1.0 Voorkennis. Voorbeeld 1:

Maat: px
Weergave met pagina beginnen:

Download "1.0 Voorkennis. Voorbeeld 1:"

Transcriptie

1 1.0 Voorkennis Voorbeeld 1: Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: Werk eerst de helen weg en vermenigvuldig dn. Als je twee breuken vermenigvuldigd hoeven de noemers vn beide breuken NIET gelijk te zijn. Hl bij het ntwoord de helen er weer uit en vereenvoudig zoveel ls mogelijk. 1

2 1.0 Voorkennis Rekenregels voor het vermenigvuldigen vn breuken: 1) A C B D AC BD 2) B A C AB C 3) AB C A B C 4) 1 AB A B C C 5) A A B B B A C C B BC 6) A C AC A B B B C 2

3 1.0 Voorkennis Voorbeeld 3: Vereenvoudig x 15 6x x x x x x x x Voorbeeld 4: Schrijf zonder breuk in de noemer 4x x 1 4 x( x 1) y 4x x 1 x 1 x1 x1 x 1 3

4 Voorbeeld 5: Schrijf zonder breuk in de noemer 1.0 Voorkennis T b 1800b 1800b b 5b 5b 3b 15b 3b 3b 3b 3b en b 0 4

5 1.0 Voorkennis Rekenen met mchten: Let op het teken vn de uitkomst; Zet de letters (indien nodig) op lfbetische volgorde. Vermenigvuldigen is exponenten optellen: 3 5 = 8 Optellen lleen bij gelijknmige termen: = 7 3 Bij mcht vn een mcht exponenten vermenigvuldigen: ( 5 ) 4 = 20 Delen is exponenten ftrekken: Mcht vn een product: (2 3 ) 4 =

6 Voorbeeld 6: Hoeveel is 48% vn 560? Dit is 0, = 268,8 1.0 Voorkennis Voorbeeld 7: Op een school zijn vn de 87 leerlingen er 78 geslgd. Bereken hoeveel procent vn de leerlingen geslgd is. 87 leerlingen is 100% 1 1 leerling is 100 % leerlingen is 100 % 87 Op deze school zijn dus % 89, 7 % 87 vn de leerlingen geslgd.

7 1.0 Voorkennis In 2004 zijn er 3070 groentewinkels in Nederlnd. In 2014 zijn dit er nog Absolute verndering = Antl 2014 Antl 2004 = = Reltieve verndering = Nieuw Oud Antl 2014 Antl % 100% Oud Antl % 47,07% Let op: * Een bsolute verndering is ltijd een ntl of een hoeveelheid; * Een reltieve verndering is ltijd in procenten: Nieuw Oud 100% Oud 7

8 1.0 Voorkennis Voorbeeld 8: Een broek vn het merk Reply kost in ,-. Doordt de gestegen loonkosten gt de prijs in 2012 met 6% omhoog. Hoeveel kost deze broek nu in 2012? Om de prijs in 2012 te berekenen moet je bij het bedrg vn 129,- de prijsstijging optellen. Er moet dus 6% vn 129,- bijgeteld worden. 6% vn 129 = 0,06 129,- = 7,74 De prijs in 2012 wordt nu: 129,- + 7,74 = 136,74 Dit vlt ook in één keer uit te rekenen: 1,06 129,- = 136,74 Algemeen: Bij een toenme vn 6% geldt: 1) NIEUW = 1,06 OUD 2) NIEUW = OUD + 0,06 OUD

9 1.0 Voorkennis Voorbeeld 9: Een broek vn het merk Reply kost in ,74. Doordt de gestegen loonkosten is de prijs 6% hoger dn in Hoeveel kostte deze broek nu in 2012? Om de prijs in 2012 te berekenen moet je bij de onbekende prijs uit % optellen. 100% + 6%= 106%. Dit is een groeifctor [g] vn 1,06. NIEUW = g OUD Prijs in 2012 = g Prijs in ,74 = 1,06 Prijs in 2011 Prijs in 2011 = 136, , 1, 06 Let op: Je kent nu wel de nieuwe, mr niet de oude prijs. 9

10 1.1 Mtsystemen [1] In 2004 zijn er 3070 groentewinkels in Nederlnd. In 2014 zijn dit er nog Absolute verndering = Antl 2014 Antl 2004 = = Reltieve verndering = Nieuw Oud Antl 2014 Antl 2004 x100% x100% Oud Antl x100% 47,07% Let op: * Een bsolute verndering is ltijd een ntl of een hoeveelheid; * Een reltieve verndering is ltijd in procenten: Nieuw Oud x100% Oud 10

11 1.1 Mtsystemen [1] Voorbeeld 1: In 2014 zijn 50 groentewinkels dicht gegn. Hoeveel procent vn het totl is dit? Dicht x100% x100% 3,1% Totl Voorbeeld 2: In 2014 is 3,1% vn de groentewinkels dicht gegn. Hoeveel groentewinkels zijn dit? 0,031 x Totl 2014 = 0,031 x 1625 = 50 groentewinkels. Voorbeeld 3: Vn lle specilzken in 2014 is 13% een groentewinkel. Hoeveel specilzken zijn er in 2014? Groentewinkels = 13% vn het ntl specilzken 1625 = 0,13 x ntl specilzken Antl specilzken = ,13 11

12 1.1 Mtsystemen [1] Voorbeeld 4: In 2014 wren er specilzken. Sinds 2012 is het ntl specilzken fgenomen met 7%. Bereken hoeveel specilzken er in 2012 wren. Antl 2014 = 0,93 Antl = 0,93 Antl 2012 Antl 2012 = ,93 Let op: Als het oude ntl bekend is, kun je met behulp vn de gegeven toenme (of fnme) het nieuwe ntl uitrekenen: NIEUW = (1 + p/100) OUD Als het nieuwe ntl bekend is, kun je met behulp vn de gegeven toenme NIEUW (of fnme) het oude ntl uitrekenen: OUD = p

13 1.1 Mtsystemen [1] Vuistregels bij procentberekeningen: Rond procenten f op één deciml; Geef kleine geldbedrgen in centen nuwkeurig; Rond tijdens de berekening zo weinig mogelijk tussentijds f; Geef gevrgde hoeveelheden in dezelfde nuwkeurigheid ls de gegeven hoeveelheden; Lees de opgve GOED door. Voorbeeld: In 2014 ws het ntl groentewinkels In 2015 nm het ntl winkels met 2,6% f. In 2016 wordt een fnme vn nog eens 1,7% verwcht. Bereken het verwchte ntl groentewinkels n het eind vn 2016 Antl winkels 2016 = 0,974 0,983 Antl winkels 2014 = 0,974 0, = Let op: Hierboven is berekend zonder tussentijds f te ronden. 13

14 Voorbeeld 1: 1 miljoen = Mtsystemen [2] In dit getl komen zes nullen voor. Om deze reden geldt: = 10 6 Voorbeeld 2: = In dit getl komen vijf nullen voor. Om deze reden geldt: = (7E5 op de GR) Voorbeeld 3: = 1, In dit getl komen zes nullen voor. Om deze reden geldt: = 1, (1.65E6 op de GR) Om dit in gewone nottie te schrijven moet de komm 6 pltsen nr rechts. Deze mnier vn nottie heet de wetenschppelijke nottie en is vn de vorm: 10 b wrbij een getl tussen 1 en 10 is. 14

15 Voorbeeld 4: 1 1 0, Voorbeeld 5: Voorbeeld 6: 1.1 Mtsystemen [2] , , , (8E-7 op de GR) Voorbeeld 7: 0, ,140, , (3.14E-10 op de GR) Om dit in gewone nottie te schrijven moet de komm 10 pltsen nr links. 15

16 1.1 Mtsystemen [3] Millimeter, centimeter, meter en kilometer zijn lengte-eenheden. De volgende lengte-eenheden moet je kennen: km hm dm m dm cm mm Een stp nr rechts betekent 10, Een stp nr links betekent : 10, dus 1 m = 10 dm dus 10 cm = 1 dm km = kilometer dm = decmeter dm = decimeter mm = millimeter hm = hectometer m = meter cm = centimeter 16

17 1.1 Mtsystemen [3] Vierknte millimeter, vierknte centimeter en vierknte meter zijn oppervlkte-eenheden. De volgende oppervlkte-eenheden moet je kennen: km 2 hm 2 =h dm 2 =re m 2 dm 2 cm 2 mm 2 Een stp nr rechts betekent 100, dus 1 m 2 = 100 dm 2 Een stp nr links betekent : 100, dus 100 cm 2 = 1 dm 2 km 2 = kilometer 2 hm 2 = hectometer 2 (hectre) dm 2 = decmeter 2 (re) m 2 = meter 2 dm 2 = decimeter 2 cm 2 = centimeter 2 mm 2 = millimeter 2 17

18 1.1 Mtsystemen [3] Kubieke decimeter, liter en milliliter zijn inhouds-eenheden. De volgende inhouds-eenheden moet je kennen: km 3 hm 3 dm 3 m 3 dm 3 cm 3 mm 3 Een stp nr rechts betekent 1000, dus 1 m 3 = 1000 dm 3 Een stp nr links betekent : 1000, dus 1000 cm 3 = 1 dm 3 dm 3 cm 3 l dl cl ml Verder geldt: 1 liter (dm 3 ) = 10 dl = 100 cl = 1000 ml (cm 3 ) 18

19 1.1 Mtsystemen [4] 1 km/uur = 1000 m/uur = 1000 m/3600 s = 1 m/3,6 s = 1 uur = = 3600 seconden. 1 m/s = 3600 m/uur = 3,6 km/uur. 1 m / s 3,6 Voorbeeld 1: Peter doet bij een hrdloopwedstrijd over een fstnd vn 400 meter, 50 seconden. Hoeveel km/uur ws zijn gemiddelde snelheid. 400 meter in 50 seconden = m / s 3,6 km / uur 28,8 km / uur Een lichtjr is de fstnd die het licht in een jr flegt. De snelheid vn het licht in een lege ruimte is ongeveer km/s. Een lichtjr is ,

20 1.1 Mtsystemen [4] Voorbeeld 2: De fstnd vn de zon nr de rde is ongeveer 8,3 lichtminuten. Hoeveel km is dt? Geef het ntwoord in miljoenen km. Gebruik dt de snelheid vn het licht 300 duizend km/s is. 8,3 minuten = 8,3 60 = 498 seconden. De fstnd is = 149,4 miljoen km. 20

21 1.2 Mchten en wortels [1] Herhling rekenregels voor mchten: Vermenigvuldigen is exponenten optellen: 3 5 = 8 Optellen lleen bij gelijknmige termen: = 7 3 Bij mcht vn een mcht exponenten vermenigvuldigen: ( 5 ) 4 = 20 Delen is exponenten ftrekken: Mcht vn een product: (2 3 ) 4 = Algemeen: p p q pq pq 1) 2) q 3)( ) 4)( b) b p q pq p p p 21

22 1.2 Mchten en wortels [1] Meer rekenregels: 5) 0 = 1 wnt n 1 6) n wnt Voorbeeld 1: Schrijf ls mcht vn : 1 8 : : Voorbeeld 2: Schrijf zonder negtieve exponenten:

23 1.2 Mchten en wortels [2] Rekenregels voor mchten: p p q pq pq [1] [2] q p q pq p p p ( ) [3] ( b) b [4] Voorbeeld 1: Herleid de formule N = 300 1,176 3t +2 in de vorm N = b g t N = 300 1,1763t +2 N = 300 1,176 3t 1,176 2 Rekenregel [1] N = 300 (1,176 3 ) t 1,382 Rekenregel [3] N 415 1,626 t 0 = 1 [5] n 1 [6] n 23

24 1.2 Mchten en wortels [2] Rekenregels voor mchten: p p q pq pq [1] [2] q p q pq p p p ( ) [3] ( b) b [4] Voorbeeld 2: Herleid de formule y = 15 6 y15 27x 9 27x 1 y 405x 6 x (3 x ) (3 x ) 3 3 Rekenregel [4] Rekenregel [6] 0 = 1 [5] n 1 n [6] in de vorm y = x n y 90x 6 Rekenregel [1] 24

25 1.2 Mchten en wortels [3] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij elke even exponent. 25

26 1.2 Mchten en wortels [3] De functie x 3 = p heeft ltijd één oplossing; Het bovenstnde geldt bij elke oneven exponent. 26

27 1.2 Mchten en wortels [3] Voorbeeld 1: x 2 = 9 x = 9 x = - 9 x = 3 x = -3 Voorbeeld 2: x 4 = -81 Geen oplossingen. Voorbeeld 3: x 3 = 27 x = 3 27 = 3 Voorbeeld 4: x 3 = x = 27 = -3 Let op: Wortels die mooi uitkomen, moet je ltijd herleiden. 27

28 Herhling: 1.2 Mchten en wortels [3] n n n b b en b b Voorbeeld 1: Bereken Voorbeeld 2: Schrijf de formule A 4 256b in de vorm 4 A c b A 4 256b A. A b b 28

29 Herhling: 1.2 Mchten en wortels [3] n n n b b en b b Voorbeeld 3: Herleid de formule B 3 35p 40p tot de vorm B c p met c in twee decimlen nuwkeurig. 5 5 B 3 35p 40p B 3 35 p 40 p 5 5 B 32, p 2, p B8,20 5 p 29

30 1.2 Mchten en wortels [4] Meer rekenregels voor mchten: 7) 1 q q 8) p q q p Voorbeeld 1: Schrijf zonder negtieve en gebroken exponenten: b b b Voorbeeld 2: Schrijf ls mcht vn x:

31 1.3 Breuken en verhoudingen [1] Rekenregels voor breuken: 1) A C B D AC BD 2) B A C AB C 3) AB C A B C 4) 1 AB A B C C 5) A A B B B A C C B BC 6) A C AC A B B B C 31

32 1.3 Breuken en verhoudingen [1] Voorbeeld 1: Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 6x 2x 2 6x( 2x 2) 6( 2x 2) 12x x 7x 7x 7x Voorbeeld 3: 6 9 b 24 ( 9 b) b b 3 3b 3b b 32

33 1.3 Breuken en verhoudingen [2] 3 7 en 2 7 hebben dezelfde noemer. Deze breuken zijn gelijknmig. 4 6 en 2 5 hebben niet dezelfde noemer. Deze breuken zijn niet gelijknmig. Voorbeeld 1: Gelijknmige breuken kun je meteen optellen Voorbeeld 2: Niet gelijknmige breuken moet je eerst gelijknmig mken, voordt je ze op kunt tellen. Vereenvoudig uitkomst en hl helen eruit. 33

34 1.3 Breuken en verhoudingen [2] Voorbeeld 3: 6 7 p q 6q 7p 6q 7p pq pq pq Voorbeeld 4: 5 7 2x 3y 15 y 14x 15 y 14x 6xy 6xy 6xy Voorbeeld 5: 1 6 b b 6b 1 6b1 b b b 34

35 1.3 Breuken en verhoudingen [3] Voorbeeld 1: Bij het telecombedrijf TELBEL betl je 10 euro voor 100 belminuten. Hierbij hoort de volgende verhoudingstbel: Belminuten bedrg ( ) Als je ntl belminuten met 2 vermenigvuldigt, wordt het te betlen bedrg ook twee keer zo groot. Dit zijn evenredige grootheden. De verhouding 50 : 5 is gelijk n de verhouding 400 : 40. Wnneer je deze verhoudingstbel in een grfiek tekent, krijg je een rechte lijn door de oorsprong. 35

36 1.3 Breuken en verhoudingen [3] Voorbeeld 2: Een groenteboer heeft ppels, peren en bnnen in de nbieding in de verhouding 8 : 6 : 4. Hij 100 peren meer dn hij bnnen heeft. Bereken hoeveel fruit de groenteboer in de nbieding heeft. In totl zijn er = 18 gelijke delen. Het verschil tussen peren en bnnen is 2 delen. 2 delen is gelijk n 100 stuks fruit. 1 deel is dus gelijk n 50 stuks fruit. In totl heeft de groenteboer = 900 stuks fruit in de nbieding. 36

37 1.4 Werken met vribelen [1] Herhling hkjes wegwerken: (b + c) = b + c ( + b)(c + d) = c + d + bc + bd (b) 2 = 2 b 2 Voorbeeld 1: ( + 5)( 6) (2 + 5)(- + 7) = ( ) = =

38 1.4 Werken met vribelen [1] Herhling merkwrdige producten: ( + b) 2 = 2 + 2b + b 2 ( b) 2 = 2 2b + b 2 ( + b)( b) = 2 - b 2 Voorbeeld 2: (5) 2 (2-3b) 2 = 25 2 (4 2 12b + 9b 2 ) = b 9b 2 = b 9b 2 Voorbeeld 3: 4(x 7) 2 5(x 3)(x + 2) = 4(x 2 14x + 49) 5(x 2 + 2x 3x 6) = 4x 2 56x x 2 10x + 15x + 30 = -x 2 51x Let op de hkjes!!! Let op de volgorde vn berekenen: Eerst mchtsverheffen en dn vermenigvuldigen. 38

39 1.4 Werken met vribelen [2] Voorbeeld 1: Gegeven is A = 30B Mk B vrij. A = 30B B + 50 = A 30B = A 50 B B A A Voorbeeld 2: Gegeven is 6(b + 3) 4(c 6) = 30. Druk b uit in c. 6( b 3) 4( c 6) 30 6b 18 4c b 4c b 12 4c b c 39

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid.

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid. Lesopzet De door ons gemkte lessencyclus wordt in drie opeenvolgende rekenlessen gegeven. Les is iets korter dn les en, wrdoor er eventueel extr herhling vnuit les ingepst kn worden.. Les Deze les krijgen

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

10.1 Berekeningen met procenten [1]

10.1 Berekeningen met procenten [1] 10.1 Berekeningen met procenten [1] Voorbeeld 1: Hoeveel is 48% van 560? Dit is 0,48 560 = 268,8 Voorbeeld 2: Een broek van het merk Replay kost normaal 129,-. Deze week is het uitverkoop en krijg je 35%

Nadere informatie

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat Modelvrgstukken Algebr vn wortelvormen Tenzij expliciet nders vermeld stellen lle letters positieve getllen voor Vereenvoudigen vn enkelvoudige wortels ; Dit is gewoon de bsisregel ) ) 8 ) ; ) Een 8-ste

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600 LES 1 Reken uit (met cijferen of kolomsgewijs) 5 74 = 1 87 8 45 = 2 76 4 62 = 2 492 6 517 = 12 9 462 = 4 158 7 219 = 1 5 4 Vn verhl nr rekentl Reken uit met cijferen of kolomsgewijs. Vder koopt een ndere

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y

Nadere informatie

Verzamelingen. De natuurlijke getallen. = 0 verzameling van de strikt natuurlijke getallen. De gehele getallen

Verzamelingen. De natuurlijke getallen. = 0 verzameling van de strikt natuurlijke getallen. De gehele getallen Verzmelingen De ntuurlijke getllen = {,1,2,3,4,... } = verzmeling vn de strikt ntuurlijke getllen De gehele getllen = {..., 3, 2, 1,,1,2,3,... } = verzmeling vn de strikt gehele getllen + = verzmeling

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Rekenmachine. Willem-Jan van der Zanden

Rekenmachine. Willem-Jan van der Zanden Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd.

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd. REKENEN Hfst 1-3 PROCENTEN Procenten betekent per honderd. Percentage Groeifactor 1% 1/100 0,01 2% 2/100 0,02 10% 10/100 0,10 99% 99/100 0,99 104% 104/100 1,04 150% 150/100 1,50 Rekenen met procenten:

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

KAPSTOK REKENEN inhoud

KAPSTOK REKENEN inhoud KAPSTOK REKENEN inhoud pagina Optellen 2 Optellen cijferen 3 Aftrekken 4 Aftrekken cijferen 5 Vermenigvuldigen 6 Vermenigvuldigen cijferen 7 Delen 8 Tafels 9 Deeltafels 10 Breuken 11 Meten 12 Tijd wijzers

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

log(a) = b a = g Opdracht 1 Opdracht 2 Bereken x: 2 2 =4 2 3 =8 2 4 = = = = = = = =2048 Enz...

log(a) = b a = g Opdracht 1 Opdracht 2 Bereken x: 2 2 =4 2 3 =8 2 4 = = = = = = = =2048 Enz... Hoofdstuk 6 loritmen We zen l eerder dt je bij het vermenivuldien vn mchten met elijk rondtl de exponenten op m tellen. Dt is bijzonder, wnt ls je bij een willekeurie vermenivuldiin de etllen zou kunnen

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database

Noorderpoortcollege school voor MBO Stadskanaal. Reader. Wiskunde MBO Niveau 4 periode 3. M. van der Pijl. Transfer Database Noorderpoortcollege school voor MBO Stadskanaal Reader Wiskunde MBO Niveau 4 periode 3 M. van der Pijl Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2 LES 1 LES 2 LES 3 LES 4 LES 5 (hele getallen tot 1000) (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo)

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

TOELICHTING METRIEK STELSEL

TOELICHTING METRIEK STELSEL TOELICHTING METRIEK STELSEL 2 3 642_rv_wb_metriek_stelsel_bw.indd 2 8-03-3 23: liter ml 00 4 5 6 642_rv_wb_metriek_stelsel_bw.indd 3 8-03-3 23: Rekenvlinder Metriek stelsel Toelichting Uitgeverij Zwijsen

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

3 Exponentiële functies en logaritmische functies

3 Exponentiële functies en logaritmische functies Eponentiële functies en logritmische functies Bij wiskunde B heb je l eerder te mken gehd met eponentiële en logritmische functies. In dit hoofdstuk gn we er wt dieper op in en lten we een ntl toepssingen

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

C 1 C 2. 42 blok 6. Er zijn 1440 tegels nodig.

C 1 C 2. 42 blok 6. Er zijn 1440 tegels nodig. 42 blok 6 C De zomervkntie komt ern! Voor de zomervkntie moet het zwembd in de gemeente Dorpstein gebruiksklr worden gemkt. Het 4 meter brede tegelpd rondom het zwembd moet vn nieuwe tegels vn 50 bij 50

Nadere informatie

Meten. Kirsten Nederpel. CC Naamsvermelding 3.0 Nederland licentie.

Meten. Kirsten Nederpel. CC Naamsvermelding 3.0 Nederland licentie. Auteur Laatst gewijzigd Licentie Webadres Kirsten Nederpel 24 June 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/73382 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

element (of de rol van nul bij opt)

element (of de rol van nul bij opt) Atheneum Wispelerg - Wispelergstrt - 9000 Gent Bijlge - Leerfihes (3 e jr 5uur wiskunde) Eigenshppen vn de ewerkingen in R Nm Kls. - 1 - Leerfihe 1 Eigenshppen vn de optelling in R Nm vn de eigenshp Eigenshp

Nadere informatie

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College Rembrandt College Veenendaal Protocol medicijnverstrekking Begeleiding van leerlingen met dyscalculie Rembrandt College Mei 206 Begeleiding van leerlingen met dyscalculie Leerlingen met dyscalculie krijgen

Nadere informatie

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen.

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen. Schaal Hieronder staat een afbeelding van het raam van het van Gogh-museum waardoor een inbreker zou zijn ontsnapt. Een advocaat voert aan dat door het gat in de ruit zijn client niet heeft kunnen ontsnappen,

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Bewerkingen met eentermen en veeltermen

Bewerkingen met eentermen en veeltermen 5 Bewerkingen met eentermen en veeltermen Dit kun je l 1 werken met letters ls onekenden, ls vernderlijken en om te verlgemenen 2 een tel mken ij een situtie 3 de fsprken over lettervormen toepssen 4 oppervlkteformules

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk. Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3 LES 1 LES 2 LES 3 LES 4 LES 5 (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo) opdracht 4 (hele getallen

Nadere informatie

2 Formules herschrijven

2 Formules herschrijven Formules herschrijven Verkennen www.mth4ll.nl MAThADORE-bsic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules herschrijven Inleiding Verkennen Probeer de vrgen bij Verkennen zo goed mogelijk te bentwoorden.

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken?

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken? 0 vergelijken en op volgorde zetten vn eenvoudige reuken en kommgetllen reuken omzetten in kommgetllen en omgekeerd Welke reuk is het grootst? 5 6 2 7 9 5 5 9 2 5 7 2 7 8 8 9 8 5 00 5 6 7 20 5 7 27 70

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie