Voorbereidende opgaven Stoomcursus

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Voorbereidende opgaven Stoomcursus"

Transcriptie

1 Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht lgerïsche vrdigheden en werk hem dn uit tot wr je kunt. Lt het voor de rest rusten. Deze opgven zijn edoeld om je kennis vn de rekenregels op te frissen en om de docenten een indictie te geven vn jouw lgerïsche vrdigheden. De opgven geven geen goed eeld vn het niveu vn de cursus. Je mg geen rekenmchine geruiken. Werk de hkjes uit:. ( ) 6 ( 4). ( 4 5) ( 5 4 ) c. + Vereenvoudig zo ver mogelijk en schrijf zonder geroken of negtieve eponenten:. ( ) ( ) d e. (4 ) c. + f. Schrijf met geroken en/of negtieve eponenten: g. h. 7 i. 5 Herleid:.. Wiskunde B vwo voorereidende opgven SSL 05

2 4 Vereenvoudig zo ver mogelijk: c Schrijf links om tot rechts (schrijf lle tussenstppen op!):. ( p ) p p = c. + = = n n n d. + = + 6 Neem onderstnde tel over in je schrift en vul hem in (de zinnen hoef je niet over te nemen, mr vul wel je oplossingen, wel/niet en één/twee in) Even mcht (,,, ) Oneven mcht (,,, ) Een even mcht heeft één/twee oplossing(en). De oplossing(en) vn is/zijn dus: 4 = 6 Een oneven mcht heeft één/twee oplossing(en). De oplossing(en) vn is/zijn dus: = 8 Bij een even mcht zijn er wel/geen negtieve 4 oplossingen mogelijk. = 6 kn dus wel/niet. Bij een oneven mcht zijn er wel/geen negtieve oplossingen mogelijk. = 8 kn dus wel/niet. 7 Druk p uit in q:. q = + 4. p p q = p Tip: lukt dit niet, kijk dn in het eknopt overzicht lgerïsche vrdigheden (Bijlge ). 8 Bepl en : + = 5 = 5 Wiskunde B vwo voorereidende opgven SSL 05

3 9 Symmetrie ( ) 6. Toon n dt f = symmetrisch is t.o.v. de y-s. ( ) 5. Toon n dt g = puntsymmetrisch is t.o.v. (0,0). Tip: lukt dit niet, kijk dn in het eknopt overzicht lgerïsche vrdigheden (Bijlge ). Hoeveel tijd he je tot hier n de opgven esteed? Wt vond je vn deze opgven? Heel mkkelijk 4 5 Heel moeilijk Wiskunde B vwo voorereidende opgven SSL 05

4 Beknopt overzicht lgerïsche vrdigheden In dit overzicht vind je de volgende vrdigheden:. Hkjes e. Omschrijven. Mchten f. Stelsels vn vergelijkingen c. Wortels g. Breuksplitsen d. Breuken. Hkjes Wnneer hkjes? In de volgende twee gevllen he je hkjes nodig: A B C v: AB C v: Als dingen lleen met elkr worden vermenigvuldigd, he je geen hkjes nodig, dus: v: ( ) Hkjes uitwerken v: v: ( 4) 4 4 ( )( ) 6 Ps op voor de volgende veelgemkte fout: v: ( ). Mchten regel c c c c ( ) ( ) c c c c c c c vooreeld 5 6 ( ) ( ) ( ) 4 c. Wortels v: v: 4 4!!!! v: !!!! Wiskunde B vwo voorereidende opgven 4 SSL 05

5 d. Breuken teller Breuk = noemer. Vermenigvuldigen Teller teller, noemer noemer. v: Delen Delen door een reuk is vermenigvuldigen met het omgekeerde. v: / Optellen Noemers gelijk mken. Dit doe je door eide reuken op een specile mnier met te vermenigvuldigen, nmelijk oven en onder keer de noemer vn de ndere reuk. v: ( ) v: ( ) ( ) ( ) Vereenvoudigen c c c c ( ) v: ( ) c c c v: Let op: c c v: Wiskunde B vwo voorereidende opgven 5 SSL 05

6 e. Omschrijven Als gegeven is: A = iets met B, kn het voorkomen dt je B moet uitdrukken in A. Dt etekent dt je moet zorgen voor: B = iets met A. Stppenpln omschrijven ) Hl lle termen met B links, lle ndere termen nr rechts ) Isoleer B door n eide knten omgekeerde ewerkingen uit te voeren. Omgekeerde ewerkingen zijn plus en min, keer en gedeeld door, kwdrt en wortel enz. v: 4, druk uit in ) 4 termen met nr links, met nr rechts ) ( 4 ) werk weg: vermenigvuldig n eide knten met ( 4 ) omgekeerde vn is Voor twee specile gevllen is er een etr stp nodig: B in noemer vn reuk kruislings vermenigvuldigen B in meerdere termen uiten hkjes hlen v: stt in de noemer, dus kruislings vermenigvuldigen: ( ) ) ) n eide knten delen door v:, druk uit in ) stt in meerdere termen, dus uiten hkjes hlen: ( ) ) n eide knten delen door Wiskunde B vwo voorereidende opgven 6 SSL 05

7 f. Stelsels vn vergelijkingen Er zijn twee methoden voor het oplossen vn een stelsel vn vergelijkingen. Het is voldoende ls je één vn eide eheerst. Sustitutie ( vervngen ) Anpk: kies een letter, zeg A, en druk die uit in de ndere letter, zeg B, met ehulp vn een vn de vergelijkingen (zie omschrijven ). Vul de zo gevonden uitdrukking vn A vervolgens in in de tweede vergelijking en los verder op. 4 v: 8600 Druk uit in met ehulp vn (): 4 Sustitueer dit vervolgens in (): 8(4 ) Bepl nu met ehulp vn de eerder gevonden uitdrukking: Dus = 8 en = 6. Optellen/ftrekken Zorg dt je vn een letter fkomt door de ene vergelijking een geschikt ntl keer vn de ndere f te trekken. 4 v: 8600 In vergelijking () komt zes keer voor. We kunnen dus vn fkomen door () zes keer vn () f te trekken: () 6(). Dit geeft: Delen door geeft: = 8. Dit vervolgens invullen in () geeft: 8 4 Dus = 6. Wiskunde B vwo voorereidende opgven 7 SSL 05

8 g. Breuksplitsen Soms is het nodig voor integreren om een reuk te schrijven ls de som vn twee reuken. Dit gt met het volgende stppenpln: Stppenpln reuksplitsen ) Tel de twee reuken ij elkr op ) Stel de tellers n elkr gelijk ) Stelsel oplossen (zie f) v: epl en 4 00 ( 6)( 8) ) ( 6)( 8) ( 8) ( 6) ( 6)( 8) ( 6)( 8) 4 00 ( ) 86 ( 6)( 8) ( 6)( 8) ) 4 00 ( ) 8 6, dus: 4 en ) Zie onderdeel f. h. Lijn- en puntsymmetrie Een functie f is lijnsymmetrisch ten opzichte vn de y-s ls geldt: f f v: f f f, dus f is lijnsymmetrisch t.o.v. de y-s.. Een functie f is puntsymmetrisch ten opzichte vn (0,0) ls geldt: f f. v: f f f, dus f is puntsymmetrisch tov (0,0). Wiskunde B vwo voorereidende opgven 8 SSL 05

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

element (of de rol van nul bij opt)

element (of de rol van nul bij opt) Atheneum Wispelerg - Wispelergstrt - 9000 Gent Bijlge - Leerfihes (3 e jr 5uur wiskunde) Eigenshppen vn de ewerkingen in R Nm Kls. - 1 - Leerfihe 1 Eigenshppen vn de optelling in R Nm vn de eigenshp Eigenshp

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Breuken en verhoudingen

Breuken en verhoudingen WISKUNDE IN DE BOUW Breuken en verhoudingen Leerdoelen N het estuderen vn dit hoofdstuk moet je in stt zijn om: te rekenen met reuken en verhoudingen; reuken toe te pssen in erekeningen vn onder ndere

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat Modelvrgstukken Algebr vn wortelvormen Tenzij expliciet nders vermeld stellen lle letters positieve getllen voor Vereenvoudigen vn enkelvoudige wortels ; Dit is gewoon de bsisregel ) ) 8 ) ; ) Een 8-ste

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = =

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = = 7b Hulp bld 1 nm 1 Reken uit met de rekenmchine 444 : 37 = 299 : 23 = 882 : 63 = 364 : 26 = 2 Reken uit met rest Voorbeeld: 469 : 37 = ntwoord op de rekenmchine: 12,675675 37 kn 12 keer vn 469 f 12 37

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Hoe maak je een huiswerkplanning?

Hoe maak je een huiswerkplanning? PLANNEN HOE MAAK JE EEN HUISWERKPLANNING? Hoe mk je een huiswerkplnning? Wt he je ern? In deze les leer je hoe je een huiswerkplnning mkt. Dt is hndig, wnt zo g je goed voorereid n de slg en kun je sneller

Nadere informatie

Eenvoudige breuken. update juli 2007 WISNET-HBO

Eenvoudige breuken. update juli 2007 WISNET-HBO Eenvoudige reuken update juli 2007 WISNET-HBO De edoeling van deze les is het repeteren met pen en papier van het werken met reuken. Steeds wordt ij geruik van letters verondersteld dat de noemers van

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid.

Deze les krijgen de leerlingen een introductie over ongelijke breuken. Dit met name gericht op het vergelijken met een bemiddelende grootheid. Lesopzet De door ons gemkte lessencyclus wordt in drie opeenvolgende rekenlessen gegeven. Les is iets korter dn les en, wrdoor er eventueel extr herhling vnuit les ingepst kn worden.. Les Deze les krijgen

Nadere informatie

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen. Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen?

Nadere informatie

Wiskunde voor de eerste klas van het gymnasium

Wiskunde voor de eerste klas van het gymnasium Wiskunde voor de eerste kls vn het gymnsium UITWERKINGEN AUTEUR: JOHANNES SUPIT COSMICUS MONTESSORI LYCEUM AMSTERDAM, 200 Hoofdstuk Alger 98 Alger. Inleiding.2 Bsiskennis.2. De getllenlijn.2.2 Symolen,

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

100 sin(α) kn. 3,0 m. De horizontale en verticale componenten van de kracht van 100 kn worden in dit voorbeeld bepaald:

100 sin(α) kn. 3,0 m. De horizontale en verticale componenten van de kracht van 100 kn worden in dit voorbeeld bepaald: Werken met vectren In deze krte ntitie wrden sisvrdigheden vr het werken met vectren tegelicht met een pr vreelden. Het ek gt uit vn enige vrkennis m..t. vectren mr die vrkennis is niet vr iedere strtende

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

Accenten blok 10 10 7 = 7 = 7 = 7 = 7 = 7 = 1 minder. de helft. 1 meer 1 meer. 1 minder

Accenten blok 10 10 7 = 7 = 7 = 7 = 7 = 7 = 1 minder. de helft. 1 meer 1 meer. 1 minder Accenten lok 0 0 De leerlingen leren het optellen vnf een tienvoud in één sprong, ijv. 0. 0 7 de helft minder 7 Bij het rekenen met geld leren de leerlingen edrgen ls,98 fronden. 7 7 minder meer meer 7

Nadere informatie

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle Werken met Prezi Infolok Prezi: www.prezi.om prijs ipd pp geshikt voor leerling voordeel Stp 1: het nmken vn een ount. - G nr de wesite. - Kies voor 'Sign Up. grtis j presentties en mindmppen j, studentount

Nadere informatie

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Inhoud. Inleiding 5. 1 Handgereedschappen Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 138

Inhoud. Inleiding 5. 1 Handgereedschappen Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 138 Inhoud Inleiding 5 1 Hndgereedschppen 10 2 Verindingen 42 3 Elektrische techniek 84 4 Pompen 116 5 Verrndingsmotoren 138 Trefwoordenlijst 183 INHOUD 9 1 Hndgereedschppen 1.1 Opdrcht 1.1 Gereedschppen opzoeken

Nadere informatie

11 Wiskundige denkactiviteiten: digitale bijlage

11 Wiskundige denkactiviteiten: digitale bijlage Wiskundige denkctiviteiten: digitle ijlge Suggesties voor opdrchten wrij de leerlingen uitgedgd worden wiskundige denkctiviteiten te ontplooien. De opdrchten heen de volgende structuur. In de kop stn chtereenvolgend:

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Reguliere Expressies en Automaten: Overzicht

Reguliere Expressies en Automaten: Overzicht Reguliere Expressies en Automten: Overzicht Alfetten Tekenrijtjes over een lfet Tlen over een lfet Reguliere Uitdrukkingen Reguliere Operties Herkenners voor Reguliere Ptronen Deterministische utomten

Nadere informatie

Rationale getallen: vermenigvuldiging, deling en machtsverheffing

Rationale getallen: vermenigvuldiging, deling en machtsverheffing Rtionle getllen: vermenigvuldiging, deling en mhtsverheffing Dit kun je l 1 gehele getllen vermenigvuldigen gehele getllen delen een mht vn een geheel getl erekenen reuken vereenvoudigen gehele getllen

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Blok - Vrdigheden ldzijde 0 Dt geldt voor h, len m ; de grfieken zijn symmetrish in de y -s. Die zijn tegengesteld; ijvooreeld g( ) g () De grfiek is symmetrish in de oorsprong. funtie symmetrie in de

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

= = = = = = = = = = = =

= = = = = = = = = = = = 4 nm Hulp ld 1 1 eken uit 50 + 20 = 60 + 30 = 40 + 30 = 20 + 60 = 10 + 50 = 30 + 20 = 70 + 10 = 30 + 50 = 2 eken uit Denk n de getllenlijn. 30 + 24 = 50 + 26 = 70 + 19 = 40 + 39 = 60 + 32 = 30 + 38 = 50

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Wiskunde voor 3 havo. deel 1. Versie 2013. Samensteller

Wiskunde voor 3 havo. deel 1. Versie 2013. Samensteller Wiskune voor 3 hvo eel 1 Versie 2013 Smensteller 2013 Het uteursreht op it lesmteril erust ij Stihting Mth4All. Mth4All is erhlve e rehtheene zols eoel in e hieroner vermele retive ommons lientie. Het

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Q: Afstand tot E is. R: Afstand tot E is

Q: Afstand tot E is. R: Afstand tot E is H9 PARABOLEN & HYPERBOLEN VWO 9. INTRO Q: Afstnd tot E is 69 6 7 () ( ) 9. Afstnd tot k is 9. R: Afstnd tot E is (6 ) 6. 669 6 7 Afstnd tot k is 6. us Q en R liggen even ver vn E ls vn k. e fstnd tot k

Nadere informatie

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel.

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel. 15 Ski-eroics Hoofdstuk 15, Pgin 1 vn 5 15.1 Inleiding Het is elngrijk om SneeuwFit triningen gevrieerd te houden. Proeer het nod vn ctiviteiten zo verschillend mogelijk te houden. Een vooreeld hiervn

Nadere informatie

Opdrachten bij hoofdstuk 2

Opdrachten bij hoofdstuk 2 Opdrchten ij hoofdstuk 2 2.1 Het vullen vn je portfolio In hoofdstuk 2 he je gezien op welke mnier je de informtie kunt verzmelen. An de hnd vn die informtie kun je de producten mken wrmee jij je portfolio

Nadere informatie

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES

4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4. LOGARITMISCHE EN EXPONENTIËLE FUNCTIES 4.. Logritmische functies 4... Inleiding 4... Rekenen met rtionle eponenten Een mcht met rtionle eponenten (strikt positief grondtl) kennen we reeds vn vroeger:

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ICT - Grfieken met VU-grfiek ldzijde 64 1 De snijpunten met de x-s zijn ( 3, ), (4, ) en (5, ). f( 3) =, 5 ( 3) 3 ( 3) 35, 3+ 3= f( 4) =, 5 ( 4) 3 ( 4) 35, 4+ 3= f( 5) =, 5 ( 5) 3 ( 5) 35, 5+ 3= Met de

Nadere informatie

1 Theoretische achtergrond voor het schakelen van weerstanden.

1 Theoretische achtergrond voor het schakelen van weerstanden. Theoretische chtergrond voor het schkelen vn weerstnden.. Serieschkeling. R 2 n Rs R* *2 *n s eide schkelingen zijn equivlent ls een uitenstnder geen verschil ziet tussen eide schkelingen. ij het nleggen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ldzijde f () Er is geen symmetrie in een vertile lijn. Alle rklijnen heen een positief hellingsgetl. Wrshijnlijk (0, 0). d f () e - ICT - Rklijnen ldzijde Geruik dt d y om de hellingsgetllen vn de rklijnen

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Statistiek voor de beroepspraktijk

Statistiek voor de beroepspraktijk Sttistiek voor e eroepsprktijk Rekenregels In een pr prgrfen stn ter verfrissing vn het geheugen e elngrijkste rekenregels vermel. Deze regels zijn miniml enoig om e formules en e oefeningen in het oek

Nadere informatie

Verschil zal er zijn hv bovenbouw WERKBLAD

Verschil zal er zijn hv bovenbouw WERKBLAD Vershil zl er zijn hv ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4. In

Nadere informatie

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11 84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +

Nadere informatie

Verschil zal er zijn mvbo bovenbouw WERKBLAD

Verschil zal er zijn mvbo bovenbouw WERKBLAD Vershil zl er zijn mvo ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4.

Nadere informatie

Ajodakt. Rekenen. Breuken. Breuken groep 8. Colofon. Zelfstandig werken. Antwoorden. Rekenen. Groep 8

Ajodakt. Rekenen. Breuken. Breuken groep 8. Colofon. Zelfstandig werken. Antwoorden. Rekenen. Groep 8 Ajokt Rekenen Breuken Breuken groep Colofon Vormgeving Ziner, Utreht omslg Vn Wermeskerken, Apeloorn innenwerk Antwooren Opmk PrePressMeiPrtners, Wolveg ũžěăŭƚ ŵăăŭƚ ĚĞĞů Ƶŝƚ ǀĂŶ ŚŝĞŵĞDĞƵůĞŶŚŽī ĞůĨƐƚĂŶĚŝŐ

Nadere informatie

Wiskunde voor 1 havo/vwo

Wiskunde voor 1 havo/vwo Wiskunde voor 1 hvo/vwo Deel 2 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons

Nadere informatie

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter.

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter. Opgve 1 Dit is een roosterord. Elk roosterhokje is 5 m ij 5 m. Hoeveel edrgt de oppervlkte vn dit ord? Opgve 2 Welke oppervlktemten ken je l? Noem er zoveel mogelijk. De oppervlkte-eenheid is de vierknte

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

log(a) = b a = g Opdracht 1 Opdracht 2 Bereken x: 2 2 =4 2 3 =8 2 4 = = = = = = = =2048 Enz...

log(a) = b a = g Opdracht 1 Opdracht 2 Bereken x: 2 2 =4 2 3 =8 2 4 = = = = = = = =2048 Enz... Hoofdstuk 6 loritmen We zen l eerder dt je bij het vermenivuldien vn mchten met elijk rondtl de exponenten op m tellen. Dt is bijzonder, wnt ls je bij een willekeurie vermenivuldiin de etllen zou kunnen

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie