) Bereken de lengte vn de rien vn het grondvlk en de lengte vn de opstnde rien. c) Teken in de figuur lle punten P op de pirmide wrvoor geldt: P =. d) Voor welke punten Q op de pirmide geldt: Q + Q + Q =? ) De kuus hieronder heeft rien met de lengte. ) Bereken de fstnd AD. ) Het punt ( p ) ligt op een fstnd vn vn D. Bereken p. c) Welk punt op de ijvlksdigvonl CF ligt op een fstnd vn de oorsprong?

5 . De vergelijking vn een vlk () STELLING: Een vlk in R³ kn ngegeven worden door de vergelijking + + c = d. Vooreeld Gegeven is vlk V:. Bereken de coördinten vn de snijpunten vn V met de -s de -s en de -s. Oplossing. Voor het snijpunt A met de -s geldt: A = (p ). Invullen levert op: p = dus p= en dus A = ( ). Net o vinden we B= ( ) en C = ( ) voor de overige twee snijpunten De driehoek ABC is een gedeelte vn het vlk V. ) Het vlk in het vooreeld hieroven evt het punt ( p). ) Bereken p. ) Voor het punt D op V geldt: D = D = D. Bereken de coördinten vn D.

6 ) De kuus OABC DEFG hieronder heeft rie. ) Geef de coördinten vn F. ) Het vlk W heeft ls vergelijking + + = 9. K L en M ijn de snijpunten vn W met de -s de s en de -s. Bereken de coördinten vn dee punten. c) Teken het vlk W. d) Bereken de coördinten vn het snijpunt P vn W met AE. e) Teken de doorsnede vn het vlk W met de kuus. Dee doorsnede is een eshoek PQRSTU. f) Bereken de oppervlkte vn PQRSTU.

7 . De vectorvoorstelling vn een lijn Vooreeld De kuus hieronder heeft rie. Gevrgd: de vectorvoorstelling vn de lijn door R en K. Methode: Bepl een steunvector en een richtingsvector. Antwoord: steunvector OR en richtingsvector ˆ RK i. Dus de vectorvoorstelling is: R wrij : RK. AFSPRAAK: in het vervolg worden richtingsvectoren vereenvoudigd. Dit mkt de erekeningen eenvoudiger. ) Zie de kuus hieroven. ) Bereken de vectorvoorstelling vn (vereenvoudig de richtingsvector): ().i. OE.ii. BE.iii. BD.iv. AK ) De lijn AK evt het punt ( q ). Bereken q. c) De lijn p l : snijdt het lijnstuk AK middendoor. Bereken p. ) Gegeven is dt de lijnen en smenvllen. Bereken en.

8 8. De vectorvoorstelling vn een vlk Vooreeld Gegeven ijn de punten P ( ) Q ( 9 8 ) en R ( ). Gevrgd: een vectorvoorstelling vn het vlk PQR. Methode: Bepl een steunvector en twee richtingsvectoren. Antwoord: steunvector OP en richtingsvectoren ˆ 9 PQ en PR Dus de vectorvoorstelling is: R wrij : en PQR. 8) Bereken een vectorvoorstelling vn het vlk door (vereenvoudig de richtingsvectoren) ) A ( ) B ( 9 8 ) en C ( ). ) A ( ) en k: c) k: en m:

9 9. Het inprodukt en normlvectoren Definitie: Het inprodukt ) ( vn twee vectoren en is het getl. STELLING: Als het inprodukt vn twee vectoren gelijk is n nul dn stn e loodrecht. En ndersom: voor loodrechte vectoren is het inprodukt gelijk n nul. Ofwel: ) ( 9) ) Bereken het inprodukt vn de vectoren en. ) De vectoren en p stn loodrecht. Bereken p. c) De vector q p stt loodrecht op èn. Bereken p en q. ) Een vector die loodrecht op een lijn stt heet een normlvector vn de lijn. ) Geef twee normlvectoren vn de lijn. : l ) Stel een vectorvoorstelling op vn het vlk dt loodrecht stt op l dt gt door A ( ). c) OB een normlvector vn l. Bereken p en Het punt B ( p q ) ligt op een fstnd vn vn de oorsprong O. Verder is q.

10 . De vergelijking vn een vlk () Definitie: Een normlvector vn een vlk is een vector die loodrecht op het vlk stt. STELLING: c is een normlvector vn het vlk V : + + c = d. Vooreeld Bereken de vergelijking vn het vlk V door A ( ) B ( ) en C ( ). Methode: Bereken eerst de normlvector vn V en drn de vergelijking door één vn de punten in te vullen. Voor de normlvector geldt q p c c n V. De getllen p en q erekenen we door te geruiken dt de normlvector loodrecht stt op AB en AC Antwoord: ˆ AB en ˆ AC q p q p AB en q p q p AC Dit levert het stelsel: q p q p Oplossen (met schoorsteenmethode) geeft: p en q en dus V n en dus V : + = d Invullen vn A ( ) levert. +.. = d dus d = 8 en dus V : + = 8

11 ) Gegeven is het vlk : V. ) Bereken een normlvector vn V. ) Bereken een vergelijking vn V. c) Bereken de coördinten vn het snijpunt vn V met de -s. ) Gegeven ijn A ( ) B ( ) en C ( ). ) Bereken een vergelijking vn het vlk V door A B en C. ) Het punt ( p p p+ ) ligt op V. Bereken p. ) Zie de figuur hieronder. Geef een vergelijking vn het vlk V dt de lijn : l evt en evenwijdig is met de lijn : m.

12 . Middelloodvlkken DEFINITIE: Het middelloodvlk vn een lijnstuk AB is het vlk door het midden vn A en B dt de vector AB ls normlvector heeft. (i) Nottie MLV(A B) STELLING: Het middelloodvlk vn een lijnstuk AB evt lle punten P wrvoor geldt: PA = PB. Vooreeld Gegeven ijn de punten A ( ) en B ( ) Bereken een vergelijking vn het middelloodvlk V vn A en B. Methode: AB is de normlvector vn V; het midden vn A en B ligt op V. Antwoord: n V AB ˆ en M = ( ) dus V: = d Invullen vn M ( ) levert. = d dus d = en dus V : =

13 ) Bereken een vergelijking vn het middelloodvlk vn A( ) en B ( 9 ). ) De kuus OABC DEFG hieronder heeft rie. ) Stel een vergelijking op vn het middelloodvlk V vn O en F. ) Teken in de kuus de doorsnede vn V en de kuus. c) Bereken de oppervlkte vn de doorsnede.

14 8. Het snijpunt vn twee lijnen Vooreeld Zie de kuus hieronder. Bereken de coördinten vn het snijpunt vn de lijnen AK en CT. Oplossing: Er geldt: AK : en CT : Dit levert het volgende stelsel: Uit de tweede en derde vergelijking volgt met de schoorsteenmethode dt en. Dee wrden voldoen ook in de eerste vergelijking. Er is dus een snijpunt S. Sustitutie vn of. geeft S= ) Zie de kuus hieroven. ) Bereken de coördinten vn het snijpunt vn de lijnen DR en AG. ) Geef lle lichmdigonlen die de lijn OA kruisen. c) Geef lle ijvlksdigonlen die evenwijdig ijn met EG. d) Bereken de coördinten vn het snijpunt vn de wrtelijnen vn ATG. ) Gegeven ijn de lijnen l : m : n : en p :. Bepl de onderlinge ligging en (o mogelijk) de coördinten vn het snijpunt vn:. l en m. l en n c. l en p d. n en m

15 9. Het snijpunt vn een lijn en een vlk Vooreeld Bereken de coördinten vn het snijpunt S vn - - : l en V: Oplossing: S ligt op l dus S= ) (. Sustitutie in de vergelijking vn V geeft: ).( ) ( ).(. De oplossing hiervn is. Dus S= ( 8) 8) ) Bereken een vergelijking vn het middelloodvlk V vn A( ) en B ( 9 ). ) Bereken de coördinten vn het snijpunt vn V en de lijn OA. c) Bereken het snijpunt vn : W en de lijn AB. 9) ) Onderoek de onderlinge ligging vn : l en : V. Kies uit: l snijdt V l ligt in V en l is evenwijdig met V. Verklr je ntwoord. ) De lijn p p : k ligt in W: ( p) p + (p ) = p. Bereken p.

16 ) Gegeven ijn P ( ) en : l. ) Bereken een vergelijking V vn het vlk door P en l. ) Bereken een vectorvoorstelling vn de lijn k die door P gt en die de lijnen : l en : m snijdt. ) Gegeven is het vlk : V. De lijn k gt door P( ) en stt loodrecht op V. ) Bereken een vectorvoorstelling vn k. ) Bereken het snijpunt S vn k en V. ( Dit snijpunt heet de loodrechte projectie vn P op V) c) P wordt gespiegeld in V. Bereken de coördinten vn het eeldpunt. ) Gegeven is het vlk V door de oorsprong A ( ) en B ( ) en de lijn l door de oorsprong en C ( ). ) Bereken een vergelijking vn V. ) Toon n dt l niet loodrecht op V stt. c) Bereken de coördinten vn de loodrechte projectie vn C op V. d) De lijn k evt de oorsprong ligt in V en stt loodrecht op l. Bereken een vectorvoorstelling vn k. e) Bereken een vergelijking vn het vlk W dt de lijn l evt en dt het vlk V snijdt volgens een lijn die loodrecht op l stt.

17 . De snijlijn vn twee vlkken ) De kuus OABC DEFG heeft rie. Teken ij elk onderdeel de genoemde vlkken in een kuus hieronder. Noem hun snijlijn. ) ) c) d) e)

18 8 Vooreeld 8 Gegeven ijn : U en 9 : V. Bereken de vectorvoorstelling vn de snijlijn k. Methode: Druk en uit in één vriele. 9 Sustitutie in de eerste vergelijking geeft:. Dus ofwel. Een vectorvoorstelling vn k is dus. ) Gegeven ijn U: + = en V: + =. ) Bereken een vectorvoorstelling vn de snijlijn s vn U en V. ) Bereken de coördinten vn het snijpunt vn s en W: + - = ) ) Gegeven ijn de vlkken U: + = en V:. Bepl de onderlinge ligging vn U en V. Kies uit: smenvllen evenwijdig of snijden. Verklr je ntwoord. ) De vlkken W : + = en W : c vllen smen. Bereken en c.

19 ) ) Bereken een vectorvoorstelling vn de snijlijn k vn U: + = en V:. ) W is het vlk door de oorsprong en k. Bepl een vectorvoorstelling vn de snijlijn vn U en W. ) Bereken een vectorvoorstelling vn de lijn l gegeven door de vergelijkingen. 8) Gegeven ijn de punten A( ) B( ) en C( ). ) Zie de figuur. Bereken een vectorvoorstelling vn de snijlijn k vn het middelloodvlk vn het lijnstuk AB en MLV(AC). ) Bereken de coördinten vn het snijpunt vn k en het vlk ABC. c) Bereken de strl vn de omgeschreven cirkel vn A B en C. 9) Gegeven is het vlk V: = en het punt M ( ). ) Zie de figuur. Het vlk V heeft precies één snijpunt P met een ol met middelpunt M. Bereken de coördinten vn P. ) W is evenwijdig n V en heeft ook precies één snijpunt met de ol. Bereken een vergelijking vn W. 9

20 . Smenvtting LOODRECHTE VECTOREN ) ( wrij en NORMAALVECTOR Een normlvector V n vn het vlk V : + + c = d is c. BASISKENNIS Vlkken: vn vectorvoorstelling nr vergelijking Snijpunt lijn/lijn; lijn/vlk Snijlijn vlk/vlk middelloodvlk

21 . Oefenopgven ) Gegeven ijn de punten A ( ) B ( ) en C ( ). ) Bereken een vergelijking vn het vlk V door A B en C. ) Geef een vergelijking vn het vlk door D ( ) dt evenwijdig is met V. c) Bereken de coördinten vn de loodrechte projectie vn D op V.. ) Gegeven ijn A ( ) en l :. ) Bereken een vergelijking vn het vlk V door A en l. ) Bereken de coördinten vn het snijpunt vn V en de -s. c) Het punt ( p p) ligt in het vlk W dt de lijnen l en m : evt. Bereken p. ) Gegeven ijn de punten A ( ) B ( ) en C ( ). ) Geef een vergelijking vn de vermeling vn de punten P wrvoor geldt: PA = PB. ) Geef een vectorvoorstelling vn de vermeling vn de punten Q wrvoor geldt: QA = QB = QC. c) Op het lijnstuk AB ligt een punt R odt AR : RB = :. Bereken de coördinten vn R. ) Gegeven ijn de punten P( ) en Q ( ) en de lijn lijn l snijdt het lijnstuk PQ middendoor. Bereken. l :. De ) Vn een pirmide T ABCD is het grondvlk ABCD een vierknt met A ( ) B ( ) C ( ) en D ( ) ls hoekpunten. De top is T ( 8 ). ) Teken dee pirmide. ) Toon n dt BC in het vlk V: = 8 ligt. c) Bereken de coördinten vn de snijpunten P en Q vn de rien AT en DT met het vlk V. d) Teken de doorsnede vn V en de pirmide. e) De lijn l : ligt in V. Bereken en. Teken l. f) Bereken de coördinten vn het snijpunt vn l en de lijn PQ.

22 ) Gegeven ijn de vlkken U: V: en W:. ) Toon n dt de oorsprong een punt vn V is. ) Toon n dt U en V evenwijdig ijn. c) i) Geef een vectorvoorstelling vn de snijlijn vn U en W. ii) Geef een vectorvoorstelling vn de snijlijn vn V en W. ) De lijn : l ligt in V:. Bereken. ) In het vlk V: ligt de lijn k die de -s snijdt en die evenwijdig is met het XOY-vlk. Bereken een vectorvoorstelling vn k.

23 . Antwoorden ).i ( ) ii. ( ) iii. ( ) iv. ( ). d. digonl CF ). d. Zijvlk ABT ).. p= of p = 8 c. ).. ). ( ). K( 9 ); L ( 9 ); M( 9 ) d. P( ) eii ) i ii iii iv. ½ c. ½ ) = en = 8).. c. 9).. c. p = en q = ). ijvooreeld en. ) c. p = en q = of p = en q = ).. + = c. ( ) ). + =. ) + + = ) + = ). + + = 9 c. ). ( ). BD en CE c. AC d. ( ) ). snijden in ( ). vllen smen c. kruisen d. snijden in ( ) 8). + =. 8 c. ( 9 ) 9). l ligt in V.. p = ). =. ).. ( ) c. ( )

24 ). + + = c d. e = ).BG. BG c. SF (S is het midden vn het grondvlk) d. DF e. MN ( M is het midden vn OA en N is het midden vn EF) ).. ( ) ). evenwijdig. = = en c = ).. ) 8).. c. 9). P. = ANTWOORDEN OEFENOPGAVEN ). + + = = 9 c ). + =. c. ). + + =. 8 9 c. ) ) c. ( ) en ( ) e. = en = f. ( ) ) ci. ii. ) = of = )

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme CIRKELS EN BOLLEN Kls 7N Wiskunde 5 perioden K. Temme INHOUDSOPGAVE. DE VERGELIJKING VAN EEN BOL.... DE SNIJCIRKEL VAN EEN BOL EN EEN VLAK... 5. DE CIRKEL DOOR PUNTEN... 7. DE BOL DOOR GEGEVEN PUNTEN...

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

7 Totaalbeeld. Samenvatten. Achtergronden. Testen

7 Totaalbeeld. Samenvatten. Achtergronden. Testen 7 Totaalbeeld Samenvatten Je hebt nu het onderwerp "Vectormeetkunde" doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

6 Ligging. Verkennen. Uitleg

6 Ligging. Verkennen. Uitleg 6 Ligging Verkennen Ligging Inleiding Verkennen Door in de applet het assenstelsel te draaien kun je nagaan of twee lijnen een snijpunt hebben. Je kunt ook andere lijnen proberen door de punten A, B, C

Nadere informatie

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur

uuur , DF en DB met kentallen. b) Laat zien door twee keer de stelling van Pythagoras in een rechthoekige uuur 4 Van D naar 3D Verkennen Van D naar 3D Inleiding Verkennen Bekijk de applet. Met de rechter muisknop kun je het assenstelsel om de oorsprong draaien en de fig van alle kanten bekijken. Beantwoord nu de

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

5 Lijnen en vlakken. Verkennen. Uitleg

5 Lijnen en vlakken. Verkennen. Uitleg 5 Lijnen en vlakken Verkennen Lijnen en vlakken Inleiding Verkennen Bekijk de applet. Je ziet hoe een vlak kan worden beschreven met behulp van een vergelijking in x, en z. In de applet kun je de drie

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

5.1 Punten, lijnen en vlakken [1]

5.1 Punten, lijnen en vlakken [1] 5.1 Punten, lijnen en vlakken [1] Snijdende lijnen hebben een snijpunt. De snijdende lijnen FH en EG liggen in het vlak EFGH. Snijdende lijnen liggen altijd in één vlak. Een vlak is altijd plat en heeft

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

Toetsopgaven vwo B deel 3 hoofdstuk 10

Toetsopgaven vwo B deel 3 hoofdstuk 10 Toetsopgven vwo deel 3 hoofdstuk 10 Opgve 1 In de figuur hiernst zie je 15 kubusjes met ribbe. e punten,, en zijn hoekpunten vn een kubusje, punt is het midden vn een ribbe en de punten en delen een ribbe

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

9.1 Vergelijkingen van lijnen[1]

9.1 Vergelijkingen van lijnen[1] 9.1 Vergelijkingen van lijnen[1] y = -4x + 8 is de vergelijking van een lijn. Hier wordt y uitgedrukt in x. Algemeen: Van de lijn y = ax + b is de richtingscoëfficiënt a en het snijpunt met de y-as (0,

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel M De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde de strl de dimeter een middelpuntshoek een middellijn O:... [XY]:... OS

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden

8.1 Gelijkvormige en congruente driehoeken [1] Willem-Jan van der Zanden 8.1 Gelijkvormige en congruente driehoeken [1] 1 8.1 Gelijkvormige en congruente driehoeken [1] Twee evenwijdige lijnen worden gesneden door een derde lijn. De twee rode hoeken (F-hoeken) zijn gelijk.

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde

1 Vlaamse Wiskunde Olympiade : Tweede ronde 1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

MEETKUNDE 5 Cirkels en cilinders

MEETKUNDE 5 Cirkels en cilinders MEETKUNDE 5 Cirkels en ilinders M22 De irkel 254 M23 De ilinder 262 253 M22 De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde

Nadere informatie

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 17 Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 18 Vermoeden: De drie hoogtelijnen gaan door 1 punt 34. a. De drie middelloodlijnen van een

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Oefenopgaven Stelling van Pythagoras.

Oefenopgaven Stelling van Pythagoras. Oefenopgaven Stelling van Pythagoras. 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en CD. B. Laat door middel van berekening zien dat hoek B van driehoek ABC

Nadere informatie

Over de tritangent stralen van een driehoek

Over de tritangent stralen van een driehoek Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

Wiskunde Opdrachten Pythagoras

Wiskunde Opdrachten Pythagoras Wiskunde Opdrachten Pythagoras Opdracht 1. Teken een assenstelsel met daarin de punten A(2,5), B(5,2) en C(9,6). A. Bereken AB, BC en AC. B. Laat door middel van berekening zien dat hoek B van driehoek

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden

Nadere informatie

6.1 Kijkhoeken[1] Willem-Jan van der Zanden

6.1 Kijkhoeken[1] Willem-Jan van der Zanden 6.1 Kijkhoeken[1] Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de kijkhoek zien; De twee rode lijnen zijn kijklijnen; De kijklijnen geven de grenzen aan van het gebied dat de persoon

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet.

GEOGEBRA 5. Ruimtemeetkunde in de tweede graad. R. Van Nieuwenhuyze. Hoofdlector wiskunde aan Odisee, Brussel. Auteur Van Basis tot Limiet. GEOGEBRA 5 Ruimtemeetkunde in de tweede graad R. Van Nieuwenhuyze Hoofdlector wiskunde aan Odisee, Brussel Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@gmail.com GeoGebra in de tweede graad Roger

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

1. INLEIDING: DE KOERS VAN EEN BOOT

1. INLEIDING: DE KOERS VAN EEN BOOT KLAS 4N VECTOREN . INLEIDING: DE KOERS VAN EEN BOOT. Boot vaart van Roe naar Tui via Rul. De koersgegevens zijn: van Roe naar Rul: 0, 5 km van Rul naar Tui: 40, 5 km a. Wat zijn de koersgegevens als de

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

Eindexamen wiskunde B vwo 2011 - I

Eindexamen wiskunde B vwo 2011 - I Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten?

Opgave 1. Waarom kun je bij het Noorden twee getallen neerzetten? Geldt dit ook voor andere windrichtingen? Hoeveel graden hoort er bij het Oosten? Opgve 1 Hier zie je een windroos met de windrihtingen er in getekend. Hij is verder verdeeld in 360 hoekjes, elk vn die hoekjes heet 1 grd. Bij het Noorden (N) hoort 0 grden (en dus ook 360 grden). file:

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Basisbegrippen. Test jezelf Elke vraag heeft maar één juist antwoord. Controleer je antwoord in de correctiesleutel. balk cilinder kubus

Basisbegrippen. Test jezelf Elke vraag heeft maar één juist antwoord. Controleer je antwoord in de correctiesleutel. balk cilinder kubus sisegrippen Dit kun je l de enmingen vn vershillende soorten driehoeken en vierhoeken geruiken een kuus, een lk en een ilinder herkennen evenwijdige en snijdende rehten herkennen sherpe, stompe en rehte

Nadere informatie

Spiegelen, verschuiven en draaien in het vlak

Spiegelen, verschuiven en draaien in het vlak 2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn

Nadere informatie

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan.

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan. 2 Verschuiven Dit is een ewerking vn Meetkunde met coördinten Blok Punten met gewicht vn Ad Goddijn ten ehoeve vn het nieuwe progrmm (2014) wiskunde B vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: de tweede ronde

Junior Wiskunde Olympiade 2012-2013: de tweede ronde Junior Wiskunde Olympide 0-03: de tweede ronde Volgende enderingen kunnen nuttig zijn ij het oplossen vn sommige vrgen.,44 3,73 5,36 π 3,46.ls + =en =3,dnis gelijkn () 5 () 6 () 3 () 9 (E) 3.Hetgetl (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

Eindexamen vwo wiskunde B I

Eindexamen vwo wiskunde B I Formules Vlkke meetkunde Verwijzingen nr definities en stellingen die bij een bewijs mogen worden gebruikt zonder ndere toelichting. Hoeken, lijnen en fstnden: gestrekte hoek, rechte hoek, overstnde hoeken,

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10 H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde

Vlakke Meetkunde Ruimtemeetkunde. Meetkunde. 1 december 2012. Meetkunde Vlakke Ruimtemeetkunde 1 december 2012 Vlakke Ruimtemeetkunde 1 Vlakke Vectoren Vergelijking van een rechte 2 Ruimtemeetkunde Vectoren Vergelijking van een vlak Vergelijkingen van een rechte Vlakke Ruimtemeetkunde

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Hoofdstuk 8 : De Cirkel

Hoofdstuk 8 : De Cirkel - 163 - Hoofdstuk 8 : De Cirkel Eventjes herhalen!!!! De cirkel met middelpunt O en straal r is de vlakke figuur die de verzameling is van alle punten die op een afstand r van O liggen. De schijf met middelpunt

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Platte en bolle meetkunde

Platte en bolle meetkunde Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

2 De kracht van vectoren

2 De kracht van vectoren De krcht vn vectoren Dit is een ewerking vn Meetkunde met coördinten lok Punten met gewicht vn d Goddijn ten ehoeve vn het nieuwe progrmm (015) wiskunde vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

MEETKUNDE 4 Driehoeken

MEETKUNDE 4 Driehoeken MEETKUNDE 4 Driehoeken M18 Driehoeken in de ruimte 38 M19 Driehoeken tekenen 4 M0 Merkwrdige lijnen in een 44 M1 Omtrek, oppervlkte en volume 47 37 M18 Driehoeken in de ruimte 738 E Vul n. In KLM zijn

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B (pilot) Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie