10.1 Berekeningen met procenten [1]

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "10.1 Berekeningen met procenten [1]"

Transcriptie

1 10.1 Berekeningen met procenten [1] Voorbeeld 1: Hoeveel is 48% van 560? Dit is 0, = 268,8 Voorbeeld 2: Een broek van het merk Replay kost normaal 129,-. Deze week is het uitverkoop en krijg je 35% korting op alle artikelen. Hoeveel korting krijg je op deze broek? De korting is 0,35 129,- = 45,15

2 10.1 Berekeningen met procenten [2] Voorbeeld: Een broek van het merk Replay kost in ,-. Doordat de gestegen loonkosten gaat de prijs in 2012 met 6% omhoog. Hoeveel kost deze broek nu in 2012? Om de prijs in 2012 te berekenen moet je bij het bedrag van 129,- de prijsstijging optellen. Er moet dus 6% van 129,- bijgeteld worden. 6% van 129 = 0,06 129,- = 7,74 De prijs in 2012 wordt nu: 129,- + 7,74 = 136,74 Dit valt ook in één keer uit te rekenen: 1,06 129,- = 136,74 Algemeen: Bij een toename van 6% geldt: 1) NIEUW = 1,06 OUD 2) NIEUW = OUD + 0,06 OUD

3 10.1 Berekeningen met procenten [2] Voorbeeld: Een broek van het merk Replay kost in In de zomervakantie houdt het bedrijf een grote opruiming. Klanten krijgen 30% korting op broeken van Replay. Bereken hoeveel de broek, die normaal 129 kost, gedurende de opruiming Kost. Om de opruimingsprijs te berekenen moet je van het bedrag van 129 de korting van 30% afhalen. 30% van 129 = 0, = 38,70 De opruimingsprijs wordt nu: ,70 = 90,30 Dit valt ook in één keer uit te rekenen: 0, = 90,30 Algemeen: Bij een afname van 30% houdt je van de 100% nog 100% - 30% = 70% over.

4 10.2 Procentuele verandering [1] Voorbeeld: De prijs van schoenen is in een jaar tijd gestegen van 40,- naar 50,-. De prijs van laarzen is in een jaar tijd gestegen van 100,- naar 110,-. Zowel de schoenen als de laarzen zijn 10,- duurder geworden. Doordat de schoenen goedkoper zijn dan de laarzen is de prijsstijging bij de schoenen in verhouding tot de oorspronkelijke prijs veel groter. Schoenen: NIEUW OUD = = 10 Procentuele toename: Laarzen: NIEUW OUD = = 10 Procentuele toename: % 100% 25% % 100% 10%

5 10.2 Procentuele verandering [1] Algemeen: De toename in procenten = NIEUW OUD 100% OUD Rekenmachine: % 25 % 40 bereken je als volgt op je rekenmachine:

6 10.2 Procentuele verandering [2] Voorbeeld: De prijs van rokken is in een jaar tijd gedaald van 65,- naar 61,-. De prijs van broeken is in een jaar tijd gedaald van 58,- naar 54,-. Rokken: NIEUW OUD = = -4 Procentuele verandering: Procentuele afname is 6,3% Broeken: NIEUW OUD = = -4 Algemeen: Bereken Procentuele verandering: Procentuele afname is 6,9% NIEUW OUD 100% en laat het minteken weg. OUD % 100% 6, 3% % 100% 6, 9% 58 58

7 10.3 Procentuele verandering [3] Voorbeeld: 22% van de emissie van fijn stof in 2002 wordt veroorzaakt door de industrie. Bereken de hoek die bij de sector industrie hoort. Stap 1: Een cirkel is 360. Stap 2: Sector Industrie = 22% van 360 = 0, = 79,2 Let op: Als je de hoeken hebt berekend, die bij de sectoren horen, kun je het bijbehorende cirkeldiagram tekenen. 7

8 10.3 Omgaan met grafieken [1] In deze grafiek staat: de tijd langs de horizontale as; de temperatuur langs de verticale as. De temperatuur is nu uitgezet tegen de tijd. In deze grafiek staat: de tijd langs de horizontale as; de waterhoogte langs de verticale as. De waterhoogte is nu uitgezet tegen de tijd. 8

9 10.4 Soorten grafieken [1] Deze grafiek waarin de temperatuur is uitgezet tegen de tijd is een globale grafiek. Bij de beide assen staan geen getallen. De grafiek loopt eerst omlaag en is dalend; De grafiek loopt dan horizontaal en is constant; De grafiek loopt dan omhoog en is stijgend. 9

10 10.4 Soorten grafieken [2] 10

11 10.5 Evenredigheden [1] Een grootheid is iets dat je kunt meten: Gewicht, lengte, afstand, tijd, windsnelheid en hoogte zijn grootheden. Een grootheid druk je uit in een eenheid: Gewicht druk je uit in kilogram, gram etc.; Lengte druk je uit in meters, kilometers, centimeters etc.; Tijd druk je uit in uren, minuten, seconden etc.; Windsnelheid druk je uit in km/uur, meter/seconde etc.; Hoogte druk je uit in meters, kilometers, centimeters etc. 11

12 10.5 Evenredigheden [2] Voorbeeld: Bij het telecombedrijf TELBEL betaal je 10 euro voor 100 belminuten. Hierbij hoort de volgende verhoudingstabel: Belminuten bedrag ( ) Als je aantal belminuten met 2 vermenigvuldigt, wordt het te betalen bedrag ook twee keer zo groot. Dit zijn evenredige grootheden. De woordformule is: bedrag in euro s = 0,1 belminuten Het getal 0,1 is de evenredigheidsconstante. Wanneer je deze verhoudingstabel in een grafiek tekent, krijg je een rechte lijn door de oorsprong. 12

13 10.5 Evenredigheden [2] Bij evenredige grootheden hoort een verhoudingstabel; Bij evenredige grootheden hoort als grafiek een rechte lijn door (0,0); Bij evenredige grootheden hoort een woordformule van de vorm grootheid = a andere grootheid; Als de ene grootheid k keer zo groot wordt, wordt de andere grootheid dat ook. 13

14 10.5 Evenredigheden [2] Voorbeeld: Aan een schip is zoveel drinkwater aanwezig dat 12 mensen hier 10 dagen kunnen doen. Wanneer er nu 24 mensen aan boord zijn, kunnen deze maar 5 dagen met dit drinkwater doen. Hierbij hoort de volgende verhoudingstabel: Personen Dagen Product De hoeveelheid personen en het aantal dagen dat ze kunnen drinken is nu omgekeerd evenredig. Als de ene grootheid 2 keer zo groot wordt, wordt de andere grootheid 2 keer zo klein. 14

15 10.5 Evenredigheden [2] Voorbeeld: Aan een schip is zoveel drinkwater aanwezig dat 12 mensen hier 10 dagen kunnen doen. Personen Dagen Product Let op: Het product van beide grootheden is steeds hetzelfde getal; Vermenigvuldig je de ene grootheid met k, dan moet je de andere grootheid door k delen. 15

16 10.6 Periodieke grafieken [1] De grafiek hierboven herhaalt zich steeds. Op t = 2 is het eb en op t = 14 is het weer eb. De grafiek herhaalt zich dus om de 12 uur. De periode van deze periodieke grafiek is 12 uur. 16

17 Procenten: 26% betekent 26 van de % = = 0, Algemeen: Bij een toename van 6% geldt: 10 Samenvatting 1) NIEUW = 1,06 OUD 2) NIEUW = OUD + 0,06 OUD De toename in procenten = NIEUW OUD 100% OUD 17

18 10 Samenvatting Een grafiek die omlaag loopt is, dalend; Een grafiek die horizontaal loopt, is constant; Een grafiek die omhoog loopt, is stijgend. Er zijn drie soorten grafieken: 1) Vloeiende kromme; 2) Horizontale lijnstukjes; 3) Losse punten. Bij een tijds-afstandgrafiek staat de tijd langs de horizontale as en de afstand langs de verticale as. Een grootheid is iets dat je kunt meten: Een grootheid druk je uit in een eenheid. 18

19 10 Samenvatting Evenredige grootheden: Bij evenredige grootheden hoort een verhoudingstabel; Bij evenredige grootheden hoort als grafiek een rechte lijn door (0,0); Bij evenredige grootheden hoort een woordformule van de vorm grootheid = a andere grootheid; Als de ene grootheid k keer zo groot wordt, wordt de andere grootheid dat ook. Omgekeerd evenredige grootheden: Het product van beide grootheden is steeds hetzelfde getal; Vermenigvuldig je de ene grootheid met k, dan moet je de andere grootheid door k delen. Een periodieke grafiek is een grafiek die zich herhaalt. 19

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100.

4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 26 26% = = 0,26 100 In het rechterplaatje zijn 80 van de 400

Nadere informatie

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6

4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.

Nadere informatie

Rekenmachine. Willem-Jan van der Zanden

Rekenmachine. Willem-Jan van der Zanden Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100

Inhoud. 1 Ruimtefiguren 8. 4 Lijnen en hoeken 148. 2 Plaats bepalen 60. 5 Negatieve getallen 198. 3 Rekenen 100 1 BK deel 1 Voorkennis 1 Aan de slag met wiskunde 6 1 Ruimtefiguren 8 1.1 Wiskundige ruimte guren 10 1.2 Vlakken, ribben en hoekpunten 14 1.3 Kubus en vierkant 17 1.4 Balk en rechthoek 24 1.5 Cilinder

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen

Werkwijzers. 1 Wetenschappelijke methode 2 Practicumverslag 3 Formules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzers 1 Wetenschappelijke methode 2 Practicumverslag 3 ormules 4 Tabellen en grafieken 5 Rechtevenredigheid 6 Op zijn kop optellen Werkwijzer 1 Wetenschappelijke methode Als je de natuur onderzoekt

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245

7. 123 187 45 - - - - - - + 355 8. 35/595\17 59 35 245 245 Antwoorden CITO 14-15 1. 295 187 - - - - - - + 482 2. 11/935\85 93 Hoe vaak past 11 in 93 88 8*11=88, dit is het grootste getal dat we van 93 af kunnen halen. 55 93-88=5 dan schuiven we de andere 5 ook

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 1 maandag 23 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 2016 tijdvak 1 maandag 23 mei 13:30-16:30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 18 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor

Nadere informatie

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1 Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

wiskunde B pilot havo 2016-I

wiskunde B pilot havo 2016-I De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2 C liggen op c. Punt Q is het midden van

Nadere informatie

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ

INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK

Nadere informatie

Examen havo wiskunde B 2016-I (oefenexamen)

Examen havo wiskunde B 2016-I (oefenexamen) Examen havo wiskunde B 06-I (oefenexamen) De rechte van Euler Gegeven is cirkel c met middelpunt (, ) p Stel een vergelijking op van c. De punten B(, 0) en ( 4, 0) M die door het punt A( 0, 4) C liggen

Nadere informatie

Leerstofplanning. 3 vmbo-k

Leerstofplanning. 3 vmbo-k Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,

Nadere informatie

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?

Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd? Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:

Nadere informatie

INHOUDSTAFEL. inhoudstafel... 2

INHOUDSTAFEL. inhoudstafel... 2 INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...

Nadere informatie

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen

Nadere informatie

Onderwijsassistent REKENEN BASISVAARDIGHEDEN

Onderwijsassistent REKENEN BASISVAARDIGHEDEN Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Eindexamen wiskunde B havo I

Eindexamen wiskunde B havo I Archimedes Wave Swing De Archimedes Wave Swing (afgekort AWS) is ontwikkeld om de golfbeweging van de zee te gebruiken om energie op te wekken. Elke AWS bestaat uit twee halfopen delen. Het onderste deel

Nadere informatie

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl havo wiskunde A Drs. F.C. Luijbe Voorwoord Beste docent, Voor u ligt een deel van de nieuwe Samengevat havo wiskunde A. Dit katern

Nadere informatie

Examen havo wiskunde B 2016-I (pilot)

Examen havo wiskunde B 2016-I (pilot) Eamen havo wiskunde B 2016-I (pilot) De rechte van Euler Gegeven is cirkel c met middelpunt ( 1, 1 ) 3p 1 Stel een vergelijking op van c. De punten B( 3, 0) en ( 4, 0) M die door het punt A( 0, 4) 2 2

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Opdracht 1 Je zoekt bij het noteren van een verhouding naar de kleinst mogelijke verhouding. Eventueel kun je hierbij een verhoudingstabel gebruiken.

Opdracht 1 Je zoekt bij het noteren van een verhouding naar de kleinst mogelijke verhouding. Eventueel kun je hierbij een verhoudingstabel gebruiken. Vierde domein: verhoudingen en procenten 1 Kennismaken met verhoudingen Je zoekt bij het noteren van een verhouding naar de kleinst mogelijke verhouding. Eventueel kun je hierbij een verhoudingstabel gebruiken.

Nadere informatie

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4

Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Hieronder ziet u per 2 blokken wat er getoetst wordt in groep 4 Blok 1A en 2A Telrij, uitspraak en notatie Getallenlijn en getalvolgorde Opbouw getallen tot 100 Sprongen van 1, 2 en 5 tussen 10 en 20 t/m

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Schoolexamen leerjaar 3 Schooljaar 2015-2016 Moderne wiskunde 9e editie deel 3 code eenheid vorm duur kansen kader 1 SE 1 worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand.

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($).

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($). C von Schwartzenberg 1/14 1a 0,5 $/ton (zie de verticale as bij punt A) 0 000 0,5 = 10 000 ($) 1b,1 $/ton (ga vanuit A verticaal omhoog naar de rood gestippelde grafiek) 0 000,1 = 4000 ($) us 4, keer zoveel

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2016 tijdvak 1 donderdag 19 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 27 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Niveau 2F Lesinhouden Rekenen

Niveau 2F Lesinhouden Rekenen Niveau 2F Lesinhouden Rekenen LES 1 Begintest LES 2 Getallen Handig optellen en aftrekken Handig vermenigvuldigen en delen Schattend rekenen Negatieve getallen optellen en aftrekken Decimale getallen vermenigvuldigen

Nadere informatie

Op de tekening hieronder zie je een gewone 12-uurs klok. Daaronder staat welk tijdstip de klok aangeeft.

Op de tekening hieronder zie je een gewone 12-uurs klok. Daaronder staat welk tijdstip de klok aangeeft. KLOKKEN Op de tekening hieronder zie je een gewone 1-uurs klok Daaronder staat welk tijdstip de klok aangeeft 1-uurs klok 11 1 1 10 9 8 4 7 6 5 000 uur of 1400 uur p 1 Laat met een berekening zien dat

Nadere informatie

Reken uit en Leg uit 4 e bijeenkomst maandag 15 februari 2013 monica wijers en vincent jonker

Reken uit en Leg uit 4 e bijeenkomst maandag 15 februari 2013 monica wijers en vincent jonker Reken uit en Leg uit 4 e bijeenkomst maandag 15 februari 2013 monica wijers en vincent jonker deel 0 WAT DEDEN WE DE 3 E KEER? samengevat Inleveropgaven Breuken context ondersteunt berekening en betekenis

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Tafelkaart: tafel 1, 2, 3, 4, 5

Tafelkaart: tafel 1, 2, 3, 4, 5 Tafelkaart: tafel 1, 2, 3, 4, 5 1 2 3 4 5 1x1= 1 1x2= 2 1x3= 3 1x4= 4 1x5= 5 2x1= 2 2x2= 4 2x3= 6 2x4= 8 2x5=10 3x1= 3 3x2= 6 3x3= 9 3x4=12 3x5=15 4x1= 4 4x2= 8 4x3=12 4x4=16 4x5=20 5x1= 5 5x2=10 5x3=15

Nadere informatie

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15

PTA wiskunde BBL - Kijkduin Statenkwartier - cohort 13-14-15 A. Schoolexamen derde leerjaar, 2013-2014 1 SE 1 De volgende onderdelen worden getoetst: PCS Schriftelijk 90 min ja 2,0 Hoofdstuk 1: Plaats en afstand. 301B Algebraïsche verbanden en WI/K/4 * * * aanzichten

Nadere informatie

2003 tijdvak 2 woensdag 18 juni uur

2003 tijdvak 2 woensdag 18 juni uur Examenopgaven VMBO-GL en TL 2003 tijdvak 2 woensdag 18 juni 13.30-15.30 uur Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 88 punten te behalen.

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 2

Uitwerkingen oefeningen hoofdstuk 2 Uitwerkingen oefeningen hoofdstuk 2 2.4.1 Basis Verhoudingen 1 13 cm : 390 km, dat is 13 cm : 390.000 m. Dat komt overeen met 13 cm : 39.000.000 cm en dat is te vereenvoudigen tot 1 : 3.000.000. 2 De schaal

Nadere informatie

Examenopgaven VMBO-GL en TL 2003

Examenopgaven VMBO-GL en TL 2003 Examenopgaven VMBO-GL en TL 003 tijdvak woensdag 18 juni 13.30-15.30 uur WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO D Bij dit examen hoort een uitwerkboekje. Dit examen bestaat uit 5 vragen. Voor dit examen

Nadere informatie

Leerlijnen groep 5 Wereld in Getallen

Leerlijnen groep 5 Wereld in Getallen Leerlijnen groep 5 Wereld in Getallen 1 2 3 4 REKENEN Boek 5a: Blok 1 - week 1 Oriëntatie - Getallen tot en met 1000 - Tafels 0 t/m 6 en 10 - Herhalen strategieën - Herhalen hele, halve uren en kwartieren

Nadere informatie

Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker.

Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker. Samenvatting leerjaar 4 hoofdstuk 1: Rekenen Grote getallen Grote getallen, zoals 5300000000 zijn niet eenvoudig te lezen. Je kunt je gemakkelijk vergissen in een nul meer of minder, met grote gevolgen.

Nadere informatie

Eindexamen wiskunde vmbo gl/tl I

Eindexamen wiskunde vmbo gl/tl I BEOORDELINGSMODEL Vraag Antwoord Scores BOSLOO maximumscore Rienk heeft ( 300 =) 605,6 (seconden) gelopen 3,8 Dit zijn 605 (seconden) maximumscore 4 Sibren loopt 3500 m 4 minuten en 5 seconden zijn 855

Nadere informatie

Leerlijnen groep 7 Wereld in Getallen

Leerlijnen groep 7 Wereld in Getallen Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600

Nadere informatie

exponentiële verbanden

exponentiële verbanden exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859

Nadere informatie

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd.

REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd. REKENEN Hfst 1-3 PROCENTEN Procenten betekent per honderd. Percentage Groeifactor 1% 1/100 0,01 2% 2/100 0,02 10% 10/100 0,10 99% 99/100 0,99 104% 104/100 1,04 150% 150/100 1,50 Rekenen met procenten:

Nadere informatie

Onderneming en omgeving - Economisch gereedschap

Onderneming en omgeving - Economisch gereedschap Onderneming en omgeving - Economisch gereedschap 1 Rekenen met procenten, basispunten en procentpunten... 1 2 Werken met indexcijfers... 3 3 Grafieken maken en lezen... 5 4a Tweedegraads functie: de parabool...

Nadere informatie

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine

WISKUNDE 5 PERIODEN. DATUM : 4 juni 2010. Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische rekenmachine EUROPEES BACCALAUREAAT 2010 WISKUNDE 5 PERIODEN DATUM : 4 juni 2010 DUUR VAN HET EXAMEN : 4 uur (240 minuten) TOEGESTANE HULPMIDDELEN : Formuleboekje voor de Europese scholen Niet-programmeerbare, niet-grafische

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Rekenboek 3 havo/vwo. Antwoorden NOORDHOFF UITGEVERS 2014 REKENBOEK 3 HAVO/VWO ANTWOORDEN 1

Rekenboek 3 havo/vwo. Antwoorden NOORDHOFF UITGEVERS 2014 REKENBOEK 3 HAVO/VWO ANTWOORDEN 1 Rekenboek havo/vwo Antwoorden NOORDHOFF UITGEVERS 04 REKENBOEK HAVO/VWO ANTWOORDEN Blok Getallen. Bewerkingen a 45 d 6 g 8 b 60 e 90 h 687 c 4 f 56 i 48 a 4 d 000 b 4 000 e 000 c 70 f 0 000 a 7 d 0 b 70

Nadere informatie

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.

Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

Werkblad havo 4 natuurkunde Basisvaardigheden

Werkblad havo 4 natuurkunde Basisvaardigheden Werkblad havo 4 natuurkunde Basisvaardigheden Grootheden en eenheden Bij het vak natuurkunde spelen grootheden en eenheden een belangrijke rol. Wat dat zijn, grootheden en eenheden? Een grootheid is een

Nadere informatie

Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C

Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Leerjaar 4: Doelenlijst Rekenen/Wiskunde voor leerroute A, B en C Getallen, Verhoudingen, Meten en meetkunde, Verbanden GETALLEN Onderdeel 1 Optellen en aftrekken (inclusief getalverkenning en schatten)

Nadere informatie

Leerlijnen groep 4 Wereld in Getallen

Leerlijnen groep 4 Wereld in Getallen Leerlijnen groep 4 Wereld in Getallen 1 REKENEN Boek 4a: Blok 1 - week 1 - optellen en aftrekken t/m 10 (3 getallen, 4 sommen) 5 + 4 = / 4 + 5 = 9 5 = / 9 4 = - getallen tot 100 Telrij oefenen met kralenstang

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.

Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk. Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 4 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen HAV 0 tijdvak woensdag 0 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit eamen hoort een uitwerkbijlage.. Dit eamen bestaat uit 0 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

x -3-2 -1 0 1 2 3 a. y -7-4 -1 2 5 8 11 b. y -3.5-3 -2.5-2 -1.5-1 -0.5 c. y 7 6 5 4 3 2 1

x -3-2 -1 0 1 2 3 a. y -7-4 -1 2 5 8 11 b. y -3.5-3 -2.5-2 -1.5-1 -0.5 c. y 7 6 5 4 3 2 1 Huiswerk bij les 1 1. Teken de grafiek van de volgende functies (maak eerste een tabel en ga dan tekenen): a. y = 3x +2 lineaire functie met startgetal 2 en helling 3 b. y = -2 + ½x lineaire functie met

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

1 maximumscore 2 De kosten van de gereden kilometers zijn (0,90 8 =) ( ) 7,20 1 De prijs van de taxirit is 7,20 + 2,50 = ( ) 9,70 1

1 maximumscore 2 De kosten van de gereden kilometers zijn (0,90 8 =) ( ) 7,20 1 De prijs van de taxirit is 7,20 + 2,50 = ( ) 9,70 1 Beoordelingsmodel VMBO KB 007-II Vraag Antwoord Scores Taxirit maximumscore De kosten van de gereden kilometers zijn (0,90 8 =) ( ) 7,0 De prijs van de taxirit is 7,0 +,50 = ( ) 9,70 maximumscore 3 Een

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a + = + = 7 7 e = 8 b = = 9 f 9 = = = = 7 8 0 0 0 6 6 8 8 c = = 9 g 6 = = = 7 7 7 7 d + = + = h = 6 9 9 9 9 7 9 B-a 0,666 6, = kilogram b 0, = e,0 c Er zijn in totaal + 9 = delen.

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 1 dinsdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2010 tijdvak 1 dinsdag 18 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor

Nadere informatie

Groei gewicht. gemiddeld gewicht. 3 jaar leeftijd (maanden/jaren) 1 jaar. 2 jaar

Groei gewicht. gemiddeld gewicht. 3 jaar leeftijd (maanden/jaren) 1 jaar. 2 jaar Groei Zoraya is 3 jaar oud. Haar ouders zijn vaak met haar naar het consultatiebureau gegaan. Daar werd Zoraya telkens gewogen. Je ziet een deel van de kaart waarop met stippen het gewicht van Zoraya is

Nadere informatie

Vraag Antwoord Scores. Opmerking Voor elk fout of ontbrekend getal één scorepunt aftrekken tot een maximum van drie scorepunten.

Vraag Antwoord Scores. Opmerking Voor elk fout of ontbrekend getal één scorepunt aftrekken tot een maximum van drie scorepunten. Beoordelingsmodel VMBO KB 00-II Vraag Antwoord Scores Blikken stapelen maximumscore 3 aantal lagen a 3 4 5 6 7 8 9 totaal aantal blikken b 3 6 0 5 8 36 45 Voor elk fout ontbrekend getal één scorepunt aftrekken

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - II OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

10 20 30 leeftijd kwelder (in jaren)

10 20 30 leeftijd kwelder (in jaren) Kwelders De vorm van eilanden, bijvoorbeeld in de Waddenzee, verandert voortdurend. De zee spoelt stukken strand weg en op andere plekken ontstaat juist nieuw land. Deze nieuwe stukken land worden kwelders

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

Hoofdstuk 1 - Formules en grafieken

Hoofdstuk 1 - Formules en grafieken Voprkennis aantal minuten 0 1 2 3 4 5 6 aantal graden Celsius 20 28 36 44 52 60 68 V_y V_y toename +8 +8 +8 +8 +8 +8 b Bij deze tabel hoort een lineaire formule want de toename in de onderste rij van de

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 76 punten

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13

Nadere informatie

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en.

Scoreblad bewis 01. naam cursist: naam afnemer: werkpunt. niet goed. tellen. getalbegrip. algemeen 01 04. bewerking en. optellen en. Scoreblad bewis naam cursist: datum: naam afnemer: inhoud vraag opmerkingen OK werkpunt niet goed tellen eieren tellen in dozen van 10 getallen verder aanvullen in kralenketting getalbegrip getallen ertussen

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Eindexamen wiskunde B havo I

Eindexamen wiskunde B havo I Diersoorten Uit onderzoek is gebleken dat er foto een verband bestaat tussen de lengte van diersoorten en het aantal diersoorten met die lengte. Met de lengte van een diersoort wordt bedoeld de gemiddelde

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Deel 1: Getallenkennis

Deel 1: Getallenkennis Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 100 000 10 Les 2: Natuurlijke getallen kleiner dan 1 000 000

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Trillingen en geluid wiskundig

Trillingen en geluid wiskundig Trillingen en geluid wiskundig 1 De sinus van een hoek 2 Radialen 3 Uitwijking van een harmonische trilling 4 Macht en logaritme 5 Geluidsniveau en amplitude 1 De sinus van een hoek Sinus van een hoek

Nadere informatie

Eindexamen wiskunde A pilot havo 2011 - II

Eindexamen wiskunde A pilot havo 2011 - II Eindexamen wiskunde A pilot havo 0 - II Beoordelingsmodel Woningvoorraad maximumscore 3 b = 3 6 3 a = = 0, 30 0 Opmerkingen Als voor het verschil in jaren 3 9 genomen is, hiervoor geen scorepunten in mindering

Nadere informatie

Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni uur

Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni uur Examen VMBO-GL en TL 2008 tijdvak 2 dinsdag 17 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 7 punten

Nadere informatie

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.

Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen. Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:

Nadere informatie

Examen VMBO-BB. wiskunde CSE BB. tijdvak 1 vrijdag 24 mei 9.00-10.30 uur

Examen VMBO-BB. wiskunde CSE BB. tijdvak 1 vrijdag 24 mei 9.00-10.30 uur Examen VMBO-BB 2013 tijdvak 1 vrijdag 24 mei 9.00-10.30 uur wiskunde CSE BB Naam kandidaat Kandidaatnummer Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 65 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben.

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Leerroute 3 Jaargroep: 8 GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Je bewust zijn dat getallen verschillende betekenissen kunnen hebben. (hoeveelheidsgetal,

Nadere informatie

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen

STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het

Nadere informatie