Het metriek stelsel. Grootheden en eenheden.

Maat: px
Weergave met pagina beginnen:

Download "Het metriek stelsel. Grootheden en eenheden."

Transcriptie

1 Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die je naar elkaar moet omrekenen. Eigenlijk net als bij de kommagetallen gaan we dan bij het omrekenen de komma een paar cijfers opschuiven naar links of naar rechts. En natuurlijk een paar nullen toevoegen als dat nodig is. Grootheden en eenheden. Lengte, Inhoud, Gewicht zijn algemene termen waarmee we aangeven wat we bedoelen. Deze algemene woorden noemen we grootheden omdat we wel aangeven wat we willen weten maar nog niet heel duidelijk hoeveel. Als we heel precies aangeven om hoeveel het gaat, dan drukken we dat uit in eenheden (van deze grootheden). Kijk maar naar onderstaande tabel met voorbeelden. Grootheid LENGTE GEWICHT INHOUD Eenheden mm, cm, dm,km etc.. cg, g, kg, hg etc.. dm3, L, cl Lengte Als we iets meten met een lineaal, dan doen we dat in millimeters, centimeters of decimeters. Een lineaal is meestal niet zo groot als een meter. Wijs met je vingers de verschillende eenheden eens aan. Je mag ook je handen of armen gebruiken. Hoeveel mm gaan er in een cm? en in een dm? Op de volgende pagina staan wat plaatjes. Kijk even naar het omrekenen van een km (kilometer) naar een hm (hectometer). Er staat bij dat het x10 moet. Een kilometer is 1000 meter. Een hectometer is 100 meter. Dus : Een KM = 10 x een Hm. Dus 50 km is 500 hm bijvoorbeeld. Als je omrekent van een km naar een hm, gaat de komma dus een plaats naar rechts. Andersom gaan er 10 dm in een meter, want 0,1 meter is een dm (een dm is 10 cm). als je van een grote naar een kleinere maat gaat, gaat de komma naar rechts, anders naar links.

2 Dus: (leer uit je hoofd), ook het omgekeerde geldt natuurlijk Van bekende groot naar onbekende klein: keer 10 ofwel komma naar rechts Als je meer stapjes moet doen, dus van km naar m bijvoorbeeld, dan geldt steeds x 10. Je kunt ieder stapje steeds weer uitreken, of begrijpen dat: 10 x 10 = stapjes 10 x 10 x 10 = stapjes 10 x 10 x 10 x 10 = stapjes enzovoort Dus hoeveel km is 1 m? We gaan uit van 1 m. En van daar naar km, dus gaan we van een (bekende) kleine waarde naar een (uit te rekenen) grote waarde. Dus van klein naar groot, dus komma naar links. Hoeveel stapjes? m dam hm km dus drie stapjes, dus de komma drie plaatsen naar links. Ga uit van Stapje 1 Stapje 2 Stapje 3 1 m 0,1 dam 0,01 hm 0,001 km Ook wel : 1 m = 1:1000 km = 1/1000 km = 1 duizendste km Dat wisten we ook wel, want er gaan 1000 m in een kilometer. Oefensommetjes: 1 km =.. dm 5 hm =.. dam 30 mm =.. dm 15 dam =.. m bedenk er zelf ook en paar... Gewicht en inhoud. Wat voor lengte geldt, geldt ook voor gewicht. We meten dan niet met een lineaal maar met een weegschaal. Maar het komt op hetzelfde neer. Bij de grootheid Lengte, hoort de eenheid meter, bij de grootheid Gewicht, hoort de eenheid gram. En dan heb je weer Kg, Hg, Dag, G, Dg, Cg, Mg. En ook de rekenregels gelden precies hetzelfde. Probeer maar eens: 1 hg =.. kg 12 dg =.. mg 0,5 g =.. dag 400 kg =.. g

3 En zo ook voor Liter. Dit is de eenheid van de grootheid inhoud. We meten de inhoud vaak met een maatbeker (zoals je moeder in de keuken heeft). Zo heb je ook weer Kl, Hl, Dal, L, Dl, Cl, Ml. Probeer op dezelfde manier: 3 hl =.. kl 18 dl =.. ml 0,5 L =.. dal 400 kl =.. L Omtrek. Het woord zegt het al. Als je om iets een lijn trekt, dan ga je eromheen, of loop je eromheen. De afstand die je potlood of je voeten dan hebben afgelegd (in meters) is dan de omtrek ervan. Dus als je om een tafel van 1 meter bij 2 meter loopt, dan loop je 2 keer die meter en 2 keer die 2 meter (doe het maar eens). De omtrek is dan =6 meter. Makkie toch? Probeer nu de omtrek van : 1) Een weiland van 150 m breed en 300 m lang 2) Een Standbeeld met 3 ongelijke zijden van 50cm, 1,2 m, 68 cm. Oppervlakte. Je hebt vast wel eens gehoord van 3d. Maar wat betekent dat? Het betekent eigenlijk 3 dimensionaal, oftewel 3 dimensies. Moeilijke woorden, maar 3D betekent eigenlijk een ruimte. Dus dat je in een film iets ruimtelijk ziet en niet plat. Ruimte betekent eigenlijk dat je drie richtingen hebt. Namelijk, naar links, naar rechts en naar boven. Als je de lengte van deze drie richtingen weet in een kamer, dan weet je hoe groot die kamer is. Dus wat de inhoud van die kamer is. Heb je maar 2 dimensies, dus 2D, dan weet je alleen hoe groot de vloer van die kamer is, oftewel de oppervlakte van die vloer. Een film is dus normaal 2D (een plat scherm) maar kan door trucage lijken of het ruimtelijk is, met een diepte, dus 3D. Een oppervlakte van een vierkant of een rechthoek (een vloer, een stuk land)kunnen we dus berekenen met de twee zijden hiervan. We doen dat door dee 2 zijden met elkaar te vermenigvuldigen. Dus de oppervlakte van een vloer van 3 bij 4 meter is : 3 x 4 = 12. De eenheid van oppervlakte kan dan geen meter zijn, want we doen een meter keer een meter. We noemen dit dan vierkante meter of m2. Die 2 is van 2- dimensionaal! Oppervlakte bereken je door de lengte keer de breedte te doen. De eenheid is vierkante meter (m2) a) Wat is de oppervlakte van een vierkant met zijde 35 cm? b) En de oppevlakte van het weiland in het vorige hoofdstuk? c) Wat is de oppervlakte van een driehoek die ontstaat als je het weiland schuin doorsnijdt van punt naar punt?

4 Inhoud Als je in 3 dimensies denkt, dan heb je het dus over een ruimte. Bijvoorbeeld een kamer, maar het kan ook een doos of een vaas zijn. Als de zijden recht zijn en haaks op elkaar staan, zoals bij een doos of een kamer, dan kunnen we de inhoud ervan uitrekenen. Dat gaat eigenlijk net zo als bij oppervlakte. Nu niet in 2, maar in 3 dimensies. Dus: Lengte x breedte x hoogte = inhoud. De eenheid hiervan is kubieke meter (m3) Die 3 is weer van 3- dimensionaal oftewel 3D! Als we de inhoud van een kamer van B=4 m, L = 6 m en H = 2,5 m willen uitrekenen, dan is dat dus 4 x 6 x 2,5 = 60 kubieke meter oftewel 60 m3. Stel je zo n kubieke meter eens voor. Dat is een doos van 1 meter bij 1 meter bij 1 meter. Wijs hem eens aan met je armen! Hoeveel liter zou daar in gaan? Om dat te weten moeten we weten dat een liter gelijk is aan een kubieke decimeter. Dus in een bakje van 10cm x10cm x10 cm past precies een liter water. Als je het niet gelooft, kun je zo n bakje van karton maken en er dan een plastic zak over leggen. Giet hem dan vol met de maatbeker uit de keuken. Dus : een kubieke dm (dm3) = 1 liter Hoeveel liter gaat er nu in een kubieke meter? Of hoeveel van die kubusjes (doosjes van 10x1010) passen er in die enorme kubuis van 1000x1000x1000? Er kunnen 10 kubusjes in de lengte, 10 in de breedte en 10 in de hoogte. Dus kunnen er 10 x 10 x 10 = 1000 kubusjes in. Dus 1000 liter in een m3 (kubieke meter). Probeer nu zelf: a) Hoeveel m3 zand past in een bak van 50cm bij 1 m bij 1,5 m? b) Hoeveel water staat in een halfvol zwembad van 30 m x 10 m x 3 m? c) Wat is de inhoud van een 80cm hoge doos met B=1,2m en L= 4dm? d) Wat is de inhoud van een 30 cm hoge rechthoekige vaas met een vierkante bodem met een oppervlakte van 10 cm2 e) Wat is de inhoud van een ronde vaas van 30 cm hoog als de bodem ook een oppervlakte van 10cm2 heeft?

5

6

7 Opgaven (je mag een kladblaadje en rekenmachine gebruiken) 1) Geef met je vingers of handen de volgende maten aan: 1 mm 10 cm 75 cm 2 m 3 dm 1 m2 30 cm2 5 dm2 5 dm3 1 liter 2 liter 1000 liter 2) Hoeveel dam is Hoeveel decigram is a) 100 m? 100 gram b) 100 cm? 100 centigram c) 100 km? 100 kilogram 3) Wat is de oppervlakte van : a) een vierkant met zijde 5 cm b) een rechthoek met zijde a=6 cm en zijde b = 50% langer c) de driehoek die de helft is van de rechthoek van 5 x 8 m d) een rechte driehoek met twee zijden van beiden 6 cm. e) Het figuur met 8 hoeken dat 3/7 deel is van een weiland met oppervlakte 700 m2 f) De cirkel die je kunt tekenen in een vierkant van 10 x 10 cm (ongeveer)? 4) Wat is de inhoud van een: a) Vierkante vaas met zijde 10 cm en hoogte 20 cm? antwoord in cm3 a1) wat is dat antwoord in mm3? en in dm3? b) Kubus met zijde 10 cm? antwoord in liters c) schuin doorgesneden halve kubus met zijde 50 cm? antwoord in liters d) Een zandbak van 2x2x0,5 m, half gevuld met zand? antwoord in liters e) Een vaas met de cirkel van 3f als bodem, 30 cm hoog? In liters

De laatste loodjes...

De laatste loodjes... De laatste loodjes... Hieronder vindt je een uittreksel van alles dat we met rekenen hebben geoefend. En nog een paar herhaalsommetjes. Om als laatste nog even door te lezen om te zien of je alles nog

Nadere informatie

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige Meten is weten Bloemlezing uit 36 bladzijden voor een eerste indruk Leer- Meten en is oefenboek weten Bloemlezing metriek uit stelsel 36 bladzijden voor ISBN: een 978-90-821249-1-0 eerste indruk Auteur

Nadere informatie

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm

Meten is weten ANTWOORDENBOEK. 88972 Meten is weten. Antwoordenboek. = 95 mm 6 cm = 60 mm 10 cm = 100 mm. 1 cm = 15 mm 9 cm Meten is weten Antwoordenboek Opdracht 1 1 cm = 10 mm 4 cm = 40 mm 5 mm 4 cm = 45 mm 1 cm = 15 mm 9 cm = 95 mm 6 cm = 60 mm 10 cm = 100 mm Opdracht 2 1 cm = 10 mm 4 cm = 40 mm 1,5 cm = 15 mm 6,5 cm = 65

Nadere informatie

KAPSTOK REKENEN inhoud

KAPSTOK REKENEN inhoud KAPSTOK REKENEN inhoud pagina Optellen 2 Optellen cijferen 3 Aftrekken 4 Aftrekken cijferen 5 Vermenigvuldigen 6 Vermenigvuldigen cijferen 7 Delen 8 Tafels 9 Deeltafels 10 Breuken 11 Meten 12 Tijd wijzers

Nadere informatie

TOELICHTING METRIEK STELSEL

TOELICHTING METRIEK STELSEL TOELICHTING METRIEK STELSEL 2 3 642_rv_wb_metriek_stelsel_bw.indd 2 8-03-3 23: liter ml 00 4 5 6 642_rv_wb_metriek_stelsel_bw.indd 3 8-03-3 23: Rekenvlinder Metriek stelsel Toelichting Uitgeverij Zwijsen

Nadere informatie

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College Rembrandt College Veenendaal Protocol medicijnverstrekking Begeleiding van leerlingen met dyscalculie Rembrandt College Mei 206 Begeleiding van leerlingen met dyscalculie Leerlingen met dyscalculie krijgen

Nadere informatie

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd De dollar heeft een andere waarde dan de euro. De verhouding van de waarde van de ene munt ten opzichte van de andere heet de wisselkoers. Als je een munt koopt, betaal je de aankoopkoers. De aankoopkoers

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km Inhoudsopgave: a: Inleiding b: Grootheden: (voor het basis-onderwijs) 1. Lengte 2. Oppervlakte 3. Volume, inhoud 4. Massa (vroeger: gewicht) 5. Tijd (voor het voortgezet onderwijs) 6. Temperatuur c. Omrekenregels

Nadere informatie

Aanvulling hoofdstuk 1 uitwerkingen

Aanvulling hoofdstuk 1 uitwerkingen Natuur-scheikunde Aanvulling hoofdstuk 1 uitwerkingen Temperatuur in C en K Metriek stelsel voorvoegsels lengtematen, oppervlaktematen, inhoudsmaten en massa Eenheden van tijd 2 Havo- VWO H. Aelmans SG

Nadere informatie

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Meten en maten K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl De dollar

Nadere informatie

klas 2-3 - 4 "Eenheden"

klas 2-3 - 4 Eenheden Naam: klas 2-3 - 4 "Eenheden" Klas: Het woord eenheid betekent dat dingen hetzelfde zijn. In de natuurkunde, scheikunde en techniek kan van alles gemeten worden. Iedereen kan elkaars metingen pas gebruiken

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

9.1 Oppervlakte-eenheden [1]

9.1 Oppervlakte-eenheden [1] 9.1 Oppervlakte-eenheden [1] De omtrek van een figuur bereken je door uit te rekenen hoe lang het is als je één keer langs de rand van de figuur gaat. Omtrek = l + l + l + l + l + l + l + l = 14 + 8 +

Nadere informatie

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd.

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd. REKENEN Hfst 1-3 PROCENTEN Procenten betekent per honderd. Percentage Groeifactor 1% 1/100 0,01 2% 2/100 0,02 10% 10/100 0,10 99% 99/100 0,99 104% 104/100 1,04 150% 150/100 1,50 Rekenen met procenten:

Nadere informatie

Gebruik van dit aanvullingskatern Maten en gewichten is alleen toegestaan aan gebruikers van NOI-uitgaven voor (bedrijfs)rekenen.

Gebruik van dit aanvullingskatern Maten en gewichten is alleen toegestaan aan gebruikers van NOI-uitgaven voor (bedrijfs)rekenen. 19 19 matenengewichten Gebruik van dit aanvullingskatern Maten en gewichten is alleen toegestaan aan gebruikers van NOI-uitgaven voor (bedrijfs)rekenen. NOI 1.9 1 INLEIDING In het dagelijkse leven wordt

Nadere informatie

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden Spiekboekje Knowledgebridge Onderwijs Hein v.d. Velden 1 rekenen tot 20 verliefde getallen verliefde getallen zijn samen 10 1+9= 2+8= 3+7= 10 4+6= 5+5= 0+10= 2 getallenlijn 20 + plus 7 + 6= 7 + 3 = 10

Nadere informatie

Wat is een standaardmaat?

Wat is een standaardmaat? Meten kun je op veel verschillende manieren. Als we iets meten dan vergelijken we dit met een afgesproken standaardmaat. Wat is een standaardmaat? Lang geleden is er afgesproken dat de afstand tussen twee

Nadere informatie

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep

spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep spiekboek rekenen bereid je goed voor op de entreetoets van het Cito groep 3 COLOFON DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 7 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Aanvulling hoofdstuk 1

Aanvulling hoofdstuk 1 Natuur-Scheikunde Aanvulling hoofdstuk 1 Temperatuur in C en K Metriek stelsel voorvoegsels lengtematen, oppervlaktematen, inhoudsmaten en massa Eenheden van tijd VMBO- Tl2 H. Aelmans SG Groenewald 1.

Nadere informatie

drs. W.M.F. Beuker, training en begeleiding in onderwijs

drs. W.M.F. Beuker, training en begeleiding in onderwijs Stadsdeel zuidoost H1 Getallen een 1 tien 10 honderd 100 duizend 1 000 tienduizend 10 000 honderdduizend 100 000 een miljoen 1 000 000 tien miljoen 10 000 000 honderd miljoen 100 000 000 een miljard 1

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

1. Bereken. 2. Bereken. Oefenopgaven. F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm

1. Bereken. 2. Bereken. Oefenopgaven. F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm Oefenopgaven. 1. Bereken. A. 5 m = cm B. 4 hm = dm C. 3 km = m D. 300 cm = dm E. 2500 m = km F. 2 km = cm G. 3 dm = mm H. 4,5 cm = m I. 250 dm = dam J. 3,12 hm = dm 2. Bereken. A. 3 dm² = cm² B. 4 cm²

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Meten. Kirsten Nederpel. CC Naamsvermelding 3.0 Nederland licentie.

Meten. Kirsten Nederpel. CC Naamsvermelding 3.0 Nederland licentie. Auteur Laatst gewijzigd Licentie Webadres Kirsten Nederpel 24 June 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/73382 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.

Nadere informatie

Tipboekje. Herman Jozefschool. Groep 8

Tipboekje. Herman Jozefschool. Groep 8 Tipboekje Herman Jozefschool Groep 8 Inhoudsopgave Tips: Woordsoorten Werkwoorden, Lidwoorden,Zelfstandige naamwoorden en eigen namen Bijvoeglijke naamwoorden,voorzetsels,vragende voornaamwoorden Bezittelijke

Nadere informatie

1. Opbouw van getallenverzamelingen

1. Opbouw van getallenverzamelingen 1. Opbouw van getallenverzamelingen De natuurlijke getallen Wanneer kinderen voor het eerst gaan tellen, gebeurt dat op een natuurlijke manier. Zij leren de hoofdtelwoorden: een, twee, drie, vier, enzovoort

Nadere informatie

DIT IS HET DiKiBO-BOEK VAN

DIT IS HET DiKiBO-BOEK VAN Groep 5 6 & 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij het leren 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 5 & 6

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

2016 W. Danhof / P. Bandstra Bandstra Speciaal Rekenadvies

2016 W. Danhof / P. Bandstra  Bandstra Speciaal Rekenadvies Blad 1: Optellen Optellen Antwoord Tijd Overschr. IT1 Fase 1a M3 A. D. M. H. Voorbeeld: 3 + 5 = Check evt. getalbegrip tot 10 8 + 1 O Gebruik makend van omkering 3 + 5 >> 5 + 3 = 8 2 + 5 O Doortellend

Nadere informatie

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen

Nadere informatie

kilometer hectometer decameter meter decimeter centimeter milimeter km hm dam m dm cm mm

kilometer hectometer decameter meter decimeter centimeter milimeter km hm dam m dm cm mm Op een plattegrond van een stad, maar ook op de landkaart van Nederland worden allerlei wegen kleiner afgebeeld. Omdat je niet de werkelijke maten op papier kunt zetten, maak je gebruik van een schaal.

Nadere informatie

1 de jaar 2 de graad (2uur) Naam:... Klas:...

1 de jaar 2 de graad (2uur) Naam:... Klas:... Hoofdstuk 1 : Mechanica 1 de jaar de graad (uur) -1- Naam:... Klas:... 1. Basisgrootheden en hoofdeenheden In de Natuurkunde is het vaak van belang om de numerieke waarde van natuurkundige grootheden te

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen.

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen. Schaal Hieronder staat een afbeelding van het raam van het van Gogh-museum waardoor een inbreker zou zijn ontsnapt. Een advocaat voert aan dat door het gat in de ruit zijn client niet heeft kunnen ontsnappen,

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

Optellen IT1 Antwoord M3 IT6 Antwoord M

Optellen IT1 Antwoord M3 IT6 Antwoord M Optellen IT1 Antwoord M3 IT6 Antwoord M5 8 + 1 38 + 23 2 + 5 47 + 48 5 + 3 26 + 57 4 + 6 55 + 38 IT2 Antwoord E3 IT7 Antwoord E5 14 + 3 200 + 380 4 + 15 240 + 80 12 + 7 440 + 270 2 + 16 245 + 383 IT3 Antwoord

Nadere informatie

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen REKENMODULE INHOUD Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Inhoud Leerlingtekst Versie 1.0. November 2012 Auteurs: Mieke Abels,

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

M.R. 56 : Overzicht scenario s.

M.R. 56 : Overzicht scenario s. M.R. 56 : Overzicht scenario s. Leerlingengedeelte Schermafdruk uit leerlingenvolgsysteem. Vorderingen per leerling. ALLEMAAL MATEN Leerinhoud Probeer en leerfase (M.R. 56) Oefenreeks(*) A1 Lengte. Tabel

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Nee, ik heb de cijfers nog niet. Ja, ik ga zo tijdens de les verder met nakijken REKENEN. Les Grootheden en Eenheden.

Nee, ik heb de cijfers nog niet. Ja, ik ga zo tijdens de les verder met nakijken REKENEN. Les Grootheden en Eenheden. Nee, ik heb de cijfers nog niet. Ja, ik ga zo tijdens de les verder met nakijken REKENEN Les 2.3.8 Grootheden en Eenheden Hoofdstuk 11 - VANDAAG Studiewijzer Terugblik Grootheden en Eenheden Tijd voor

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 3

Uitwerkingen oefeningen hoofdstuk 3 Uitwerkingen oefeningen hoofdstuk 3 3.4.1 Basis Tijd meten 1 Juli heeft 31 dagen. Wanneer 25 juli op zaterdag valt, valt 31 juli dus op een vrijdag. Augustus heeft ook 31 dagen. 1 augustus valt dus op

Nadere informatie

Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers

Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers Vervolgcursus Rekenen Tweede bijeenkomst 4 februari 2015 vincent jonker & monica wijers Krant Programma 1. Terugblik en huiswerk 2. Kommagetallen 3. Meten 4. Huiswerk Deel 1 HUISWERK Huiswerk Neem een

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers

Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers Vervolgcursus Proeftuin Rekenen Tweede bijeenkomst 3 februari 2016 vincent jonker & monica wijers 1 league is. miles 1 mile is.. furlongs 1 furlong is. chains 1 foot is.. inches 1 yard is inches 1 league

Nadere informatie

Tafelkaart: tafel 1, 2, 3, 4, 5

Tafelkaart: tafel 1, 2, 3, 4, 5 Tafelkaart: tafel 1, 2, 3, 4, 5 1 2 3 4 5 1x1= 1 1x2= 2 1x3= 3 1x4= 4 1x5= 5 2x1= 2 2x2= 4 2x3= 6 2x4= 8 2x5=10 3x1= 3 3x2= 6 3x3= 9 3x4=12 3x5=15 4x1= 4 4x2= 8 4x3=12 4x4=16 4x5=20 5x1= 5 5x2=10 5x3=15

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2 LES 1 LES 2 LES 3 LES 4 LES 5 (hele getallen tot 1000) (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo)

Nadere informatie

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006 Module Rekenvaardigheid in havo als voorbereiding op pabo AN nr..4044.0006 Inleiding Beste leerling, Wanneer je naar de PABO gaat is het belangrijk dat je een goede beheersing hebt van de Nederlandse

Nadere informatie

Bijlage Cijfervaardigheid

Bijlage Cijfervaardigheid Bijlage Cijfervaardigheid 1 Inleiding De bedoeling van deze bijlage is in het kort de standaardrekenprocedures te herhalen. Je hebt in de vooropleiding ongetwijfeld rekenonderwijs genoten, maar vaak is

Nadere informatie

Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C

Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Getallen, Verhoudingen, Meten en meetkunde, Verbanden GETALLEN Onderdeel 1 Optellen en aftrekken (inclusief getalverkenning en schatten)

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Leerlijnen groep 6 Wereld in Getallen

Leerlijnen groep 6 Wereld in Getallen Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

Gecijferdheid II. Reader bij cursuscode PABCIJ2 (Rotterdam) PABCIJD2 (Dordrecht)

Gecijferdheid II. Reader bij cursuscode PABCIJ2 (Rotterdam) PABCIJD2 (Dordrecht) Gecijferdheid II Meten 1: grootheden en eenheden, metriek stelsel, referentiematen en schatten, schaalbegrip, gevarieerde berekeningen met afstand, oppervlakte, inhoud of gewicht, Reader bij cursuscode

Nadere informatie

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en.

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en. Scoreblad bewis naam cursist: datum: naam afnemer: inhoud vraag opmerkingen OK werkpunt niet goed tellen eieren tellen in dozen van 10 getallen verder aanvullen in kralenketting getalbegrip getallen ertussen

Nadere informatie

Bij het cijferend optellen beginnen we bij de eenheden en werken we van rechts naar links:

Bij het cijferend optellen beginnen we bij de eenheden en werken we van rechts naar links: Cijferend optellen t/m 1000 Voor u ligt de verkorte leerlijn cijferend optellen groep 5 van Reken zeker. Deze verkorte leerlijn is bedoeld voor de leerlingen die nieuw instromen in groep 6 en voor de leerlingen

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3.

1. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen door 3. Uitwerkingen practicum ontluikende algebra Vuistregels Geef de vuistregels weer met wiskundige symbolen.. De afstand van onweer in kilometer bereken je door de tijd tussen bliksemflits en donder te delen

Nadere informatie

Leerstofoverzicht groep 3

Leerstofoverzicht groep 3 Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot

Nadere informatie

Vervolgcursus Rekenen. bijeenkomst 4 26 januari 2012 vincent jonker, monica wijers Freudenthal Instituut

Vervolgcursus Rekenen. bijeenkomst 4 26 januari 2012 vincent jonker, monica wijers Freudenthal Instituut Vervolgcursus Rekenen bijeenkomst 4 26 januari 2012 vincent jonker, monica wijers Freudenthal Instituut bron Rapport Landelijk onderzoek naar gemeentelijk hondenbeleid 2011 Volkskrant, 19-2-2012 Overheidssubsidie

Nadere informatie

TOETS REKENEN / WISKUNDE. Naam:... School:...

TOETS REKENEN / WISKUNDE. Naam:... School:... TOETS REKENEN / WISKUNDE Naam:... School:... Datum:... Groep:... 1A. Hoofdrekenen: optellen en aftrekken Reken de sommen op je eigen manier uit. Gebruik het kladblaadje als je een tussenstap wilt noteren.

Nadere informatie

handleiding pagina s 678 tot 686 1 Handleiding 1.2 Huistaken huistaak 20: bladzijde 614 2 Werkboek 3 Posters 4 Scheurblokken

handleiding pagina s 678 tot 686 1 Handleiding 1.2 Huistaken huistaak 20: bladzijde 614 2 Werkboek 3 Posters 4 Scheurblokken week les toets en foutenanalyse handleiding pagina s 678 tot 686 nuttige informatie Handleiding. Kopieerbladen pagina 69: oppervlakte ruit pagina 500: kaart van België pagina 50: afstandentabel België

Nadere informatie

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld

Groep 3. Getalbegrip hele getallen. Optellen en aftrekken. Geld Groep 3 Getalbegrip hele getallen De leerlingen werken de eerste periode in het getallengebied tot 20 en 40. De tweede helft van het jaar ook tot 100. De leerlingen leren het verder- en terugtellen, tellen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

Rekenrijk. F-schrift Antwoordenboek. Reken-wiskundemethode voor het basisonderwijs. Derde editie. Noordhoff Uitgevers

Rekenrijk. F-schrift Antwoordenboek. Reken-wiskundemethode voor het basisonderwijs. Derde editie. Noordhoff Uitgevers Reken-wiskundemethode voor het basisonderwijs Rekenrijk F-schrift Antwoordenboek Derde editie 8b auteurs Ceciel Borghouts Arlette Buter Ans Veltman eindauteur Ko Bazen Noordhoff Uitgevers 10 Les 1 1 Hoe

Nadere informatie

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder.

Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. Oefenopgaven oppervlakte en inhoud 1. Bereken de oppervlakte van de driehoeken en parallellogrammen hieronder. 2. Bereken de oppervlakte van de donkere gedeelten in de tekeningen hieronder. 3. A. Bereken

Nadere informatie

handleiding pagina s 994 tot 1004 1 Handleiding 1.2 Huistaken huistaak 26: bladzijde 841 huistaak 29: bladzijde 919 2 Werkboek 3 Posters

handleiding pagina s 994 tot 1004 1 Handleiding 1.2 Huistaken huistaak 26: bladzijde 841 huistaak 29: bladzijde 919 2 Werkboek 3 Posters week 32 les 1 toets en foutenanalyse handleiding pagina s 994 tot 1004 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina 808: tijd, afstand, snelheid pagina 840: oppervlakte berekenen (omstructureren)

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Blok 1A en 2A Telrij, uitspraak en notatie Getallenlijn en getalvolgorde Opbouw getallen tot 100 Sprongen van 1, 2 en 5 tussen 10 en 20 t/m

Nadere informatie

Op weg naar een leerlijn rekenen.

Op weg naar een leerlijn rekenen. Op weg naar een leerlijn rekenen. Rekentoets in het nieuws. En wij? Hoe gaan wij om met rekenen? Hoe bereiden we voor? Weten we wat we doen en moeten doen? Wat is een leerlijn? Inhoudslijn. wat is de leerstof.

Nadere informatie

Curriculum Leerroute 4 Rekenen, meten, tijd en geld

Curriculum Leerroute 4 Rekenen, meten, tijd en geld Curriculum Leerroute 4 Rekenen, meten, tijd en geld Dit curriculum is van 4 t/m 16 jaar gebaseerd op de ZML SO en VSO leerlijn Rekenen met uitstroom dagbesteding, CED- groep 2012. Vanaf 17 jaar is de leerlijn

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3 LES 1 LES 2 LES 3 LES 4 LES 5 (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo) opdracht 4 (hele getallen

Nadere informatie

Stenvertblok Rekenen 4 Antwoorden

Stenvertblok Rekenen 4 Antwoorden Stenvertblok Rekenen Antwoorden Stenvertblok Rekenen Antwoorden Auteur Gré Schreuder D. Huigen Illustraties Ben Horsthuis Richard Flohr Omslag Metamorfose ontwerpers BNO, Deventer Uitgeverij Bekadidact,

Nadere informatie

Werkblad bij lesvoorbereiding Breuken. 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij!

Werkblad bij lesvoorbereiding Breuken. 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij! Werkblad bij lesvoorbereiding Breuken 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij! 3. En nu iets moeilijker. Schrijf de berekening erbij! Werkblad bij lesvoorbereiding

Nadere informatie

1 WAT IS MENS EN TECHNIEK? Inleiding Wat heb je nodig voor Mens en Techniek? Beoordeling Hoe leer je bij Mens

1 WAT IS MENS EN TECHNIEK? Inleiding Wat heb je nodig voor Mens en Techniek? Beoordeling Hoe leer je bij Mens 1 WAT IS MENS EN TECHNIEK?... 3 1.1. Inleiding... 3 1.2. Wat heb je nodig voor Mens en Techniek?... 3 1.3. Beoordeling... 3 1.4. Hoe leer je bij Mens en Techniek voor een toets?... 3 2 WERKEN BIJ MENS

Nadere informatie

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken.

Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. Uitwerking toets rekenvaardigheid Opgave a. 725,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. 725,98 + 698,99 = 725,98 + 700,0= 7824,97 Denk eraan ik doe er teveel bij

Nadere informatie

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3 Hoofdstuk VWO.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7

Nadere informatie

Startrekenen 2F vo. Leerwerkboek rekenen deel B SARI WOLTERS IRENE LUGTEN CYRIEL KLUITERS MARLOES KRAMER PASCAL DE WIT

Startrekenen 2F vo. Leerwerkboek rekenen deel B SARI WOLTERS IRENE LUGTEN CYRIEL KLUITERS MARLOES KRAMER PASCAL DE WIT Startrekenen 2F vo Leerwerkboek rekenen deel B SARI WOLTERS IRENE LUGTEN CYRIEL KLUITERS MARLOES KRAMER PASCAL DE WIT ROB LAGENDIJK KRISTEL SCHAAP JASPER VAN ABSWOUDE JELTE FOLKERTSMA RIEKE WYNIA Inhoudsopgave

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Beoordelingsmodel VMBO GL/TL 2008-I Vraag Antwoord Scores Golfbaan maximumscore 4 Een kijklijn tekenen van het putje langs de punt van de bosrand 90 m in werkelijkheid komt overeen met 6 cm in de tekening

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Leerlijnen groep 5 Wereld in Getallen

Leerlijnen groep 5 Wereld in Getallen Leerlijnen groep 5 Wereld in Getallen 1 2 3 4 REKENEN Boek 5a: Blok 1 - week 1 Oriëntatie - Getallen tot en met 1000 - Tafels 0 t/m 6 en 10 - Herhalen strategieën - Herhalen hele, halve uren en kwartieren

Nadere informatie

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent. BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit

Nadere informatie

Hoofdstuk 6 Inhoud uitwerkingen

Hoofdstuk 6 Inhoud uitwerkingen Kern Prisma en cilinder a De inhoud is G h=,5 = 4,5cm. b Die inhoud is even groot. a De inhoud is G h= ( 4) 8 = 64 cm b Op iedere hoogte geldt dat de doorsnede van het rechte prisma dezelfde oppervlakte

Nadere informatie

Je ziet hier 3 snelheidsmeters. Welke meter geeft de hoogste snelheid aan?

Je ziet hier 3 snelheidsmeters. Welke meter geeft de hoogste snelheid aan? Heeft Uw kind problemen met redactiesommen? Hieronder staan een aantal redactiesommen specifiek voor groep 7 en 8 van de basisschool U kunt het gebruiken voor wat extra training. Van welke combinatie van

Nadere informatie

Oefenopgaven vergroten en verkleinen

Oefenopgaven vergroten en verkleinen Oefenopgaven vergroten en verkleinen 1. Van een rechthoek ABCD zijn de zijden 7 en 11 cm. Rechthoek KLMN is een vergroting van rechthoek ABCD met factor 1,5. A. Bereken de zijden van rechthoek KLMN. B.

Nadere informatie

Spiekboek rekenen 2F

Spiekboek rekenen 2F 2F Voorwoord Voor je ligt het spiekboek rekenen. Dit boek is gemaakt voor leerlingen, deelnemers en docenten van Wellantcollege. Het eerste doel van het boek is om te helpen bij onderdelen die binnen

Nadere informatie

Examen VMBO-KB 2005 WISKUNDE CSE KB. tijdvak 2 dinsdag 21 juni 13.30 15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB 2005 WISKUNDE CSE KB. tijdvak 2 dinsdag 21 juni 13.30 15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2005 tijdvak 2 dinsdag 21 juni 13.30 15.30 uur WISKUNDE CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 84 punten te behalen.

Nadere informatie

Voor je ligt het rekenboek Op weg naar 2F. Dit boek is gemaakt voor docenten ter begeleiding van leerlingen van Steenspil.

Voor je ligt het rekenboek Op weg naar 2F. Dit boek is gemaakt voor docenten ter begeleiding van leerlingen van Steenspil. Op weg naar 2F Voorwoord Voor je ligt het rekenboek Op weg naar 2F. Dit boek is gemaakt voor docenten ter begeleiding van leerlingen van Steenspil. Het eerste doel van het boek is om docenten te ondersteunen

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie