STATISTIEK. Een korte samenvatting over: Termen Tabellen Diagrammen
|
|
- Dina van Loon
- 4 jaren geleden
- Aantal bezoeken:
Transcriptie
1 STATISTIEK Een korte samenvatting over: Termen Tabellen Diagrammen
2 Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar: 2,3,4,5,5,5,6,6,7,8). voorbeeld 2: De waarnemingen zijn 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9 en 1. De waarnemingen 3 en 6 komen elk tweemaal voor. Er is dus geen modus. (Kijk maar: 1,2,3,3,4,5,6,6,7,8,9,1). Gemiddelde Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen. voorbeeld 1: De waarnemingen zijn 3, 4, 5, 7, 8, 9 en 1. Het gemiddelde is ( ):7 = 36:7 = 5,14. voorbeeld 2: aantal goed frequentie In bovenstaande frequentietabel staat het aantal leerlingen dat een aantal opgaven goed hebben. In dit geval zijn er 2 leerlingen die vragen goed hebben. Er zijn 3 leerlingen die 1 vraag goed hebben. Wanneer we nu het gemiddelde willen berekenen moeten we eerst weten hoeveel goede vragen in totaal gemaakt zijn. 2 leerlingen:, dus 2x = vragen goed 3 leerlingen: 1, dus 3x1 = 3 vragen goed 6 leerlingen: 2, dus 6x2 = 12 vragen goed 9 leerlingen: 3, dus 9x3 = 27 vragen goed 5 leerlingen: 4, dus 5x4 = 2 vragen goed 2 leerlingen: 5, dus 2x5 = 1 vragen goed Het totaal aantal leerlingen is = 27 leerlingen. Het totaal aantal vragen goed is = 72 vragen goed. Het gemiddelde is 72:27 = 2,67 vragen goed. Mediaan De middelste waarneming als alle waarnemingen op volgorde staan. voorbeeld 1: De waarnemingen zijn 2, 4, 4, 4, 5, 6, 7, 8, 8, 8 en 9. Alle waarnemingen staan op volgorde en de middelste waarneming is 6. De mediaan is dus 6. (Kijk maar: 2,4,4,4,5,6,7,8,8,8,9). voorbeeld 2: De waarnemingen zijn 2, 3, 3, 4, 5, 6, 7, 7, 7 en 7. Alle waarnemingen staan op volgorde. Er is niet één middelste waarneming, maar er zijn twee middelste waarnemingen (5 en 6). Het gemiddelde van die twee waarnemingen is 5½. De mediaan is dus 5½. (Kijk maar: 2,3,3,4,5,6,7,7,7,7). voorbeeld 3: De waarnemingen zijn 4, 6, 1, 8, 3, 4, 7 en 9. Eerst alle waarnemingen op volgorde zetten: 1, 3, 4, 4, 6, 7, 8 en 9. Alle waarnemingen staan nu op volgorde. Er is niet één middelste waarneming, maar er zijn twee middelste waarnemingen (4 en 6). Het gemiddelde van die twee waarnemingen is 5. De mediaan is dus 5. (Kijk maar: 1,3,4,4,6,7,8,9).
3 Spreidingsbreedte De hoogste waarneming min de laagste waarneming. voorbeeld: De waarnemingen zijn 3, 7, 5, 4, 8, 4, 6, 9, 2, 3 en 4. De hoogste waarneming is 9. De laagste waarneming is 2. De spreidingsbreedte is 9-2=7. Frequentietabel Hierin zet je de waarnemingen neer en het aantal malen dat een waarneming voorkomt. Eventueel kun je tussen de waarnemingen en de frequentie turven hoeveel maal een bepaalde waarneming voorkomt. voorbeeld: De waarnemingen zijn 1, 2, 2, 3, 3, 1, 1, 3 en 1. In een frequentietabel zet je eerst de verschillende waarnemingen op volgorde. Daarna kun je eventueel turven. De frequentie is het totaal aantal maal dat een bepaalde waarneming voorkomt. waarnemin g turven //// // /// frequentie Klassenindeling (alleen voor kader) Als je veel waarnemingen hebt, bijvoorbeeld 6, dan is het handig om een klassenindeling te maken. Stel dat je aan het kijken bent naar de lengte van verschillende personen. Dan zou je een klassenindeling gaan maken met als klassenbreedte 1 cm. Je klassenindeling zou er dan als volgt uit kunnen zien: 15 tot en met 159, 16 tot en met 169, 17 tot en met 179, 18 tot en met 189. Al je berekeningen met betrekking tot modus, mediaan en kwartielen blijven hetzelfde. Alleen als je het gemiddelde gaat berekenen dan gebruik je van elke klasse de klassenmidden. Dus van bovenstaande klassenindeling gebruik je dus de volgende klassenmiddens: 15 tot en met 159, het klassenmidden wordt (15+159):2 = 154,5. 16 tot en met 169, het klassenmidden wordt (16+169):2 = 164,5. 17 tot en met 179, het klassenmidden wordt (17+179):2 = 174,5. 18 tot en met 189, het klassenmidden wordt (18+189):2 = 184,5. Met deze klassenmiddens bereken je dan het gemiddelde. Je vermenigvuldigt het klassenmidden met de frequentie van die klasse. Klasse: Frequentie: Klassenmidden: 154,5 164,5 174,5 184,5 Frequentie x Klassenmidden: 12 x 154,4 = x 164,5 = 1151,5 14 x 174,5 = 2966,5 8 x 184,5 = 1476 Het gemiddelde kun je nu met behulp van de klassenmiddens als volgt berekenen. Tel eerst de totale frequentie op. Dus: = 41. Tel dan het totaal op van de kolom 'Frequentie x Klassenmidden'. Dus: ,5+2966, = Het gemiddelde is dan 7448:41 = 181,66.
4 Beelddiagram Hieronder zie je een beelddiagram. De hoeveelheid wordt aangegeven met plaatjes. Voordeel van een beelddiagram is dat het cijfermateriaal overzichtelijk wordt gepresenteerd. Hierbij moet je goed opletten en kijken wat 1 plaatje (in dit geval boek) nu eigenlijk inhoud. In het voorbeeld hieronder houdt het in dat één boek in werkelijkheid 2 boeken zijn. J a a r Aantal verkochte boeken per jaar ( staat voor 2 boeken) Lijndiagram Bij het tekenen van een lijndiagram moet je de volgende punten in de gaten houden: 1. Teken een horizontale as met de gegevens van de bovenste rij van de tabel. Neem steeds even grote stapjes. 2. Teken een verticale as. Kijk naar het grootste getal en maak een handige verdeling. Maak de as niet te lang. Je mag gebruik maken van de zaagtand. 3. Zet bij de assen waar het over gaat. 4. Teken de punten uit de tabel. 5. Teken de grafiek door deze punten. Kim heeft nu 5 euro op haar spaarrekening staan. Elke week spaart zij van haar zakgeld 3 euro. aantal weken (A) gespaard bedrag (B) De gegevens kun je in een grafiek zetten. Je krijgt dan onderstaande grafiek. In een lijndiagram staan niet altijd alle punten. Om andere waarden te schatten, kun je interpoleren of extrapoleren.
5 Interpoleren Bij een serie waarnemingen een tussenliggende waarde schatten. voorbeeld: Je beschikt alleen over de volgende gegevens. Jaar Aantal inwoners (in miljoenen) 5,5 5,9 6,7 7,8 8, Gevraagd: Hoeveel inwoners waren er in 1984? 1984 weet je niet. Wat je wel weet is: 198 = 6,7 199 = 7,8 Dit houdt in dat er in 1 jaar 1,1 miljoen inwoners bij zijn gekomen. Je rekent uit wat dat is voor één jaar. 1,1:1 =,11 miljoen inwoners ligt 4 jaar van 198. Dus de schatting wordt 6,7+,11x4 jaar = 7,14. Het jaar 1984 ligt in de tabel tussen twee waarden. We noemen dit Interpoleren. Extrapoleren Bij een serie waarnemingen een waarde schatten die buiten de serie waarnemingen ligt. voorbeeld: Je beschikt alleen over de volgende gegevens: Jaar Aantal inwoners (in miljoenen) 5,5 5,9 6,7 7,8 8, Gevraagd: Hoeveel inwoners zijn er in 21? Dit jaar ligt buiten deze tabel, dus dit noemen we extrapoleren. 199 = 7, = 8,4 In 5 jaar is er,6 bijgekomen. Dit houdt in dat er per jaar,6:5 =,12 bijkomt. Het jaar 21 ligt 6 jaar vanaf Dus via extrapoleren krijgen we 8,4+,12x6 jaar = 9,12 miljoen inwoners. Staafdiagram Bij het tekenen van een staaf diagram moet je de volgende stappen onthouden. 1. Teken een horizontale as met de gegevens van de bovenste rij van de tabel. Let op de staven staan los van elkaar. 2. Teken een verticale as. Kijk naar het grootste getal en maak een handige verdeling. Maak de as niet te lang. 3. Zet bij de assen waar het over gaat. 4. Teken de staven los van elkaar. 5. Zet er een opschrift bij. Op school zijn er de volgende aantal eerste klas-leerlingen: 48 leerlingen tweetalig onderwijs (TTO). 29 leerlingen gymnasium (G). 151 leerlingen brugklas HAVO/VWO (HV). 117 leerlingen brugklas VMBO-TL/HAVO (TH).
6 Aan de hand van een frequentietabel maak je een staafdiagram. Als je de staven tegen elkaar aan tekent (dus zonder tussenruimte) krijg je een bijzonder staafdiagram. Dit noemen we een histogram Stapeldiagram Hieronder zie je een voorbeeld van een stapeldiagram. In plaats van meerdere staafjes naast elkaar, kun je ook een staafdiagram tekenen waarbij de staafjes op elkaar staan.
7 Cirkeldiagram Bij het teken van een cirkeldiagram kom er iets meer bij kijken. Ik leg dit uit aan de hand van hetzelfde voorbeeld als hierboven. Op school zijn er de volgende aantal eerste klas-leerlingen: 48 leerlingen tweetalig onderwijs (TTO). 29 leerlingen gymnasium (G). 151 leerlingen brugklas HAVO/VWO (HV). 117 leerlingen brugklas VMBO-TL/HAVO (TH). Wanneer we hier een cirkeldiagram van gaan tekenen, dan moeten we eerst de gegevens in een tabel zetten. Hierbij vermelden we meteen het totaal. Reken hierna uit hoeveel graden ieder soort onderwijs is. Soort onderwijs TTO G HV TH Totaal Aantal leerlingen Aantal graden Het aantal graden kan je als volgt uitrekenen: Je weet dat een hele cirkel 36 heeft. Dus 48:345x36 = 5. 29:345x36 = :345x36 = :345x36 = 122. Nu kan je, met je geodriehoek, de hoeken binnen een cirkel tekenen.
8 Steelbladdiagram Een klas heeft de volgende proefwerkcijfers gehaald: 3,6-4,1-4,7-4,8-5, - 5, - 5,2-5,4-5,6-5,7 5,9-6,2-6,2-6,2-6,4-6,5-6,5-6,6-6,8-6,9 7,4-7,6-7,7-7,8-7,8-8,8-8,8-8,9-9, - 9,6. Bij het tekenen van een steelbladdiagram moet je eerst twee kolommen maken. Aan de linkerkant vermeld je in dit geval de hele cijfers die voorkomen. Aan de rechterkant komen de kommagetallen van de proefwerkcijfers gezet. Het proefwerkcijfer 5,9 wordt achter de 5 gezet, want het hele cijfer is 5 en de 9 komt aan de rechterkant, want dat is het kommagetal. Bij het proefwerkcijfer 4,1 zet je het cijfer 1 achter de 4. Bij het proefwerkcijfer 9,6 zet je een 6 achter de 9. Hieronder is dat gedaan voor alle proefwerkcijfers. Wanneer je de getallen in het steelbladdiagram zet, dan moeten ze op volgorde (van klein naar groot). steel blad 6 1,7,8,,2,4,6,7,9 2,2,2,4,5,5,6,8,9 4,6,7,8,8 8,8,9,6 Boxplot( alleen voor kader) Maak een boxplot bij de getallen Zet eerst getallen op volgorde van grootte: Bereken de mediaan, splits de twee groepen en bereken van beide groepen ook de mediaan: Mediaan 3 Mediaan 5 Mediaan 7,5 Teken een getallenlijn, geef de kleinste en grootste waarde aan en teken met de drie medianen de boxplot:
Gemiddelde: Het gemiddelde van een rij getallen is de som van al die getallen gedeeld door het aantal getallen.
Statistiek Modus De waarneming die het meeste voorkomt. voorbeeld 1: De waarnemingen zijn 2, 3, 4, 5, 5, 5, 6, 6, 7 en 8. De waarneming 5 komt het meeste (driemaal) voor, dus de modus is 5. (Kijk maar:
4.1 Cijfermateriaal. In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6
Voorbeeld 1: 1 miljoen = 1.000.000 4.1 Cijfermateriaal In dit getal komen zes nullen voor. Om deze reden geldt: 1.000.000 = 10 6 Voorbeeld 2: 1 miljard = 1.000.000.000 In dit getal komen negen nullen voor.
Havo A deel 1 H2 Statistiek - Samenvatting
Havo A deel 1 H2 Statistiek - Samenvatting Begrip 1. Staafdiagram Schetsje: zo ziet het er uit 2. Lijndiagram = polygoon 3. Cirkeldiagram = sectordidagram 4. Beeldiagram = pictogram 5. Stapeldiagram 6.
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.
3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal
S1 STATISTIEK. Tabellen & diagrammen Centrummaten & Spreiding
S1 STATISTIEK Tabellen & diagrammen Centrummaten & Spreiding TABELLEN & DIAGRAMMEN WELKE AUTO VIND JIJ HET MOOISTE? Kies 1,2,3,4 of 5 NUMMER 1 NUMMER 2 NUMMER 3 NUMMER 4 NUMMER 5 VERWERKING Tabel Cirkeldiagram
4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100.
4.1 Procenten [1] In het linkerplaatje zijn 26 van de 100 vierkantjes rood gekleurd. 26 procent (26%) is nu rood. 26% betekent 26 van de 100. 26 26% = = 0,26 100 In het rechterplaatje zijn 80 van de 400
Samenvattingen 5HAVO Wiskunde A.
Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband
STATISTIEK OEFENOPGAVEN
STATISTIEK OEFENOPGAVEN 1. Bereken van elke serie getallen steeds de modus, het gemiddelde, de mediaan en de spreidingsbreedte. A. 3, 3, 4, 4, 4, 5, 5, 7, 8, 10. B. 2, 3, 3, 4, 4, 5, 8, 9, 11. C. 9, 3,
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:
5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van
1 Inleiding... 3. 2 Beelddiagram... 4 2.1 Wat is een beelddiagram... 4 2.2 Hoeveel heren en dames deden mee van Tata Steel en KLM?...
INHOUDSOPGAVE Vak: Wiskunde 1 Inleiding... 3 2 Beelddiagram... 4 2.1 Wat is een beelddiagram... 4 2.2 Hoeveel heren en dames deden mee van Tata Steel en KLM?... 4 3 Staafdiagram... 5 3.1 Wat is een staafdiagram...
Docenten: Het viel me op dat in boek 2 vmbo alle ontbrekende theorie staat.( bijvoorbeeld beelddiagrammen)
Docenten: Voor mij is dit ook de eerste keer dat deze p.o. gebruikt wordt. Mijn bedoeling is een tussenstap van 2 vmbo statistiek naar PO statistiek PTA 3 vmbo. In het grote PO moeten de leerlingen zelf
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
Paragraaf 5.1 : Frequentieverdelingen
Hoofdstuk 5 Beschrijvende statistiek (V4 Wis A) Pagina 1 van 7 Paragraaf 5.1 : verdelingen Les 1 Allerlei diagrammen = { Hoe vaak iets voorkomt } Relatief = { In procenten } Absoluut = { Echte getallen
Overzicht statistiek 5N4p
Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1.4 Oefenen Opgave 9 Bekijk de genoemde dataset
Samenvatting Wiskunde Hoofdstuk
Samenvatting Wiskunde Hoofdstuk 3 + 4.4 Samenvatting door T. 901 woorden 4 jaar geleden 4 15 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 3.1 lineair formules Als er een lineair formule staat,
22-9-2010. Pieperproef. Praktische opdracht voor wiskunde Klas 2 Havo. 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8
Pieperproef Praktische opdracht voor wiskunde Klas 2 Havo 2H_Pieperonderzoek LEERLINGEN JvdB en HB.versie 2.0 1 van 8 Inhoudsopgave Benodigdheden blz. 3 Pieperonderzoek, De proef blz. 4 Uitwerking & Normering
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A
DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)
Checklist Wiskunde A HAVO 4 2014-2015 HML
Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.
tabellen, grafieken en diagrammen
tabellen, grafieken en diagrammen vmbo Tabellen, grafieken en diagrammen CSWeetje VMBO 9 In het dagelijkse leven heb je te maken met informatie en gegevens. Op verschillende manieren kun je deze tegen
2.1.4 Oefenen. d. Je ziet hier twee weegschalen. Wat is het verschil tussen beide als het gaat om het aflezen van een gewicht?
2.1.4 Oefenen Opgave 9 Bekijk de genoemde dataset GEGEVENS154LEERLINGEN. a. Hoe lang is het grootste meisje? En de grootste jongen? b. Welke lengtes komen het meeste voor? c. Is het berekenen van gemiddelden
REKENEN TABELLEN LEZEN
REKENEN TABELLEN LEZEN TABELLEN LEZEN DOEL: Je weet hoe je uit tabellen en verschillende soorten grafieken de juiste informatie kan halen. CELLEN, KOLOMMEN EN RIJEN Rij Cel of veld Kolom Deze tabel heeft
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 3 Frequentieverdelingen typeren 3.6 Geïntegreerd oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 3 Frequentieverdelingen
9.1 Centrummaten en verdelingen[1]
9.1 Centrummaten en verdelingen[1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7 9
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t
META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke
Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen.
Samenvatting door een scholier 1569 woorden 23 juni 2017 5,8 6 keer beoordeeld Vak Methode Wiskunde Moderne wiskunde Wiskunde H1 t/m H5 Hoofdstuk 1 Factor = het getal waarmee je de oude hoeveelheid moet
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO
DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken
Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)
Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek
2.2 Verbanden tussen datarepresentaties
2.2 Verbanden tussen datarepresentaties 2.2.1 Introductie In paragraaf 1 heb je een hele reeks aan datarepresentaties leren kennen. In deze paragraaf leer je welke verbanden er tussen deze representaties
extra sommen Statistiek en Kans
extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 2 Verbanden tussen data representaties 2.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 2 Verbanden tussen data representaties
Steelbladdiagram In een steelbladdiagram staan alle leerlingen genoemd. Je kunt precies zien waar Wouter staat.
2.1.3 Representaties In de voorbeelden kijken we steeds naar gewicht. Je gaat daarna zelf kijken naar de informatie over lengte en cijfergemiddelde. Voor alle opgaven geldt dat je deze zowel in de DWO
2.3 Frequentieverdelingen typeren
2.3 Frequentieverdelingen typeren 2.3.1 Introductie Kijkend naar een datarepresentatie valt meestal al snel op hoe de verdeling van de tellingen/frequenties over de verschillende waarden eruitziet. Zitten
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In
Mini-theorie vooraf. Beelddiagram In een beelddiagram zijn de hoeveelheden aangegeven met figuurtjes
Allereerst een goede raad - gebruik de HELP-functie van waar je kunt - sla regelmatig op - gebruik de functie "Ongedaan maken" (Ctrl+Z) als eerste redmiddel Mini-theorie vooraf Soorten grafieken Grafieken
8.1 Centrum- en spreidingsmaten [1]
8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte
HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....
HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan
Centrummaten en klassen vmbo-kgt34
Auteur Laatst gewijzigd Licentie Webadres VO-content 30 august 2017 CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie https://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijs van
WisMon WisTaal. Wiskunde vaktaal. theorie & opgaven. havo/vwo
WisMon WisTaal havo/vwo theorie & opgaven Wiskunde vaktaal Inhoudsopgave Introductie. Legenda. 1. De vraag begrijpen. 1.1 Slim lezen... 6 1.2 Instructietaal... 9 Samengevat... 14 2. Getallen. 2.1 Getaleigenschappen..
5 keer beoordeeld 4 maart Wiskunde H6, H7, H8 Samenvatting
4,4 Samenvatting door Syb 954 woorden 5 keer beoordeeld 4 maart 2018 Vak Wiskunde Methode Getal en Ruimte Wiskunde H6, H7, H8 Samenvatting HOOFDSTUK 6 Procenten, Diagrammen en Kansrekening (10 en 100 zijn
Inleiding Applicatie Software - Statgraphics
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een
Hoofdstuk 2: Grafieken en formules
Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde
Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.
Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van
Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek
Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje
Centrummaten en klassen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74220 Dit lesmateriaal is gemaakt met Wikiwijsleermiddelenplein. Wikiwijsleermiddelenplein
2. In de klassen 2A en 2B is een proefwerk gemaakt. Je ziet de resultaten in de frequentietabel. 2A 2B
1. (a) Bereken het gemiddelde salaris van de werknemers in de tabel hiernaast. (b) Bereken ook het mediale salaris. (c) Hoe groot is het modale salaris hier? salaris in euro s aantal werknemers 15000 1
Statistiek inleiding 2 mavo
Auteur Laatst gewijzigd Licentie Webadres J van Remoortere 06 december 2013 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/47815 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.
Statistiek: Herhaling en aanvulling
Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,
STOF VOOR SCHOOLEXAMEN 5
STOF VOOR SCHOOLEXAMEN 5 Nederlands Hoofdstuk 1 en 2. Lezen Taalverzorging en woordenschat Grammatica en spelling Schrijfopdracht (artikel) Groene boekje (lessen 19 t/m 27) Geldt voor alle niveaus. Engels
Aardgasbaten. (b) Teken bij 1996 een cirkeldiagram (c) Teken bij de tabel een vlakdiagram
1. In figuur 1 zie je gegevens over de aardgasbaten in Nederland gedurende de periode 1985-1994. Je ziet zowel een staafdiagram als een frequentiepolygoon. Aardgasbaten figuur 1 (a) In welk jaar is de
Uitwerkingen oefeningen hoofdstuk 5
Uitwerkingen oefeningen hoofdstuk 5 5.4.1 Basis 1 a Dit is een voorbeeld van interpoleren. Er zijn namelijk gegevens van voor 1995 en van na 1995 bekend. Binnen de bekende gegevens en dus binnen de tabel
Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.
Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en
Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8
Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval
Docentenhandleiding havo deel 3 CB. Docentenhandleiding Netwerk 3e editie. deel 3B havo
Docentenhandleiding Netwerk 3e editie deel 3B havo 0 Hoofdstuk 7 Verschillende verbanden Beginniveau Al eerder hebben de leerlingen kennis gemaakt met lineaire, kwadratische en exponentiële verbanden.
Aardappelomzet in milj kg.
PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponentiele functies. Voor al deze opdrachten geldt dat het werken met EXCEL van harte wordt aanbevolen. OPDRACHT 1 Aardappelen Uit onderzoek van de LandbouwUniversiteit
Berekening cijfer: aantal punten / 42 * Pagina 1 van 5. Vestiging
Vestiging vak : Wiskunde leerweg : TL toetsnummer : 3T-WIS-S-O1 toetsduur: : 100 minuten aantal te behalen punten : 42 punten cesuur : 21 punten toetsvorm : Schriftelijk hulpmiddelen :Geodriehoek, rekenmachine,
Vendorrating: statistische presentatiemiddelen
pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen
GEOGEBRAINSTITUUT. VlAANDEREN
GEOGEBRAINSTITUUT VlAANDEREN Statistiek met GeoGebra Roger Van Nieuwenhuyze Hoofdlector wiskunde HUB, lerarenopleiding Auteur VBTL, Die Keure Pedagogisch begeleider wiskunde VLP roger.van.nieuwenhuyze@skynet.be
BESCHRIJVENDE STATISTIEK MET GEOGEBRA 4.0
? BESCHRIJVENDE STATISTIEK MET GEOGEBRA 4.0 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze
Leerstofplanning. 3 vmbo-k
Leerstofplanning 3 vmbo-k Inhoud 3 vmbo-k deel 1 1 Kijken in ruimtefiguren Bij kaart: schaal, hemelsbreed en werkelijke afstand(vuistregels), hoogtelijnen op kaart, verticale doorsnede bij hoogtekaart,
Correctievoorschrift VMBO-GL en TL 2004
Correctievoorschrift VMBO-GL en TL 2004 tijdvak 2 WISKUNDE CSE GL EN TL WISKUNDE VBO-MAVO-D 4 BEOORDELINGSMODEL Vraag Antwoord Scores EURO maximumscore 3 per land ( ) 3,88 2 3,88 het antwoord is ( ) 46,56
Onderzoeksmethodiek LE: 2
Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat
gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep zakgeld per maand in euro's
a G&R havo A deel Statistiek C. von Schwartzenberg / Kwantitatieve gegevens: (getallen waarmee je kunt rekenen) Kwalitatieve gegevens: gewicht in kg jongen/meisje aantal keer sporten per week bloedgroep
3 In een klas hebben de meisjes en de jongens gemeten hoe lang ze zijn. De resultaten staan in de tabel hieronder.
4N4p Oefningen statistiek met de rekenmachine 1 De resultaten van een test voor Engels zijn als volgt: 5 9 4 6 7 5 9 6 5 7 6 7 5 8 Voer de cijfers in op de grafische rekenmachine a) Plot en schets een
1 Rekenen met gehele getallen
1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9
Diagrammen vmbo-kgt34. CC Naamsvermelding 3.0 Nederland licentie.
Auteur VO-content Laatst gewijzigd Licentie Webadres 12 April 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74218 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet.
2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45
15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken Inhoud 2.0 Data voor onderzoek 2.1 Data presenteren 2.2 Centrum en spreiding 2.3 Verdelingen typeren 2.4 Relaties 2.5 Overzicht In
Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven HAVO kan niet korter
Voorbereidende opgaven HAVO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk
dochandl4vmbo_kader_netwerk3e.doc Deel 4 vmbo kader Inhoud deel 4 Wolters-Noordhoff bv
Deel 4 vmbo kader Inhoud deel 4 Hoofdstuk 1 Rekenen Hoofdstuk 2 Lineaire verbanden Hoofdstuk 3 Vlakke meetkunde Hoofdstuk 4 Machtsverbanden Hoofdstuk 5 Statistiek Hoofdstuk 6 Ruimtemeetkunde Hoofdstuk
Excellent Rekenen Goede tot zeer goede rekenaars in het vmbo. Bijlage 2 Statistiekbrochure Handleiding en logboek voor leraren. Naam:...
Excellent Rekenen Goede tot zeer goede rekenaars in het vmbo Bijlage 2 Statistiekbrochure Handleiding en logboek voor leraren Naam:... Inleiding Als onderdeel van het onderzoek Excellent rekenen in het
Samenvatting Tentamenstof. Statistiek 1 - Vakgedeelte
Samenvatting Tentamenstof Statistiek 1 - Vakgedeelte Naam: Thomas Sluyter Nummer: 1018808 Jaar / Klas: 1e jaar Docent Wiskunde, deeltijd Datum: 14 oktober, 2007 Voorwoord Het eerstejaars vak Statistiek
1 Inleiding. 1.1 Werkblad, rijen, kolommen en cellen Als je Excel opent, zie je het volgende scherm (de menubalk bovenin kan iets verschillen):
INLEIDING EXCEL 1 INHOUD 1 Inleiding... 3 1.1 Werkblad, rijen, kolommen en cellen... 3 Cellen invullen... 5 Breedte van de kolommen en tekstterugloop... 5 1.2 Opmaak van de cellen... 6 Uitlijning... 6
Statistiek met Excel. Schoolexamen en Uitbreidingsopdrachten. Dit materiaal is gemaakt binnen de Leergang Wiskunde schooljaar 2013/14
Statistiek met Excel Schoolexamen en Uitbreidingsopdrachten 2 Inhoudsopgave Achtergrondinformatie... 4 Schoolexamen Wiskunde VWO: Statistiek met grote datasets... 5 Uibreidingsopdrachten vwo 5... 6 Schoolexamen
18.1 Intro. ANTWOORDENBOEK Cijfers in orde 1. b 1366 c d 81 e 111 f g 20 miljoen h i 51,3 j 225
18.1 Intro 1 a 81 b 1366 c 115000 d 81 e 111 f 33000 g 20 miljoen h 25000 i 51,3 j 225 2 Handel, bevolking (geboorten, huwelijken,...), gezondheid, financiën (inkomsten, faillisementen,...), verkeer (aantallen
Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP).
Dag van de wiskunde 1 e en 2 e graad 27/11/2010 Docent wiskunde aan de HUB, Brussel. Auteur Van Basis tot Limiet. Pedagogisch begeleider wiskunde (VLP). roger.van.nieuwenhuyze@skynet.be Van Nieuwenhuyze
Bijlage 11 - Toetsenmateriaal
Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met
Les 1 Kwaliteitsbeheersing. Les 2 Kwaliteitsgegevens. Les 3 Introductie Statistiek. Les 4 Normale verdeling. Kwaliteit
Kwaliteit Les 1 Kwaliteitsbeheersing Introductie & Begrippen Monstername Les 2 Kwaliteitsgegevens Gegevens Verzamelen Gegevens Weergeven Les 3 Introductie Statistiek Statistische begrippen Statistische
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht 2009, SLO Utrecht 2014 Dit lesmateriaal is ontwikkeld in het kader
2 Data en datasets verwerken
Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 4 Twee groepen vergelijken 4.4 Oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 4.4 Oefenen Voorbeeld Bekijk de dataset
Stoeien met Statistiek
Stoeien met Statistiek Havo 4: Statistiek op grote datasets 2 Inhoudsopgave Achtergrondinformatie... 4 Docentenhandleiding... 5 Inleiding voor leerlingen... 6 Opdracht 1... 7 Opdracht 2... 8 Opdracht 3...
Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar Proefwerk 60 min 3 Ja Schriftelijk.
Kennemer College Beroepsgericht Programma van Toetsing en Afsluiting schooljaar 2017 2018 Wiskunde 3 Basis Periode Wat moet je kennen en kunnen? (deel)taken Toets-vorm Duur Weging Herkan sing Wijze van
Samenvatting Natuurkunde Hoofdstuk 1
Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting door een scholier 1494 woorden 8 april 2014 7,8 97 keer beoordeeld Vak Methode Natuurkunde Systematische natuurkunde Grootheden en eenheden Kwalitatieve
Samenvatting Natuurkunde Hoofdstuk 1
Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting door M. 935 woorden 5 november 2014 7,9 5 keer beoordeeld Vak Methode Natuurkunde Systematische natuurkunde Kwantitatieve waarneming: waarnemen zonder
1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c
Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal
GEGEVENS154LEERLINGEN
2.4.4 Oefenen Voorbeeld Bekijk de dataset GEGEVENS154LEERLINGEN nog een keer. Je wilt nagaan of leerlingen die wiskunde B kiezen beter waren in wiskunde in de onderbouw dan leerlingen die wiskunde A kiezen.
7,5. Samenvatting door een scholier 1439 woorden 13 mei keer beoordeeld. Inhoudsopgave
Samenvatting door een scholier 1439 woorden 13 mei 2004 7,5 91 keer beoordeeld Vak Wiskunde Inhoudsopgave Lineair Interpoleren Pagina 02 Breuken en Decimalen Pagina 02 Werken met percentages Pagina 03
Deel C. Breuken. vermenigvuldigen en delen
Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt
Rekentermen en tekens
Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste
Onderzoek. B-cluster BBB-OND2B.2
Onderzoek B-cluster BBB-OND2B.2 Succes met leren Leuk dat je onze bundels hebt gedownload. Met deze bundels hopen we dat het leren een stuk makkelijker wordt. We proberen de beste samenvattingen voor jou
3 Pythagoras 90. 4 Statistiek 128
2BK1 2KGT1 Voorkennis 1 Meetkunde 6 1 Vlakke figuren 8 1.1 Namen van vlakke figuren 10 1.2 Driehoeken 15 1.3 Driehoeken tekenen 19 1.4 Vierhoeken 24 1.5 Hoeken berekenen in een vierhoek 30 1.6 Gemengde
Rekensprong 5 boek A. Getallenkennis boek A sprong 1, 2 en 3
Rekensprong 5 boek A Getallenkennis boek A sprong 1, 2 en 3 Sprong 1 les 2 natuurlijke getallen tot 100 000 Sprong 1 les 6 kommagetallen Sprong 2 les 14 de breuk als operator Sprong 2 les 19 de breuk als
Wiskunde - MBO Niveau 4. Eerste- en tweedegraads verbanden
Wiskunde - MBO Niveau 4 Eerste- en tweedegraads verbanden OPLEIDING: Noorderpoort MBO Niveau 4 DOCENT: H.J. Riksen LEERJAAR: Leerjaar 1 - Periode 2 UITGAVE: 2018/2019 Wiskunde - MBO Niveau 4 Eerste- en
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 6 statistiek/gegevensverwerking los materiaal, niet uit boek [PW]
bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst statistiek/gegevensverwerking los materiaal, niet uit boek [PW] procenten percentage: bv: van de 0 kinderen hadden er 7: hoeveel procent
Wiskunde - MBO Niveau 4. Eerste- en tweedegraads verbanden
Wiskunde - MBO Niveau 4 Eerste- en tweedegraads verbanden OPLEIDING: Noorderpoort MBO Niveau 4 DOCENT: H.J. Riksen LEERJAAR: Leerjaar 1 - Periode 2 UITGAVE: 2018/2019 Wiskunde - MBO Niveau 4 Eerste- en
REKENMODULE TABELLEN/DIAGRAMMEN FORMULES
REKENMODULE TABELLEN/DIAGRAMMEN FORMULES Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Tabellen/diagrammen/formules Leerlingtekst Versie
Basisvaardigheden Microsoft Excel
Basisvaardigheden Microsoft Excel Met behulp van deze handleiding kun je de basisvaardigheden leren die nodig zijn om meetresultaten van een practicum te verwerken. Je kunt dan het verband tussen twee
4.1 Negatieve getallen vermenigvuldigen [1]
4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats