Hoofdstuk 1: Basisvaardigheden

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 1: Basisvaardigheden"

Transcriptie

1 Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012

2 Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair verband Begrippen Maten Grafieken Kwadratisch verband Figuren Verhoudingstabel Snijpunten Exponentieel verband Toepassingen Procenten Formules Wortelverband Breuken Machtsverband Aannames Periodiek verband 2

3 Rekenen met getallen 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Groter dan en kleiner dan Je zegt: -1 is groter dan -4. Je schrijft: -1 >-4 Je zegt: -8 is kleiner dan 7 Je schrijft: -8 <7 Rekenen met negatieve getallen min x min = plus min x plus = min plus x min = min plus x plus = plus min : min = plus min: plus = min plus : min = min plus: plus = plus = en -= = -14 -en + = = 2 + en + = = 2 -en-= + 3

4 Wortel en kwadraat Wat is een kwadraat? Het kwadraat van een getal is het getal met zichzelf vermenigvuldigd. Het kwadraat van 8 is 64, want 8 x 8 = 64. In plaats van 8 x 8 kan je ook schrijven 8 2. Let op: (-8) 2 = -8 x -8 = = -64 (-11) 2 = 11 x 11 = 121 Positief getal! = - (11 x 11) = -121 Negatief getal! Wat is een wortel? De wortel is het omgekeerde van een kwadraat Let op: De wortel van - 9 bestaat wel. De wortel van 9 bestaat niet, er is geen getal te vinden dat in het kwadraat -9 is. Uit een negatief getal kun je dus geen wortel trekken! 4

5 Machten Wat is een macht? Een macht bestaat uit een grondtal en een exponent. Bijvoorbeeld: 2 8, 2 is het grondtal, 8 de exponent. Let op: Bij een negatief grondtal moet deze tussen haakjes geplaatst worden Een groot of klein getal kun je schrijven als een macht, deze schrijfwijze heeft een wetenschappelijke notatie. Macht: 6 x 6 x 6 x 6 x 6 x 6 x 6 = 6 7 ( zes tot de zevende ) Wetenschappelijke notatie: kun je schrijven als 8,3 x ,4 x 10-4 = 5,4 x 0,001 = 0,

6 Lengtematen omrekenen 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Bij het omrekenen van lengtematen kun je het onderstaande schema gebruiken: x 10 x 10 x 10 x 10 x 10 x 10 : 10 : 10 : 10 : 10 : 10 : cm =. m Kijk naar cmen ga dan naar m. Dit zijn 2 stapjes naar links cm : 10 : 10 = 950 m 56 m = cm Kijknaarmen gadannaarcm. Dit zijn 2 stapjes naar rechts. 56 m 56 x 10 x 10 = 5600 cm 6

7 Oppervlaktematen omrekenen Bij het omrekenen van oppervlaktematen kun je het onderstaande schema gebruiken: x 100 x 100 x 100 x 100 x 100 x 100 Km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 : 100 : 100 : 100 : 100 : 100 : 100 Bij grondoppervlakten worden de volgende maten vaak gebruikt: 1 centiare(ca) = 1 m 2 1 are (a) = 100 m 2 1 hectare (ha) = m 2 = 100 m x 100 m (ongeveer1,5 voetbalveld) 14 km 2 = m 2 Kijk naar km 2 en ga dan naar m 2. Dit zijn 3 stapjes naar rechts. 14 km 2 14 x 100 x 100 x 100 = m cm 2 = dm 2 Kijknaarcm 2 en gadannaardm 2. Ditis eenstapjenaarlinks cm : 100 = 600 dm 2 7

8 Inhoudsmaten omrekenen Wat zijn inhoudsmaten? Kubieke centimeter (cm 3 ), kubieke decimeter (dm 3 ) en kubieke meter (m 3 ) zijn inhoudsmaten. Een kubieke centimeter is de inhoud van een kubus met ribben van 1 centimeter. Liter (L), deciliter (dl), centiliter (cl) en milliliter (ml) zijn ook inhoudsmaten. Een liter is hetzelfde als 1 kubieke decimeter (dm 3 ), 1 hectoliter is 100 liter. Omrekenen inhoudsmaten x 1000 x 1000 x 10 x 10 x 10 m 3 dm 3 cm 3 liter deciliter centiliter milliliter : 1000 : 1000 : 10 : 10 : 10 4,3 m 3 = dm 3 Kijknaarm 3 en gadannaardm 3 Ditis eenstapnaarrechts, dusx ,3 m 3 4,3 x 1000 = 4300 dm cm 3 = dm 3 Kijknaarcm 3 en gadannaardm 3 Ditis eenstapnaarlinks, dus: cm : 1000 = 3,75 dm 3 8

9 Gewichtsmaten omrekenen Gewichtsmaten De belangrijkste gewichtseenheden zijn milligram (mg), gram (g), kilogram (kg) en ton. Gewichtsmaten omrekenen x 1000 x 1000 x 1000 ton kilogram gram milligram : 1000 : 1000 : 1000 Een doos met eindexamenbundels weegt 23,4 kg. Hoeveel mg weegt deze doos? 23,4 kg=... mg Kijk naar kgen ga dan naar mg. Ditis 1 stapjenaarrechts. 23,4 kg 23,4 x 1000 = g 9

10 Tijd 1 millenium= 1000 jaar 1 jaar = 365 (of 366) dagen 1 dag = 24 uur 1 eeuw = 100 jaar 1 jaar = 52 weken 1 uur = 60 minuten 1 decennium = 10 jaar 1 kwartaal = 3 maanden 1 minuut = 60 seconden 1 jaar = 12 maanden 1 week = 7 dagen 1 uur = 3600 seconden Tijdlijn De tijdlijn is een hulpmiddel bij het rekenen met tijd. Een bioscoopfilm begint om 21:45 en eindigt om 00:20. Hoe lang duurt het programma? Antwoord: 2 uur en 35 minuten 15 minuten 2 uur 20 minuten 21:45 22:00 00:00 00:20 Tijd omrekenen Van uren naar minuten, aantal uur x 60 Van minuten naar seconden, aantal minuten x 60 Van uren naar seconden, aantal uren x Hoeveel seconden is 2:25:14? 2 uur = 2 x 60 x 60 = 7200 s 25 minuten = 25 x 60 = 1500 s 14 seconden = 14 s + Totaal= 8714 s 10

11 Verhoudingstabel 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Wat is een verhoudingstabel? Een hulpmiddel bij het rekenen met verhoudingen. Stappenplan verhoudingstabel Zet het aantal en de prijs in een tabel onder elkaar Ga in de bovenste rij eerst terug naar 1 en dan naar de gewenste hoeveelheid. Zet bij de pijlen welke deling en vermenigvuldiging je moet doen. Bereken de prijs met je rekenmachine en schrijf je antwoord op. 350 gram koekjeskost 1,40. Hoeveelkost150 gram? aantal gram koekjes prijs in centen 140? aantal gram koekjes prijs in centen 140 0, x = 60 dus150 gram koekjeskost 0,60 11

12 Procenten 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Wat is een procent? 1% betekent 1 op 100, oftewel Van aantallen naar procenten Maak een verhoudingstabel met aantal boven in de tabel en procenten onder in de tabel. Zet het totale aantal boven in de tabel en 100% eronder. Ga bij aantal euro s via 1 naar het gewenste aantal. Zet bij de pijlen erbij wat je doet. Bereken het onbekende percentage. Let op: rond het tussenantwoord onder 1 niet af! Je krijgt 15,-korting op eenjasvan 60,-. Hoeveelprocent is dit? aantal euro's 60 procenten 100 aantal euro's procenten 100 1, x 15 = 25, dusde korting is 25%. 12

13 Procenten Decimale getallen Een decimaal getal is een ander woord voor getal met komma. Procenten en decimale getallen Schrijf het percentage als een decimaal getal. Vermenigvuldig dit getal met het aantal. Van breuk naar procenten Maak van de breuk een decimaal getal. Vermenigvuldig dit getal met 100. Rond je antwoord zo nodig af. Procenten en factor Als een aantal met 40% stijgt ga je van 100% naar 140% Het percentage is 140 : 100 = 1,4 keer zo groot geworden Het getal 1,4 is de factor waarmee je vermenigvuldigd. Hoeveel is 65% van 1460 leerlingen? 65% = 65 : 100 = 0,65 0,65 x 1460= 949 Het antwoord is 949 leerlingen 2 Hoeveel% is 7? Rondafop hele%. 2 : 7 = 0, ,28571 x 100 = 28,571 Afgerond is het antwoord dus 29%. 13

14 Procenten Btw De consument betaal de btw van 19% op een product. De winkeliersprijs is 100%. De totale prijs is 100% + 19% = 119%. Een auto kost ,- Daarkomtnog19% btw bij. De prijswordt100% + 19% = 119% De factor is 119 : 100 = 1,19 De prijsis 1,19 x = ,- Met korting rekenen De nieuwe prijs bereken je door de korting in euro s van de oude prijs af te halen. De oude prijs is 100%, de korting haal je van deze 100% af. Stel dat de korting 30% is dan is het te betalen percentage 70%. Rente op rente Een bedagvan 800,-wordt op de bank gezet tegen een rente van 4%. De rente reken je dan uit door: beginbedrag 800 (1,04) aantal jaar factor bij 4% rente

15 Breuken en decimale getallen 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Teller en noemer 5 8 teller noemer 3 Breuken als kan je ook schrijven als 0, Breuken als 1 schrijf je als 1 + (5: 8) = 1,625 8 Deel van een hoeveelheid Schrijf de breuk als een decimaal getal Vermenigvuldig dit decimaal getal met de hoeveelheid. Rond dit getal niet af! 3 Bereken deel van 210 euro = 0, , = 90 Dus het antwoord is 90 euro. 15

16 Breuken en decimale getallen Afronden op twee decimalen Zet een verticale lijn na het 2e cijfer achter de komma. - Is dit cijfer groter dan 5? Maak dan het cijfer voor de lijn 1 groter. - Is dit cijfer een 4 of minder? Het cijfer voor de lijn verandert niet. Laat de cijfers achter de lijn weg. Zinvol afronden Bij de volgende vragen moet je goed opletten met afronden: - Hoeveelmensenzittenerin de bus? - Hoeveel zakken zand heb je nodig? Rondbijditsoortvragenop gehelegetallenafnaarde gevraagdewaarde. 2 7 = 0, = 0, Het cijferis groterdaneen5. Het cijferis kleinerdaneen = 0, = 0,57 16

17 Aannames 1. Basisvaardigheden Getallen Maten Verhoudingstabel Procenten Breuken Aannames Handige maten Bij schatten kies je een handige maat om iets uit te rekenen, enkele maten zijn: Hoogte verdieping 3 m Lengte gemiddelde man 180 cm Afmeting deur 2 m hoog en 1 m breed Loopsnelheid 6 km per uur Fietssnelheid 18 km per uur Lengte schatten Kies een handige maat Ga na hoe vaak deze maat in de lengte past Bereken de lengte met een vermenigvuldiging Een straat bestaat uit 14 parkeerplaatsen. Hoe lang is de straat? (1 parkeerplaats = 6m) Een parkeerplaats 6 meter Er zijn 14 parkeerplaatsen. De lengte van de straat is: 6m x 14m = 84 meter 17

18 Tips & Tricks Gebruik de stappenplannen. Probeer de schema s te onthouden, dit is handig bij het omrekenen van maten. Zorg dat je de volgende knoppen te vinden weet op je rekenmachine: - Knop voor optellen, aftrekken, vermenigvuldigen en delen - Knop voor omgekeerde (1/x) - Knop voor kwadraat (x 2 ) - Knop voor macht (^) - Knop voor wortel ( ) Zorg ervoor dat je de voorrangsregel van rekenen kent: 1. Eerst alles tussen haakjes 2. Machtsverheffen 3. Worteltrekken 4. Vermenigvuldigen / delen, in volgorde van de opgave 5. Optellen / aftrekken, in volgorde van de opgave 18

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Het Metriek Stelsel. Over meten, omtrek, oppervlakte en inhoud

Het Metriek Stelsel. Over meten, omtrek, oppervlakte en inhoud Het Metriek Stelsel Over meten, omtrek, oppervlakte en inhoud lengte in meter afkorting naam hoeveel meter 1 km kilometer 1 000 1 hm hectometer 100 1 dam decameter 10 1 m meter 1 1 dm decimeter 0,1 1 cm

Nadere informatie

Wortel en kwadraat. Volgorde van bewerkingen

Wortel en kwadraat. Volgorde van bewerkingen Hoofdstuk 1: Rekenen, meten en scha,tten 1 ltheorie TÍ"j Volgorde van bewerkingen Vclgorde þ Rekenen binnen de haakjes '-Þ Machtsverheffen en wûrteltrêkkên van links naar rechts Als er een deelstreep in

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

TOELICHTING METRIEK STELSEL

TOELICHTING METRIEK STELSEL TOELICHTING METRIEK STELSEL 2 3 642_rv_wb_metriek_stelsel_bw.indd 2 8-03-3 23: liter ml 00 4 5 6 642_rv_wb_metriek_stelsel_bw.indd 3 8-03-3 23: Rekenvlinder Metriek stelsel Toelichting Uitgeverij Zwijsen

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

Leerlijnen groep 6 Wereld in Getallen

Leerlijnen groep 6 Wereld in Getallen Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal

Nadere informatie

KAPSTOK REKENEN inhoud

KAPSTOK REKENEN inhoud KAPSTOK REKENEN inhoud pagina Optellen 2 Optellen cijferen 3 Aftrekken 4 Aftrekken cijferen 5 Vermenigvuldigen 6 Vermenigvuldigen cijferen 7 Delen 8 Tafels 9 Deeltafels 10 Breuken 11 Meten 12 Tijd wijzers

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College

Rembrandt College Veenendaal. Protocol medicijnverstrekking. Begeleiding van leerlingen met dyscalculie Rembrandt College Rembrandt College Veenendaal Protocol medicijnverstrekking Begeleiding van leerlingen met dyscalculie Rembrandt College Mei 206 Begeleiding van leerlingen met dyscalculie Leerlingen met dyscalculie krijgen

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2 LES 1 LES 2 LES 3 LES 4 LES 5 (hele getallen tot 1000) (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo)

Nadere informatie

Leerlijnen groep 8 Wereld in Getallen

Leerlijnen groep 8 Wereld in Getallen Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

Leerlijnen rekenen: De wereld in getallen

Leerlijnen rekenen: De wereld in getallen Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

SERVICEDOCUMENT BIJ SYLLABUS REKENEN 2F EN 3F VO EN MBO

SERVICEDOCUMENT BIJ SYLLABUS REKENEN 2F EN 3F VO EN MBO SERVICEDOCUMENT BIJ SYLLABUS REKENEN 2F EN 3F VO EN MBO pagina 2 van 14 Inhoud 1 Nieuwe Syllabus rekenen, met ingang van 1 oktober 2015 5 2 Nieuw en anders: Verschillen oude rekentoetswijzers vo/ rekensyllabi

Nadere informatie

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK

Nadere informatie

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd? Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd.

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd. REKENEN Hfst 1-3 PROCENTEN Procenten betekent per honderd. Percentage Groeifactor 1% 1/100 0,01 2% 2/100 0,02 10% 10/100 0,10 99% 99/100 0,99 104% 104/100 1,04 150% 150/100 1,50 Rekenen met procenten:

Nadere informatie

Bijlage Cijfervaardigheid

Bijlage Cijfervaardigheid Bijlage Cijfervaardigheid 1 Inleiding De bedoeling van deze bijlage is in het kort de standaardrekenprocedures te herhalen. Je hebt in de vooropleiding ongetwijfeld rekenonderwijs genoten, maar vaak is

Nadere informatie

(o.a. voor 2F en 3F) Inhoud

(o.a. voor 2F en 3F) Inhoud (o.a. voor 2F en 3F) Inhoud Optellen... 2 Aftrekken... 3 Vermenigvuldigen... 4 Delen... 5 Tot de macht... 6 Combinaties... 7 Wortels... 7 Afronden... 8 Breuken... 10 Procenten... 11 Verhoudingen... 12

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 3 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 3 LES 1 LES 2 LES 3 LES 4 LES 5 (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo) opdracht 4 (hele getallen

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep spiekboek rekenen beter rekenen op de entreetoets van het Cito groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 6 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

Op stap naar 1 B Minimumdoelen wiskunde

Op stap naar 1 B Minimumdoelen wiskunde Campus Zuid Boomsesteenweg 265 2020 Antwerpen Tel. (03) 216 29 38 Fax (03) 238 78 31 www.vclbdewisselantwerpen.be VCLB De Wissel - Antwerpen Vrij Centrum voor Leerlingenbegeleiding Op stap naar 1 B Minimumdoelen

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2

Strategiekaarten. Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Rekenen: een hele opgave, deel 2 Deze strategiekaarten horen bij de ThiemeMeulenhoff-uitgave (ISBN 978 90 557 4642 2): Joep van Vugt Anneke Wösten Handig optellen; tribunesom* Bij optellen van bijna ronde getallen zoals 39, 198, 2993,..

Nadere informatie

1. Optellen en aftrekken

1. Optellen en aftrekken 1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'

Nadere informatie

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige Meten is weten Bloemlezing uit 36 bladzijden voor een eerste indruk Leer- Meten en is oefenboek weten Bloemlezing metriek uit stelsel 36 bladzijden voor ISBN: een 978-90-821249-1-0 eerste indruk Auteur

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

STOF VOOR SCHOOLEXAMEN 5

STOF VOOR SCHOOLEXAMEN 5 STOF VOOR SCHOOLEXAMEN 5 Nederlands Hoofdstuk 1 en 2. Lezen Taalverzorging en woordenschat Grammatica en spelling Schrijfopdracht (artikel) Groene boekje (lessen 19 t/m 27) Geldt voor alle niveaus. Engels

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Het metriek stelsel. Grootheden en eenheden.

Het metriek stelsel. Grootheden en eenheden. Het metriek stelsel. Metriek komt van meten. Bij het metriek stelsel gaat het om maten, zoals lengte, breedte, hoogte, maar ook om gewicht of inhoud. Er zijn verschillende maten die je moet kennen en die

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

Optellen IT1 Antwoord M3 IT6 Antwoord M

Optellen IT1 Antwoord M3 IT6 Antwoord M Optellen IT1 Antwoord M3 IT6 Antwoord M5 8 + 1 38 + 23 2 + 5 47 + 48 5 + 3 26 + 57 4 + 6 55 + 38 IT2 Antwoord E3 IT7 Antwoord E5 14 + 3 200 + 380 4 + 15 240 + 80 12 + 7 440 + 270 2 + 16 245 + 383 IT3 Antwoord

Nadere informatie

D A G 1 : T W E E D O M E I N E N

D A G 1 : T W E E D O M E I N E N REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen

Nadere informatie

Niveau 2F Lesinhouden Rekenen

Niveau 2F Lesinhouden Rekenen Niveau 2F Lesinhouden Rekenen LES 1 Begintest LES 2 Getallen Handig optellen en aftrekken Handig vermenigvuldigen en delen Schattend rekenen Negatieve getallen optellen en aftrekken Decimale getallen vermenigvuldigen

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010 November 2010 Wat kunnen we allemaal meten? Wat kunnen we allemaal meten? 1. Lengte / breedte / hoogte / omtrek / oppervlakte / inhoud en volume 2. Tijd 3. Gewicht 4. Geld 5. Temperatuur Wij gaan ons

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

1 de jaar 2 de graad (2uur) Naam:... Klas:...

1 de jaar 2 de graad (2uur) Naam:... Klas:... Hoofdstuk 1 : Mechanica 1 de jaar de graad (uur) -1- Naam:... Klas:... 1. Basisgrootheden en hoofdeenheden In de Natuurkunde is het vaak van belang om de numerieke waarde van natuurkundige grootheden te

Nadere informatie

1. Opbouw van getallenverzamelingen

1. Opbouw van getallenverzamelingen 1. Opbouw van getallenverzamelingen De natuurlijke getallen Wanneer kinderen voor het eerst gaan tellen, gebeurt dat op een natuurlijke manier. Zij leren de hoofdtelwoorden: een, twee, drie, vier, enzovoort

Nadere informatie

Inhoud kaartenbak groep 8

Inhoud kaartenbak groep 8 Inhoud kaartenbak groep 8 1 Getalbegrip 1.1 Ligging van getallen tussen duizendvouden 1.2 Plaatsen van getallen op de getallenlijn 1.3 Telrij t/m 100 000 1.4 Telrij t/m 100 000 1.5 Getallen splitsen en

Nadere informatie

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden Spiekboekje Knowledgebridge Onderwijs Hein v.d. Velden 1 rekenen tot 20 verliefde getallen verliefde getallen zijn samen 10 1+9= 2+8= 3+7= 10 4+6= 5+5= 0+10= 2 getallenlijn 20 + plus 7 + 6= 7 + 3 = 10

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker.

Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker. Samenvatting leerjaar 4 hoofdstuk 1: Rekenen Grote getallen Grote getallen, zoals 5300000000 zijn niet eenvoudig te lezen. Je kunt je gemakkelijk vergissen in een nul meer of minder, met grote gevolgen.

Nadere informatie

STOF VOOR SCHOOLEXAMEN 1

STOF VOOR SCHOOLEXAMEN 1 STOF VOOR SCHOOLEXAMEN 1 Nederlands Hoofdstuk 1 en 2. Lezen Taal en woordenschat Grammatica en spelling Schrijfopdracht (zakelijke e-mail) Geldt voor alle niveaus. Engels Het eerste schoolexamen Engels

Nadere informatie

De laatste loodjes...

De laatste loodjes... De laatste loodjes... Hieronder vindt je een uittreksel van alles dat we met rekenen hebben geoefend. En nog een paar herhaalsommetjes. Om als laatste nog even door te lezen om te zien of je alles nog

Nadere informatie

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen.

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen. Schaal Hieronder staat een afbeelding van het raam van het van Gogh-museum waardoor een inbreker zou zijn ontsnapt. Een advocaat voert aan dat door het gat in de ruit zijn client niet heeft kunnen ontsnappen,

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Leerstofoverzicht groep 6

Leerstofoverzicht groep 6 Leerstofoverzicht groep 6 Getallen en relaties Basisbewerkingen Leerlijn Groep 6 Uitspraak, schrijfwijze, kenmerken getallen boven 10 000 in cijfers schrijven haakjesnotatie deler en deeltal breuknotatie

Nadere informatie

Aanbod rekenstof augustus t/m februari. Groep 3

Aanbod rekenstof augustus t/m februari. Groep 3 Aanbod rekenstof augustus t/m februari Groep 3 Blok 1 Oriëntatie: tellen van hoeveelheden tot 10, introductie van de getallenlijn tot en met 10, tellen en terugtellen t/m 20, koppelen van getallen aan

Nadere informatie

Leerstofoverzicht groep 3

Leerstofoverzicht groep 3 Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot

Nadere informatie

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km Inhoudsopgave: a: Inleiding b: Grootheden: (voor het basis-onderwijs) 1. Lengte 2. Oppervlakte 3. Volume, inhoud 4. Massa (vroeger: gewicht) 5. Tijd (voor het voortgezet onderwijs) 6. Temperatuur c. Omrekenregels

Nadere informatie

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal LEERWERKBOEK 2F Meten en meetkunde Les Schaal 1 REKENBLOKKEN LES 1 SCHAAL EVEN OEFENEN LENGTEWEETJES 10 10 10 10 10 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10 1 Reken om naar de andere maat.

Nadere informatie

Aanvulling hoofdstuk 1 uitwerkingen

Aanvulling hoofdstuk 1 uitwerkingen Natuur-scheikunde Aanvulling hoofdstuk 1 uitwerkingen Temperatuur in C en K Metriek stelsel voorvoegsels lengtematen, oppervlaktematen, inhoudsmaten en massa Eenheden van tijd 2 Havo- VWO H. Aelmans SG

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2. Omschrijving Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2

Getallen 2. Doelgroep Rekenen en Wiskunde Getallen 2 Getallen 2 Getallen 2 bestrijkt de uitbreiding van de basisvaardigheden van het rekenen, regels en vaardigheden die in het vmbo en de onderbouw van havo/vwo worden aangeleerd, geoefend en toegepast. Doelgroep

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3 Schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand.

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5

Reken je wijs. De kunst van het leren rekenen. Benito Kaarsbaan. aantal x 1000. tijd in jaren 15000 4,5 Reken je wijs De kunst van het leren rekenen Niveau 1F 2F 3F aantal x 1000 18000 20 15000 12000 4,5 9000 6000 3000 0 0 1960 1970 1980 1990 2000 tijd in jaren inen: 5 = 24 k Benito Kaarsbaan ij k ex e m

Nadere informatie

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen REKENMODULE INHOUD Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Inhoud Leerlingtekst Versie 1.0. November 2012 Auteurs: Mieke Abels,

Nadere informatie

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006

Module Rekenvaardigheid in havo als voorbereiding op pabo. AN nr. 3.4044.0006 Module Rekenvaardigheid in havo als voorbereiding op pabo AN nr..4044.0006 Inleiding Beste leerling, Wanneer je naar de PABO gaat is het belangrijk dat je een goede beheersing hebt van de Nederlandse

Nadere informatie

Domeinbeschrijving rekenen

Domeinbeschrijving rekenen Domeinbeschrijving rekenen Discussiestuk ten dienste van de Expertgroep Doorlopende Leerlijnen Rekenen en Taal auteur: Jan van de Craats 11 december 2007 Inleiding Dit document bevat een beschrijving van

Nadere informatie

Begin situatie Wiskunde/Rekenen. VMBO BB leerling

Begin situatie Wiskunde/Rekenen. VMBO BB leerling VMBO BB leerling Verbanden en Hoge -bewerkingen onder 100 -tafels t/m 10 (x:) -bewerkingen met eenvoudige grote en -makkelijk rekenen -vergelijken/ordenen op getallenlijn -makkelijke breuken omzetten -deel

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen

RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,

Nadere informatie

2016 W. Danhof / P. Bandstra Bandstra Speciaal Rekenadvies

2016 W. Danhof / P. Bandstra  Bandstra Speciaal Rekenadvies Blad 1: Optellen Optellen Antwoord Tijd Overschr. IT1 Fase 1a M3 A. D. M. H. Voorbeeld: 3 + 5 = Check evt. getalbegrip tot 10 8 + 1 O Gebruik makend van omkering 3 + 5 >> 5 + 3 = 8 2 + 5 O Doortellend

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.

Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen. Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde

Nadere informatie

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl

OP WEG NAAR WISKUNDE. Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl OP WEG NAAR WISKUNDE Plusboek uit de serie Het Grote Rekenboek Uitgeverij ScalaLeukerLeren.nl Voor kinderen die iets meer willen weten en begrijpen van wiskunde, bijvoorbeeld als voorbereiding op de middelbare

Nadere informatie

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent. BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

drs. W.M.F. Beuker, training en begeleiding in onderwijs

drs. W.M.F. Beuker, training en begeleiding in onderwijs Stadsdeel zuidoost H1 Getallen een 1 tien 10 honderd 100 duizend 1 000 tienduizend 10 000 honderdduizend 100 000 een miljoen 1 000 000 tien miljoen 10 000 000 honderd miljoen 100 000 000 een miljard 1

Nadere informatie

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde KBL Bohemen, Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3, schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv

dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Getallen. 1 Doel: een getallenreeks afmaken De leerlingen maken de getallenreeks af met sprongen van 150 000.

Getallen. 1 Doel: een getallenreeks afmaken De leerlingen maken de getallenreeks af met sprongen van 150 000. Getallen Basisstof getallen Lesdoelen De leerlingen kunnen: een reeks afmaken; waarde van cijfers in een groot getal opschrijven; getallen op de getallenlijn plaatsen; afronden op miljarden; getallen in

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

Gehele getallen: machtsverheffing en vierkantsworteltrekking

Gehele getallen: machtsverheffing en vierkantsworteltrekking 4 Gehele getallen: machtsverheffing en vierkantsworteltrekking Dit kun je al gehele getallen vermenigvuldigen 2 afspraken i.v.m. de volgorde van de bewerkingen toepassen 3 regelmaat en patronen ontdekken

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd De dollar heeft een andere waarde dan de euro. De verhouding van de waarde van de ene munt ten opzichte van de andere heet de wisselkoers. Als je een munt koopt, betaal je de aankoopkoers. De aankoopkoers

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie