Uitwerkingen oefeningen hoofdstuk 2
|
|
- Leen Willemsen
- 2 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Uitwerkingen oefeningen hoofdstuk Basis Verhoudingen 1 13 cm : 390 km, dat is 13 cm : m. Dat komt overeen met 13 cm : cm en dat is te vereenvoudigen tot 1 : De schaal is 1 : 500. Het model is dus 500 keer zo klein als het echte schip. 268 m in het echt wordt dus in het model 268 m : 500 = 0,536 m = 53,6 cm cm : 5 km, dat is 50 cm : cm. Dit is te vereenvoudigen tot 1 : Op de kaart is de Coentunnel 6,4 cm lang. Volgens de schaal is hij in het echt dan ,4 cm lang. Dat is cm = 960 m = 0,96 km lang. Evenredigheid 5 Bij een dergelijke situatie is het altijd handig om eerst een tabel te maken met de kosten op een aantal momenten. Vervolgens is het gemakkelijk om de grafiek te tekenen. Hieronder volgt een voorbeeld van de kosten voor bellen buiten je bundel. Het kan natuurlijk zijn dat jij andere punten hebt gekozen (andere momenten), toch zal in dit geval jouw grafiek op dezelfde manier verlopen, met een hellingsgetal van 0,23. Deze grafiek is namelijk lineair, zelfs recht evenredig (gaat ook door de oorsprong). Minuten ,23 2,3 4,6 6,9 9,2 Kosten in Tijd in minuten 1 van 9
2 6 Zoals je aan de grafiek (in dit geval een histogram) en de tabel kunt zien is ook deze grafiek lineair en zelfs recht evenredig. Aantal personen Kosten in 0 1,95 35,90 53,85 1,80 89,5 10,0 125,65 143,60 161,55 19,5 Kosten catering A Aantal personen ,95 35,90 53,85 1,80 89,5 10,0 125,65 143,60 161,55 19,50 Kosten in Let op: vraag je je af waarom hier geen lijngrafiek is getekend, maar gekozen is voor een histogram? Lees dan in hoofdstuk 5 over de nodige voorwaarden voor het tekenen van een lijngrafiek. 2 van 9
3 Aantal personen Kosten in 0 99,5 19,55 19,50 269,25 359,00 334,95 398,5 48,50 Kosten catering B Aantal personen Kosten in In de grafiek kun je mooi de twee punten zien waar de prijs wordt aangepast op het aantal personen. Tot 10 personen is de grafiek lineair met een hellingsgetal van 19,95. Tussen 11 en 20 is de grafiek lineair met een hellingsgetal van 1,95. Vanaf 21 is de grafiek lineair met een hellingsgetal van 15,95. Je kunt in de grafiek goed zien dat het goedkoper is om met 11 mensen te eten dan met 10. Ook is het goedkoper om met 22 mensen te eten dan met 20. Deze grafiek is niet continu. Omdat het altijd om hele aantallen mensen gaat, hebben alleen de coördinaten met een hele x-component een betekenis. Daarom is er ook geen grafiek getekend voor punten met een x-coördinaat tussen 10 en 11 en tussen 20 en 21. Voor andere niet-hele waarden van x hebben we de lijn wel doorgetrokken, omdat zo inzicht ontstaat in de verhouding van de kosten met het aantal mensen. 3 van 9
4 Procenten 8 a Voorbeeld van: van getal naar percentage. De vraag is hier namelijk hoeveel procent van 4500 is. Het antwoord is 2%, omdat 1% van 4500 = 45 en 45 2 = 90 en dus = 100 = 2%. b Voorbeeld van: van getal naar percentage. : 0,32 = 21 rest 0,28. 0,28 : 0,32 = : 8. Het gezochte percentage is dus 21 8 %. c Voorbeeld van: van getal naar percentage. 30,6 : 0,68 = 45. Het gezochte percentage is dus 45%. d Voorbeeld van: van getal naar percentage. 4,25 : 0,85 = 5. Het gezochte percentage is dus 5%. e Voorbeeld van: van getal naar percentage. 9 : 0,65 = 13 rest 0,55. 0,55 : 0,65 = 11 : 13. Het gezochte percentage is dus %. 9 Voorbeeld van: getal en percentage zijn bekend.,15 = 65%.,15 : 0,65 = 11. Het gezochte antwoord is dus 11. Het kan natuurlijk ook door eerst 5% te berekenen; dat is,15 : 13 = 0,55. Dus dan is 100% 11. oud nieuw oud 10 a Voorbeeld van: van getal naar percentage. 4 : 54 = 0,803, wat overeenkomt met ongeveer 8%. De vraag is echter niet hoeveel procent 4, van 54, is, maar wat de prijsdaling is. Die kun je berekenen door 4 te delen door 54 en vervolgens dit van de 100% af te halen ( 54,- is immers 100%). De daling is dus ongeveer 13% (namelijk 100% 8%). Je kunt dit ook op een directere manier berekenen. Namelijk door eerst te kijken naar de daling in geld en vervolgens te berekenen hoeveel procent dat is van het oorspronkelijke bedrag =. : 54 = 0,12962, wat overeenkomt met een daling van ongeveer 13%. Dit kun je ook met behulp van de volgende formule oplossen: 100. Deze formule kent in de economie veel toepassingen. Met de formule bereken je eerst het verschil tussen de twee bedragen en vervolgens hoeveel procent dat verschil (daling of stijging, negatief of positief) is van het oorspronkelijke bedrag, door te delen door de oude prijs. Om te komen tot percentages moet dit getal nog verme nigvuldigd worden met 100. Voor deze som krijg je dan: 100 = = 12,96%. Het minteken laat zien dat het hier om een daling gaat. b Voorbeeld van: van getal naar percentage. De stijging is 10 cent, wat overeenkomt met een stijging van 1/ deel. Dat is 14 2 %. c Voorbeeld van: van getal naar percentage. De vraag is hier hoeveel procent 95 (het verschil tussen de twee bedragen) van 95 is. 95/95 = 0,119496, wat overeenkomt met een percentage van ongeveer 12%. In formule: 100 = = 11, Een daling van ongeveer 12 procent dus. d Voorbeeld van: van getal naar percentage. De stijging bedraagt 3. Nu is 3 : 19,5 = 0,153846, wat overeenkomt met een stijging van ongeveer 15,5%. 4 van 9
5 Breuken 11 Maak een schema, zoals hieronder. Wanneer je onder dit schema een getallenlijn tekent en je trekt de uiteinden van het gearceerde gedeelte naar de getallenlijn, dan vind je op de getallenlijn de breuken in de goede volgorde (noemer is vergroot met factor 8, dus teller ook) (teller is vergroot met factor 3, dus noemer ook) 14 ( 3 = 6 14 ; 4 = 8 14 ; ligt daar tussenin) Je weet hoe 1/3 er als kommagetal uitziet. Je weet dat dit een repeterende breuk is, met een 0, dan de komma en na de komma oneindig veel drieën. Dat is meer dan 0,33(000 ) en 0,3(000 ) Het kleinste getal van deze rij getallen is 0,3. Het grootste is 1/3. Bewerkingen met breuken = = = = = = 10 5 = = 1 13 = = = = = 3 4 = 12 5 van 9
6 21 Allereerst is het goed om je te bedenken wat hier gevraagd wordt. Eigenlijk wordt hier gevraagd hoe vaak 5,5 in 4,666 past. Het antwoord kan dus niet groter dan 1 zijn! Vervolgens kun je gaan rekenen op twee manieren. Eerste manier: : = 14 3 : 11 2 = 28 6 : : 33 = = 28. Of: je werkt de breuken, met behulp van groter of kleiner maken (GOK). 6 : 6 33 Wanneer je beide getallen vermenigvuldigt met 6 krijg je 28 : 33 = Repertoire Procenten en procentpunten 22 De rente is bij maandelijkse betaling lager, vanwege de samengestelde interest (rente-op-rente). Als je het bedrag bijvoorbeeld één jaar laat staan, en je laat per maand uitkeren, krijg je elke maand (1,25 : 12)% van je bedrag aan het begin van de vorige maand. Dat levert na twaalf maanden (1, ) 12 = 1,0125 keer het beginbedrag. Dat is dus een percentage van 1,25%. Als de bank bij maandelijkse uitkering zou vasthouden aan de 1,5%, zou het percentage over het hele jaar 1,51% zijn. Daarom verlagen ze het rentetarief (fors) bij maandelijkse uitkering. 23 a Het aandeel is 0,5% gestegen ten opzichte van gisteren; dat is gegeven. b Het aandeel is de afgelopen twee dagen gestegen met eerst 0,8% en vervolgens met nog eens 0,5%. Dat komt neer op een percentage van 1,008 1,005 = 1,01556 en dus 101,556%. 100% staat hier echter voor de oorspronkelijke prijs. De stijging bedraagt dus 1,556%. c Het aandeel is dus gestegen van 0,8% op de eerste dag naar 1,556% na twee dagen. Dat is een stijging van 1,556 0,8 = 0,556 procentpunt. d 1,008 1,005 1,00 1,0065 1,006 = 1,03549, wat een stijging geeft van 3,55%. Samengestelde interest 24 Dit is een voorbeeld van samengestelde interest. Ze heeft het eerste jaar namelijk 2,5% rente ontvangen en het tweede jaar ook. Na twee jaar is haar tegoed dus vermeerderd met een factor 1,025 1,025 = 1,050625, wat overeenkomt met een totale rente van 5,06% over die twee jaar. 25 Ook in deze situatie herkennen we samengestelde interest, maar daarnaast wordt er ook gebruikgemaakt van: van percentage naar getal. We hebben startbedrag 1, = 1920,13, dus 1920,13: 1, = startbedrag. Het startbedrag is dus 1500,-. 26 Je ontvangt eigenlijk 20% korting over de 80% van het oorspronkelijke bedrag. Dus betaal je uiteindelijk 0,8 0,8 = 0,64 keer het oorspronkelijke bedrag, dus 64% ervan. Een korting van dus 36%. Ga maar na. Stel de bladblazer naar keuze kost 100. Dan krijg je 20% korting vanwege de bladblazer-actie en is de bladblazer dus nog maar 80. Vervolgens krijg je daar 20% korting over vanwege de kortingscoupon die je krijgt bij aanmelding op de nieuwsbrief. 10% van 80 is 8 dus 20% van 80 is 16. In totaal heb je dus = 36 korting ontvangen op een bladblazer van 100, dus een korting van 36%. 6 van 9
7 Van repetent naar breuk 2 a 0,111 = 1/9 b 0,666 = 6/99 c 0, = 445/999 d 0, = 456/999 = 152/333 Wat er bij a t/m d gebeurt, is dat er naar het repetendum gekeken wordt. Bij a is dit ééncijferig. Bij vermenigvuldiging met 10 ontstaat het getal 1,111 Wanneer je dat vermenigvuldigt met 9 (of met 10 en er dan 1 keer er vanaf haalt) ontstaat het hele getal 1 en heb je geen last meer van een repeterend deel. Kennelijk is 1 dus negen keer 0,111 Het getal 0,111 is dan 1/9. Analoog volgt bij b (een tweecijferig repetendum) dat 99 keer 0,666 gelijk is aan 6, en dus is het getal 0,666 = 6/ Het lukt niet om 0,99999 om te zetten naar een breuk. Wanneer je hetzelfde doet als bij opgave 2 kom je tot het getal 1, dat is een heel getal en geen echte breuk. Kennelijk is 0,999 gelijk aan 1. Promille 29 0,8% = 0,8 100 = = a Haar BAG = 5 0,5 (2,5 0,5) (5 0,002) = 30 3,5 2 0,15 = 0,8 0,3 = 0,5. Zij is dus zeker onder invloed en kan dus beter niet meer deelnemen aan het verkeer. b Om echt te kunnen spreken van dronkenschap moet het BAG uitkomen op 2 promille. Vervolgens moet je naar beneden afronden om te weten wat het maximale aantal glazen is dat je vriendin zou kunnen drinken zonder echt dronken te worden. Dus 2 = 5 0,5 (2,5 0,5) (5 0,002) = 3,5 0,3. Daaruit volgt: 2,3 = 3,5, dus = 2,3 3,5 = 86,25, dus a = 8,625. In dit geval zou het negende glas de dronkenschapsgrens overschrijden, terwijl acht glazen binnen 2,5 uur nog net niet zou leiden tot dronkenschap. c Omdat de man evenveel weegt komt de formule voor een groot deel overeen: 2 = 5 0, (2,5 0,5) (5 0,002) = 52,5 0,3. Daaruit volgt: 2,3 = 52,5, dus = 2,3 52,5 = 120,5, dus a = 12,05. In dit geval zou het dertiende glas de dronkenschapsgrens overschrijden, terwijl twaalf glazen binnen 2,5 uur nog net niet zou leiden tot dronkenschap. d Haar BAG zal moeten dalen tot 0. Dus 0 = 5 0,5 (u 0,5) (5 0,002) = 30 3,5 (u 0,5) 0,15. Hieruit volgt 0,15 (u 0,5) = 0,8, of u 0,5 = 0,8/0,15, wat neerkomt op u = 5,8333 Ze zal dus 5 + 8/10 + 3/100 uren moeten wachten. Als je dat verder uitrekent, kom je op ongeveer 5 uur en 50 minuten. Ze kan dus het beste gedurende zes uur niet rijden. van 9
8 Kansberekening 31 Om dit te kunnen berekenen, moeten we eerst het een en ander opzoeken op internet. Hoeveel verschillende loten zijn er waarop de hoofdprijs kan vallen? Hoeveel loten worden er verkocht? Valt de hoofdprijs überhaupt, of is er nog een kans dat deze niet valt? Er blijken 180 series van verschillende loten per serie mogelijk te zijn. Dit geeft dus = verschillende loten die kans maken op de hoofdprijs. Ervan uitgaande dat alle loten bij de loterij meedoen en de hoofdprijs dus ook op een onverkocht lot kan vallen, is de kans op de hoofdprijs dus 1/ en daarmee behoorlijk klein. Worden de prijzen echter alleen getrokken onder de daadwerkelijk verkochte loten dan is er ook informatie nodig over het aantal verkochte loten (dat we n noemen) tijdens de Koningsdagloterij en is de kans op de hoofdprijs 1/n. In totaal worden er ongeveer loten verkocht bij de Koningsdagloterij. De kans op de hoofdprijs (waar er maar 1 van is), is dus 1 op , en dat is nog steeds een kleine kans. Uit de gegevens van de Koningsloterij blijkt dat er per trekking prijzen worden uitgereikt. Dat is over het totaal van alle loten. De kans om sowieso iets te winnen in de staatsloterij is dus / , en dat is ongeveer %. 32 1,6 50 0, ,- = 649,43. Er blijft naar verwachting dus niet veel van de erfenis over. 33 a Maximale score: 6 1 = 5. Minimale score: 1 6 = 5. b De kans op 25 na vijf worpen betekent dat je elke worp het maximale hebt gegooid. De kans op 5 is 1/36. De kans om dat vijf keer te doen is 1/36 1/36 1/36 1/36 1/36 = 1/36 5 = 1/ = 1, Dit is een heel kleine kans Landelijke kennisbasis 34 Deze moet je kennen. 0,125 = 1/8, dus de noemer is 8 (gebaseerd op paragraaf 2.2.4) 35 c (gebaseerd op paragraaf 2.2.4) liter (gebaseerd op paragraaf 2.2.1) 3 d (gebaseerd op paragraaf 2.2.3) 38 d (gebaseerd op paragraaf 2.2.3) 39 a (gebaseerd op paragraaf 2.2.2) (gebaseerd op paragrafen en ) 41 c (gebaseerd op paragraaf ) 8 van 9
9 42 b (gebaseerd op paragrafen 2.3. en 2.2.1) 43 a (gebaseerd op paragraaf 2.2.3) 9 van 9
2 Verhoudingen, procenten, breuken en kommagetallen
Rekenen en wiskunde uitgelegd Kennisbasis voor leerkrachten basisonderwijs Uitwerkingen van de opgaven bij de basisvaardigheden 2 Verhoudingen, procenten, breuken en kommagetallen Peter Ale Martine van
Uitwerkingen oefeningen hoofdstuk 5
Uitwerkingen oefeningen hoofdstuk 5 5.4.1 Basis 1 a Dit is een voorbeeld van interpoleren. Er zijn namelijk gegevens van voor 1995 en van na 1995 bekend. Binnen de bekende gegevens en dus binnen de tabel
2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13
REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.
Hoofdstuk 1: Basisvaardigheden
Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen
1. Optellen en aftrekken
1. Optellen en aftrekken Om breuken op te tellen of af te trekken maak je de breuken gelijknamig. Gelijknamig maken wil zeggen dat je zorgt voor 'gelijke noemers': Om de breuken met 'derden' en 'vijfden'
Hoe maak je nu van breuken procenten? Voorbeeld: Opgave: hoeveel procent van de onderstaande tekening is zwart gekleurd?
Procenten Zoals op de basisschool is aangeleerd kunnen we een taart verdelen in een aantal stukken. Hierbij krijgen we een breuk. We kunnen ditzelfde stuk taart ook aangegeven als een percentage. Procenten:
Rekenmachine. Willem-Jan van der Zanden
Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine
Toets gecijferdheid december 2004
Toets gecijferdheid december 2004 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd
Rekentermen en tekens
Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste
INHOUDSOPGAVE. HOOFDSTUK 6 AFRONDEN Inleiding Cijfers Verstandig afronden 48 BLZ
INHOUDSOPGAVE BLZ HOOFDSTUK 1 DOMEIN A: GETALLEN 15 1.1. Inleiding 15 1.2. Cijfers en getallen 15 1.3. Gebroken getallen 16 1.4. Negatieve getallen 17 1.5. Symbolen en vergelijken van getallen 19 HOOFDSTUK
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan
2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?
Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel
1.1 Rekenen met letters [1]
1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren
Leerlijnen groep 8 Wereld in Getallen
Leerlijnen groep 8 Wereld in Getallen 1 2 3 4 REKENEN Boek 8a: Blok 1 - week 1 Oriëntatie - uitspreken en schrijven van getallen rond 1 miljoen - introductie miljard - helen uit een breuk halen 5/4 = -
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats
Het weetjesschrift. Weetjesschrift Galamaschool
Het weetjesschrift Dit is het weetjesschrift. In dit schrift vind je heel veel weetjes over taal, rekenen en andere onderwerpen. Sommige weetjes zal je misschien al wel kennen en anderen leer je nog! Uiteindelijk
Reken zeker: leerlijn breuken
Reken zeker: leerlijn breuken B = breuk H = hele HB = hele plus breuk (1 1/4) Blauwe tekst is theorie uit het leerlingenboek. De breuknotatie in Reken zeker is - anders dan in deze handout - met horizontale
Uitwerkingen Rekenen met cijfers en letters
Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
Deel C. Breuken. vermenigvuldigen en delen
Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt
Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)
1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht
Groep 7, blok 1, week 1 Passende Perspectieven, leerroute 3
Groep 7, blok 1, week 1 Passende Perspectieven, leerroute 3 LES 1 LES 2 LES 3 LES 4 LES 5 (tot 1000 en boven 1000 getallen herkennen, benoemen en noteren) (tot 1000) (1/10) (1/2 en 1/5) (10 cm = 0,10 m,
Toets gecijferdheid augustus 2005
Toets gecijferdheid augustus 2005 Naam: Klas: score: Datum: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de tijd
Breuken met letters WISNET-HBO. update juli 2013
Breuken met letters WISNET-HBO update juli 2013 De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers
Antwoorden bij Rekenen met het hoofd
Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs
Leerlijnen groep 7 Wereld in Getallen
Leerlijnen groep 7 Wereld in Getallen 1 2 REKENEN Boek 7a: Blok 1 - week 1 in geldcontext 2 x 2,95 = / 4 x 2,95 = Optellen en aftrekken tot 10.000 - ciferend; met 2 of 3 getallen 4232 + 3635 + 745 = 1600
De teller geeft hoeveel stukken er zijn en de noemer zegt wat de 5. naam is van die stukken: 6 taart geeft dus aan dat de taart in 6
Breuken Breuk betekent dat er iets gebroken is. Het is niet meer heel. Als je een meloen doormidden snijdt, is die niet meer heel, maar verdeeld in twee stukken. Eén zo n stuk is dan een halve meloen,
Wiskunde D Online uitwerking 4 VWO blok 5 les 3
Paragraaf 10 De standaard normale tabel Opgave 1 a Er geldt 20,1 16,6 = 3,5 C. Dit best wel een fors verschil, maar hoeft niet direct heel erg uitzonderlijk te zijn. b Er geldt 167 150 = 17. Dat valt buiten
Compex wiskunde A1-2 vwo 2004-I
KoersSprint In deze opgave gebruiken we enkele Excelbestanden. Het kan zijn dat de uitkomsten van de berekeningen in de bestanden iets verschillen van de exacte waarden door afrondingen. Verder kunnen
Lesopbouw: instructie. Start. Instructie. Blok 4. Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen
Week Blok Bijwerkboek 0 Les Rekenboek Lessen 0 0, 0 0, 0, keer 0, 0,, flesjes 0,, 0, 0 0 plankjes stukjes 0 0 Lesinhoud Kommagetallen: vermenigvuldigen met kommagetallen Kommagetallen: delen met kommagetallen
F3 Formules: Formule rechte lijn opstellen 1/3
F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een
PG blok 4 werkboek bijeenkomst 4 en 5
2015-2015 PG blok 4 werkboek bijeenkomst 4 en 5 Inhoud Kenmerken van deelbaarheid (herhaling)...1 Ontbinden in factoren...1 Priemgetallen (herhaling)...2 Ontbinden in priemfactoren...2 KGV (Kleinste Gemene
1.3 Rekenen met pijlen
14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij
Routeboekje. bij Rekenrijk. Groep 7 Blok 6. Van...
Routeboekje bij Rekenrijk Groep 7 Blok 6 Van... Groep 7 Blok 6 Les 1 Leerkrachtgebonden LB 7a 142 1 Hoeveel bussen? meedoen LB 7a 142 2 Reken uit - LB 7a 142 3 Reken uit maken LB 7a 143 4 Schat eerst,
Reken uit en Leg uit 4 e bijeenkomst maandag 15 februari 2013 monica wijers en vincent jonker
Reken uit en Leg uit 4 e bijeenkomst maandag 15 februari 2013 monica wijers en vincent jonker deel 0 WAT DEDEN WE DE 3 E KEER? samengevat Inleveropgaven Breuken context ondersteunt berekening en betekenis
INHOUDSTAFEL. inhoudstafel... 2
INHOUDSTAFEL inhoudstafel... 2 getallenkennis waarde van cijfers in een getal... 6 grote getallen... 7 rekentaal... 8 rekentaal deel 2... 9 soorten getallen... 9 rekentaal deel 3... 10 de ongelijke verdeling...
Toegepast Rekenen Theorie:
Toegepast Rekenen Theorie: Hfst 1: Rekenen De volgorde van de basisbewerkingen is: Eerst tussen haakjes Daarna de volgorde volgens het ezelsbruggetje: Meneer Van Dalen Wacht Op Antwoord - Machtsverheffen
2. Optellen en aftrekken van gelijknamige breuken
1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt
WISNET-HBO. update aug. 2011
Basiskennis van machten WISNET-HBO update aug. 0 Inleiding Deze les doorwerken met pen en papier! We noemen de uitdrukking a 4 (spreek uit: a tot de vierde macht) een macht van a (in dit geval de vierde
7 De getallenlijn = -1 = Nee = 0 = = = 7 -7 C. -2 a 1 b 4 = a b -77 = -10
B M De getallenlijn 0 + = = + = = Nee 0 0 = 9 = 0 6 = = 9 = 6 = 6 = = C a b a b 0 = 0 0 = 0 a b < 0 ; a b < 0 ; a > b ; b > a = = = = C Nee, hij loopt steeds maar verder. < x H x < x < x < x + + = x +
10.1 Berekeningen met procenten [1]
10.1 Berekeningen met procenten [1] Voorbeeld 1: Hoeveel is 48% van 560? Dit is 0,48 560 = 268,8 Voorbeeld 2: Een broek van het merk Replay kost normaal 129,-. Deze week is het uitverkoop en krijg je 35%
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:
6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER
Leerlijnen groep 6 Wereld in Getallen
Leerlijnen groep 6 Wereld in Getallen 1 REKENEN Boek 6a: Blok 1 - week 1 - buurgetallen - oefenen op de getallenlijn Geld - optellen van geldbedragen - aanvullen tot 10 105 : 5 = 2 x 69 = - van digitaal
Onthoudboekje rekenen
Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen
4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6
Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.
Hoofdstuk 1 - Formules en grafieken
Voprkennis aantal minuten 0 1 2 3 4 5 6 aantal graden Celsius 20 28 36 44 52 60 68 V_y V_y toename +8 +8 +8 +8 +8 +8 b Bij deze tabel hoort een lineaire formule want de toename in de onderste rij van de
RekenWijzer, uitwerkingen hoofdstuk 2 Gebroken getallen
Uitwerkingen 2. Kennismaken met breuken 2.. Deel van geheel Opdracht B 8 deel. ( deel + 8 deel). Opdracht 2 C 5 deel Opdracht C Driehoek C past in driehoek A. Aangezien driehoek A deel is van de tekening,
STOF VOOR SCHOOLEXAMEN 1
STOF VOOR SCHOOLEXAMEN 1 Nederlands Hoofdstuk 1 en 2. Lezen Taal en woordenschat Grammatica en spelling Schrijfopdracht (zakelijke e-mail) Geldt voor alle niveaus. Engels Het eerste schoolexamen Engels
Reken zeker: leerlijn kommagetallen
Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde
1.Tijdsduur. maanden:
1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal
2.2 Ongelijknamige breuken en vereenvoudigde breuken 22. 2.3.1 Gemengde getallen optellen en aftrekken 26. 2.5 Van breuken naar decimale getallen 28
Breuken Samenvatting Als je hele getallen deelt, kunnen er breuken ontstaan. Een breuk is een deel van iets. Je hebt iets in gelijke delen verdeeld. Wanneer je een kwart van een pizza hebt, dan heb je
D A G 1 : T W E E D O M E I N E N
REKENEN 3F DAG 1 :TWEE DOMEINEN DAG 2 : TWEE DOMEINEN DAG 3: EXAMENTRAINING DAG 4:EXAMENTRAINING EN A FRONDING Programma: Voorstellen 13.30 uur 16.15 uur Pauze: 15 minuten Theorie dag 1: Domein Getallen
Rekenen op maat 7. Doelgroepen Rekenen op maat 7. Doelgroepen Rekenen op maat 7
Rekenen op maat 7 Rekenen op maat 7 richt zich op de belangrijkste vaardigheden die nodig zijn voor het rekenwiskundeonderwijs. Er wordt nauw aangesloten bij de oefenstof van de verschillende blokken van
Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.
Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel Opdracht 2 blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een
Derde domein: gebroken getallen. 1 Kennismaking met breuken. 1.1 De breuk als deel van een geheel. Opdracht 1. Opdracht 2. blaadje 1.
Derde domein: gebroken getallen 1 Kennismaking met breuken 1.1 De breuk als deel van een geheel blaadje 1 blaadje 2 blaadje 3 blaadje 4 Een blaadje in twee delen vouwen geeft de helft van een heel blaadje.
Als je, van achter naar voor, na iedere 3 cijfers een klein beetje ruimte laat, of je zet een punt, wordt het allemaal duidelijker.
Samenvatting leerjaar 4 hoofdstuk 1: Rekenen Grote getallen Grote getallen, zoals 5300000000 zijn niet eenvoudig te lezen. Je kunt je gemakkelijk vergissen in een nul meer of minder, met grote gevolgen.
Onderwijsassistent REKENEN BASISVAARDIGHEDEN
Onderwijsassistent REKENEN BASISVAARDIGHEDEN Verhoudingstabel Wat zijn verhoudingen Rekenen met de verhoudingstabel Kruisprodukten Wat zijn verhoudingen * * * 2 Aantal rollen 1 2 12 Aantal beschuiten 18
Uitwerking toets rekenvaardigheid. Opgave 1 a. 7125,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken.
Uitwerking toets rekenvaardigheid Opgave a. 725,98 + 698,99 = Tip: Bij kommagetallen is het eenvoudiger om aan geld te denken. 725,98 + 698,99 = 725,98 + 700,0= 7824,97 Denk eraan ik doe er teveel bij
2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45
15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een
1 Basisrekenen en letterrekenen.
Uitwerkingen versie 0 Basisrekenen en letterrekenen. Opgave. Opbouw van getallen. a 605 6 00 + 5 b 3.78 3 000+ 00+ 7 0+ 8 c 56.890 56 000+ 8 00+ 9 0+ 0 d 900.30 900 000+ 00+ 0+ 0 e 3.56.675 3.000.000+
havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut
havo/vwo: vooral breuken en bèta, maar met ruimte voor meer en anders Vincent Jonker Freudenthal Instituut 0 PROGRAMMA Programma 1. Even rekenen 2. Breuken in uw vak 3. Breuken, kunnen ze het nog? 4. Breuken
Niveauproef wiskunde voor AAV
Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet
REKENEN Hfst 1-3 PROCENTEN. Procenten betekent per honderd.
REKENEN Hfst 1-3 PROCENTEN Procenten betekent per honderd. Percentage Groeifactor 1% 1/100 0,01 2% 2/100 0,02 10% 10/100 0,10 99% 99/100 0,99 104% 104/100 1,04 150% 150/100 1,50 Rekenen met procenten:
2 NATUURLIJKE GETALLEN VOORSTELLEN IN EEN TABEL, LEZEN EN NOTEREN
NATUURLIJKE GETALLEN IN DE REALITEIT Natuurlijke getallen zie en hoor je overal om je heen: Het is 0 uur. Tom woont in nummer 58. Mijn zus wordt morgen 6 jaar. Een broek van 0 euro Uitsluitend te gebruiken
LESFICHE 1. Handig rekenen. Lesfiche 1. 1 Procent & promille. 2 Afronden. Procent of percent (%) betekent letterlijk per honderd.
Lesfiche 1 1 Procent & promille Handig rekenen Procent of percent (%) betekent letterlijk per honderd. 5 5 % is dus 5 per honderd. In breukvorm wordt dat of 0,05 als decimaal getal. Promille ( ) betekent
Kennis van de telrij De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2.
Rekenrijk doelen groep 1 en 2 De kinderen kunnen tellen en terugtellen tot 10 met sprongen van 1 en van 2. Aantallen kunnen tellen De kinderen kunnen kleine aantallen tellen. De kinderen kunnen eenvoudige
Toets gecijferdheid april 2006 versie 3
Toets gecijferdheid april 2006 versie 3 Naam: Klas: score: Datum: Studentnummer: Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing
Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429)
Getal en Ruimte wi 1 havo/vwo deel 1 hoofdstuk 4 Didactische analyse door Lennaert van den Brink (1310429) - een lijst met operationele en concrete doelen van de lessenserie, indien mogelijk gerelateerd
Eindexamen wiskunde A pilot havo 2011 - II
Eindexamen wiskunde A pilot havo 0 - II Beoordelingsmodel Woningvoorraad maximumscore 3 b = 3 6 3 a = = 0, 30 0 Opmerkingen Als voor het verschil in jaren 3 9 genomen is, hiervoor geen scorepunten in mindering
STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen
STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het
Reken zeker: leerlijn kommagetallen
Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde
Rekenen met cijfers en letters
Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................
2016 W. Danhof / P. Bandstra Bandstra Speciaal Rekenadvies
Blad 1: Optellen Optellen Antwoord Tijd Overschr. IT1 Fase 1a M3 A. D. M. H. Voorbeeld: 3 + 5 = Check evt. getalbegrip tot 10 8 + 1 O Gebruik makend van omkering 3 + 5 >> 5 + 3 = 8 2 + 5 O Doortellend
Van een percentage een breuk maken, is vaak nog eenvoudiger.
breuken breuken en percentages wist je dat breuken en percentages op elkaar lijken Het geheel wordt steeds 100% genoemd. Met de helft wordt dan dus 50% bedoeld. Als men het heeft over 25%, dan bedoelt
Het Breukenboekje. Alles over breuken
Het Breukenboekje Alles over breuken breuken breukentaal tekening getal een hele 1 een halve een kwart een achtste ½ of ½ ¼ of ¼ ⅛ of ⅛ 3 breuken breukentaal tekening getal een vijfde ⅕ of ⅕ een tiende
Examen VWO-Compex. wiskunde A1,2
wiskunde A1,2 Examen VWO-Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 1 juni 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 90 punten te behalen; het examen bestaat uit 22 vragen.
Leerstofoverzicht groep 6
Leerstofoverzicht groep 6 Getallen en relaties Basisbewerkingen Leerlijn Groep 6 Uitspraak, schrijfwijze, kenmerken getallen boven 10 000 in cijfers schrijven haakjesnotatie deler en deeltal breuknotatie
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
HANDREIKING REKENEN 3F MBO
HANDREIKING REKENEN 3F MBO TEN BEHOEVE VAN REKENONDERWIJS CENTRAAL ONTWIKKELDE EXAMENS December 2013 Inhoud 1 Voorwoord 3 2 Algemeen 4 3 Domein getallen 5 4 Domein Verhoudingen 5 5 Domein Meten & Meetkunde
Rekenmodule procenten Pagina 1
% Rekenmodule procenten Pagina 1 Rekenmodule procenten Pagina 2 Inleiding Omdat gebleken is dat nog niet iedereen van jullie helemaal thuis is in procenten gaan we het nu hebben over dit onderwerp. Met
HANDREIKING REKENEN 2F MBO
HANDREIKING REKENEN 2F MBO TEN BEHOEVE VAN REKENONDERWIJS CENTRAAL ONTWIKKELDE EXAMENS pagina 2 van 24 Inhoud 1 Voorwoord 5 2 Algemeen 6 3 Domein getallen 7 4 Domein verhoudingen 9 5 Domein Meten en Meetkunde
Procenten. Een percentage van iets nemen. Handige percentages. Het percentage vinden
Procenten Een percentage van iets nemen 1% Percentages kom je overal tegen: Deze stof is % katoen. Dat is 99% zeker. Op deze bankrekening krijg je 4% rente. Wat is 1%? 1% (één procent) betekent 1 per.
Rekenmodule procenten Pagina 1
% Rekenmodule procenten Pagina 1 Inleiding Omdat gebleken is dat nog niet iedereen van jullie helemaal thuis is in procenten gaan we het nu hebben over dit onderwerp. Met behulp van deze module proberen
Toets gecijferdheid maart 2004
Toets gecijferdheid maart 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN
40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen Uitsluitend te gebruiken
Eindexamen wiskunde A1-2 vwo 2002-II
Speelgoedfabriek Een speelgoedfabrikant maakt houten poppenhuizen en houten treinen. Voor het vervaardigen van het speelgoed onderscheiden we drie soorten arbeid: zagen, timmeren en verven. Het aantal
Bijlage 11 - Toetsenmateriaal
Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met
Breuken in de breuk. 1 Breuken vermenigvuldigen en delen (breuken in de breuk)
Breuken in de breuk update juli 2013 WISNET-HBO De bedoeling van deze les is het repeteren met pen en papier van het werken met breuken. Steeds wordt bij gebruik van letters verondersteld dat de noemers
Vergelijkingen met breuken
Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog
Opdracht 2.1 a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde grootte te krijgen.
Uitwerkingen hoofdstuk Gebroken getallen. Kennismaken met breuken.. Deel van geheel Opdracht. a t/m c. Er zijn veel mogelijkheden. De vorm hoeft dus niet gelijk te zijn om toch een vierkant van dezelfde
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN
BEWERKINGEN HOOFDREKENEN 40 NATUURLIJKE GETALLEN OPTELLEN a De standaardprocedure: getallen splitsen Zo lukt het altijd: 98 + 476 = 98 + 400 + 70 + 6 = 698 + 70 + 6 = 768 + 6 = 774 b Van plaats wisselen
worden per stap telkens met 10 vermenigvuldigd. Die as is zo gekozen omdat de getallen erg sterk stijgen en anders wordt de grafiek te hoog.
1a b c Verdieping - Verdubbelingstijd De getallen zijn geschreven met komma s zoals dat in Engelse boeken gebeurt. In Nederlandse boeken schijf je bijvoorbeeld 1 miljoen als 1.000.000, maar in Engelse
Voorbeeld 1 In een klas van 29 leerlingen hebben 3 leerlingen een onvoldoende behaald voor een toets.
1. Het berekenen van een percentage Voorbeeld 1 In een klas van 29 leerlingen hebben 3 leerlingen een onvoldoende behaald voor een toets. Bereken (in 1 decimaal nauwkeurig) hoeveel procent van de leerlingen
Leerlijnen rekenen: De wereld in getallen
Leerlijnen rekenen: De wereld in getallen Groep 7(eerste helft) Getalbegrip - Telrij tot en met 1 000 000 - Uitspraak en schrijfwijze van de getallen (800 000 en 0,8 miljoen) - De opbouw en positiewaarde
Indexcijfers. - We rekenen volumes van allerlei zaken om naar procenten - We vergelijken vervolgens die cijfers om conclusies te trekken
Wat is een? Binnen de economie vergelijken we vaak procentuele ontwikkelingen. Die ontwikkelingen zijn in geld uitgedrukt soms lastig te doorzien. Zo wordt de economische groei van een land uitgedrukt
Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12
Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde
De waarde van een plaats in een getal.
Komma getallen. Toen je net op school leerde rekenen, wist je niet beter dan dat getallen heel waren. Dus een taart was een taart, een appel een appel en een peer een peer. Langzaam maar zeker werd dit
Afspraken hoofdrekenen eerste tot zesde leerjaar
24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is
SAMENVATTING BASIS & KADER
SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,
Wortels met getallen. 2 Voorbeeldenen met de vierkantswortel (Tweedemachts wortel)
Wortels met getallen 1 Inleiding WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht van de
Deel 1: Getallenkennis
Deel 1: Getallenkennis 1 Natuurlijke getallen 10 1.1 De waarde van cijfers in natuurlijke getallen 10 Les 1: Natuurlijke getallen kleiner dan 10 000 10 Les 2: Natuurlijke getallen kleiner dan 100 000 13