8.0 Voorkennis ,93 NIEUW

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "8.0 Voorkennis ,93 NIEUW"

Transcriptie

1 8.0 Voorkennis Voorbeeld: In 2014 waren er speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal = 0,93 Aantal 2012 Aantal 2012 = ,93 Let op: Als het oude aantal bekend is, kun je met behulp van de gegeven toename (of afname) het nieuwe aantal uitrekenen: NIEUW = (1 + p/100) OUD Als het nieuwe aantal bekend is, kun je met behulp van de gegeven toename NIEUW (of afname) het oude aantal uitrekenen: OUD = p

2 8.1 Recursieve en directe formules [1] Voorbeeld 1: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u 4 ) Elke term is 4 groter dan de voorafgaande term. u 0 = 8 u 1 = u (=12) u 2 = u (=16) u 3 = u (=20) u 4 = u (=24) Algemeen: u n = u n met u 0 = 8 (recursieve formule) Met de GR: 8 ENTER ANS + 4 ENTER ENTER. 2

3 8.1 Recursieve en directe formules [1] Bij een recursieve formule kun je een term alleen uitrekenen door eerst alle voorgaande termen te berekenen. Voorbeeld 2: Gegeven is de recursieve formule u n = 1,25u n-1 10 met u 0 = 100. Bereken de vijfde en zesde term van de rij. Rond af op twee decimalen. Met de GR: 100 ENTER 1,25ANS - 10 ENTER ENTER. Je krijgt u 4 186,48 en u 5 223,11 Voorbeeld 3: Gegeven is de recursieve formule u n = 1,25u n-1 10 met u 0 = 100. Vanaf de hoeveelste term is u n > 500. u 9 487,03 en u ,79 Vanaf de 11 e term is u n >

4 8.1 Recursieve en directe formules [2] Voorbeeld 1: Gegeven is de getallenrij 1, 1, 2, 3, 5, 8, Dit is de rij van Fibonacci. Elke term is de som van de twee voorafgaande termen. Algemeen: u n = u n-1 + u n-2 met u 0 = 1 Bereken de 12 de term van deze rij Stap 1: Zet eerst in het MODE menu de optie SEQ aan. Stap 2: Druk op de knop Y= De indeling van het scherm is nu anders dan normaal. 4

5 8.1 Recursieve en directe formules [2] Voorbeeld 1: Bereken de 12 de term van deze rij Stap 3: Vul nu het volgende in: Bij nmin 0 Bij u(n) u(n-1) + u(n-2) Bij u(nmin) {1, 1} Op de GR krijg je: u via de toets 2ND 7 n via de toets die je normaal gebruikt voor de variabele X { via de toets 2ND ( } via de toets 2ND ) Je moet bij u(nmin) de eerste twee termen invullen. Vul eerst de tweede term in en dan de eerste. Is maar één term nodig, dan hoef je geen { } te gebruiken. 5

6 8.1 Recursieve en directe formules [2] Voorbeeld 1: Bereken de 12 de term van deze rij Stap 4: De uitkomst kun je vinden via 2ND GRAPH De 12 de term (u 11 ) heeft de waarde 144. Voorbeeld 2: Vanaf welke term geldt bij de Rij van Fibonacci: u n > ? Uit de tabel volgt: u 24 = u 25 = Vanaf de 26 ste term zijn er waarden groter dan

7 8.1 Recursieve en directe formules [3] Voorbeeld: Op 1 maart zit in een opslagtank liter water. Elke dag wordt 30% van de in de tank aanwezige hoeveelheid voor zuivering overgeheveld naar een andere tank. Direct daarna wordt de eerste tank bijgevuld met liter water. De eerste keer gebeurt dat op 2 maart. Stel bij deze situatie de recursieve formule op van de hoeveelheid water (W n ) en onderzoek beneden welke grenswaarde de hoeveelheid water in de tank niet komt. W n = 0,7W n met W 0 = Voer de formule in op de GR zoals je dat bij de Rij van Fibonnaci hebt geleerd. Uit de tabel volgt nu dat de grenswaarde m 3 water is. 7

8 8.1 Recursieve en directe formules [4] Bij een recursieve formule kun je een term alleen uitrekenen door eerst alle voorgaande termen te berekenen. Bij een directe formule kan dit rechtstreeks. Voorbeeld 1: 8, 12, 16, 20, 24, Recursieve formule: u n = u n met u 0 = 8 Directe formule: u n = 8 + 4n De negende term (u 8!!!) = = 40 Let op: Je krijgt ook opgaven waarbij niet u 0 maar u 1 de beginterm is. 8

9 8.1 Recursieve en directe formules [4] Voorbeeld 2: Bij de rij 4, 7, 14, 25, 40, hoort de formule u n = 2n 2 3n + 5 Bereken de tiende term. Stap 1: Zoek uit of de beginterm u 0 of u 1 is. n = 0 geeft u 0 = = 5 n = 1 geeft u 1 = = 4 De beginterm is u 1. Stap 2: Invullen van n = 10 in de formule geeft: n = 10 geeft u 10 = = 175 9

10 8.2 Rekenkundige en meetkundige rijen [1] 8, 12, 16, 20, 24, is een rekenkundige rij (rr), want het verschil tussen twee opeenvolgende termen (v) is constant. u 0 (= 8) u 1 = u 0 + v = (8 + 4 = 12) u 2 = u 1 + v = u 0 + v + v = u 0 + 2v = ( = 16) u 3 = u 2 + v = u 0 + 3v (= = 20) u 4 = u 3 + v = u 0 + 4v (= = 24) Algemeen: Als de beginterm van een rekenkundige rij u 0 is geldt: u n = u 0 + vn (direct) u n = u n-1 + v met u 0 = getal (recursief) Als de beginterm van een rekenkundige rij u 1 is geldt: u n = u 1 + v(n 1) (direct) u n = u n-1 + v met u 1 = getal (recursief) 10

11 8.2 Rekenkundige en meetkundige rijen [1] Voorbeeld: 8, 12, 16, 20, 24, De hoeveelste term is 388? Directe formule = 8 + 4n Los op: 8 + 4n = 388 4n = 380 n = 95 Dus u 95 = 388, dus de 96 ste term is 388. Let op: In dit voorbeeld is u 0 als eerste term gebruikt. De eerste term is u 0 De tweede term is u 1 De 96-ste term is u 95 11

12 8.2 Rekenkundige en meetkundige rijen [2] Gegeven is de rij getallen: 64, 96, 144, 216, 324, Elke term is te vinden door de voorgaande term te vermenigvuldingen met 1,5 Deze rij heet een meetkundige rij (mr), omdat elke term een bepaalde factor [r] groter (of kleiner) is dan de vorige term. u 0 (= 64) u 1 = u 0 r (= 64 1,5 = 96) u 2 = u 1 r = u 0 r r = u 0 r 2 (= 64 1,5 2 = 144) u 3 = u 2 r = u 0 r 3 (= 64 1,5 3 = 216) De directe formule wordt nu: u n = 64 1,5 n De recursieve formule wordt nu: u n = 1,5 u n-1 met u 0 = 64 Algemeen: (met beginterm u 0 ) u n = u 0 r n (directe formule) u n = r u n-1 met u 0 = getal (recursieve formule) Algemeen: (met beginterm u 0 ) u n = u 1 r n-1 (directe formule) u n = r u n-1 met u 1 = getal (recursieve formule) Willem-Jan van der Zandn 12

13 8.2 Rekenkundige en meetkundige rijen [2] Voorbeeld 1: Gegeven is de recursieve formule a(n) = 1,75 a(n 1) met a(1) = 10. Stel de directe formule op. Er is sprake van een meetkundige rij met a(1) als eerste term. a(1) = 10 r = 1,75 Hieruit volgt a(n) = 10 1,75 n 1 Voorbeeld 2: Vanaf de hoeveelste term is a(n) > Invoeren op de GR en aflezen uit de tabel geeft; a(16) a(17) Vanaf de 17 de term geldt: a(n) > Willem-Jan van der Zandn 13

14 8.2 Rekenkundige en meetkundige rijen [3] Voorbeeld: Van een meetkundige rij is u 6 = en u 11 = Stel de directe formule van u n op. u 6 r 5 = u 11. Hieruit volgt: r u u r 5 = 32 geeft r De directe formule wordt nu: Invullen van u 6 = geeft: u u r u n n 0 u n 2 n u 2 u u 25 2 n n 14

15 8.3 Somrijen [1] Voorbeeld: Bereken de som van de eerste zes termen van de rij met de directe formule u n = 8 + 4n Er wordt nu dus gevraagd: Bereken u 0 + u 1 + u 2 + u 3 + u 4 + u 5 = 5 k 0 u k = =

16 8.3 Somrijen [2] Voorbeeld 1: Gegeven is de directe formule u n = 8 + 4n met beginterm u 0. Geef de recursieve formule van de somrij S n. De termen van de somrij S n zijn: S 0 = u 0 = 5 S 1 = u 0 + u 1 = S 0 + u 1 = = 13 S 2 = u 0 + u 1 + u 2 = S 1 + u 2 = = 24 S 3 = u 0 + u 1 + u 2 + u 3 = S 2 + u 3 = = 38 Algemeen: De recursieve formule van de somrij S n van de rij u n is S n = S n-1 + u n met S 0 = u 0. S n = S n n met S 0 = u 0. 16

17 8.3 Somrijen [2] Voorbeeld 2: Gegeven is de rij u(n) = 2u(n 1) 3n met beginterm u(0) = 10 en de bijbehorende somrij S(n). Bereken S(10) De recursieve formule van S(n) = S(n 1) + 2u(n 1) 3n met S(0) = 10 Vul in de GR de rij en de somrij in. Uit de tabel volgt S(10) =

18 8.4 Toenamediagrammen [1] Voor de hiernaast getekende globale grafiek geldt: Afnemend stijgend tot het maximum; Na het maximum eerst toenemend dalend; Hierna afnemend dalend tot het minimum; Na het minimum toenemend stijgend. Let op: Bij een extreme waarde is de functie noch stijgend noch dalend!!! De grafiek heeft een plaatselijk maximum en plaatselijk minimum; De grafiek heeft geen absoluut maximum en absoluut minimum.

19 8.4 Toenamediagrammen [1] Let op: [2, 6] is een gesloten interval. 2 en 6 zitten in dit interval; (2, 6) is een open interval. 2 en 6 zitten niet in dit interval; (2, ) is een open interval. Alle getallen groter dan 2 zitten in dit interval. [2, 6) is een half open interval. 2 zit er wel in en 6 niet. De intervallen waarop een grafiek stijgend of dalend is zijn dus altijd open.

20 8.4 Toenamediagrammen [1]

21 8.4 Toenamediagrammen [2] In het plaatje is de functie y = x 2 4x + 3 getekend. Met behulp van onderstaande tabel kan nu een toenamediagram getekend worden Interval y [0, 1] -3 [1, 2] -1 [2, 3] 1 [3, 4] 3 [4, 5] 5 21

22 8.4 Toenamediagrammen [2] Interval y [0, 1] -3 [1, 2] -1 [2, 3] 1 [3, 4] 3 [4, 5] 5 Er is een stapgrootte ( x) van 1 gebruikt; De verticale lijnstukjes staan aan de rechterkant van het interval; Een lijnstukje boven de x-as is een toename; Een lijnstukje onder de x-as is een afname. 22

23 8.4 Toenamediagrammen [3] Voorbeeld: Gegeven is dat bij een waarde x van 0, y gelijk is aan 3. Stel de grafiek van de functie op, waarop dit toenamediagram is gebaseerd. x y

24 8.4 Toenamediagrammen [3] Voorbeeld: Op basis van de tabel kan een grafiek getekend worden. Let op dat je alleen enkele punten weet van de grafiek en niet de waarde van de tussenliggende punten. 24

25 8.5 Differentiequotiënten [1] Met het differentiequotiënt bereken je de gemiddelde verandering/ gemiddelde snelheid per tijdseenheid. Voorbeeld: f(x) = x 2 x Differentiequotiënt van f(x) op [0, 3] = y f (3) f (0) x y x 25

26 8.5 Differentiequotiënten [1] Algemeen: Het differentiequotiënt van y op [x A, x B ] is: De gemiddelde toename van y op [x A, x B ]; De richtingscoëfficiënt van de lijn AB; De helling van de lijn AB; y x B B y x A A y x 26

27 8.5 Differentiequotiënten [2] s De grafiek hiernaast is een tijd-afstandgrafiek. De gemiddelde snelheid Op het interval [0, 3] is: s s(3) s(0) t t Algemeen: In een tijd-afstandgrafiek is de afgelegde afstand s uitgezet tegen de tijd t; Bij een tijd-afstandgrafiek is het differentiequotiënt van s op [a, b] de gemiddelde snelheid op [a, b] De gemiddelde snelheid is: s t 27

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie.

14.0 Voorkennis. De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. 14.0 Voorkennis De hierboven getekende functie herhaalt zich om de 6 seconden. Dit noemen we dan ook een periodieke functie. Evenwichtsstand = (min + max)/2 = (-100 + 300)/2 = 100 Amplitude = max evenw.

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a:

10.0 Voorkennis. Herhaling van rekenregels voor machten: a als a a 1 0[5] [6] Voorbeeld 1: Schrijf als macht van a: 10.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [1] a [2] q a q p pq p p p a a [3] ( ab) a b [4] Voorbeeld 1: Schrijf als macht van a: 1 8 : a a : a a a a 3 8 3 83 5 Voorbeeld

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1 Algemene vaardigheden Veel knopjes hebben drie functies. De functie die op een knop... staat krijg je door er op de drukken. De blauwe functie die er boven een knop... staat krijg je met 2nd.... Zo zet

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

2.1 Lineaire functies [1]

2.1 Lineaire functies [1] 2.1 Lineaire functies [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recrsieve en directe formles [1] 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, 0 ) 12 is de tweede term ( 1 ) 24 is de vijfde term (

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

7.1 Recursieve formules [1]

7.1 Recursieve formules [1] 7.1 Recursieve formules [1] Voorbeeld: 8, 12, 16, 20, 24, is ee getallerij. De getalle i de rij zij de terme. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is de vijfde term (u

Nadere informatie

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid.

16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. 16.1 De Afgeleide Functie [1] Met het differentiequotiënt bereken je de gemiddelde verandering per tijdseenheid. Voorbeeld: f() = Differentiequotiënt van f() op [0, 3] = y f (3) f (0) 6 0 30 30 y 1 16.1

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Hoofdstuk 1 : De Tabel

Hoofdstuk 1 : De Tabel Hoofdstuk 1 : De Tabel 1.1 Een tabel maken De GR heeft 3 belangrijke knoppen om een tabel te maken : (1) Y= knop : Daar tik je de formule in (2) Tblset (2nd Window) : Daar stel je de tabel in. Er geldt

Nadere informatie

Eindexamen wiskunde A1 vwo 2001-II

Eindexamen wiskunde A1 vwo 2001-II Eindexamen wiskunde A vwo 00-II 4 Antwoordmodel Opgave Vakkenkeuze Maximumscore 47,9% van 49 = 6 meisjes doen economie 60,% van 44 = 07 jongens doen economie Het totaal van de percentages in de kolom meisjes

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1 Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je

Nadere informatie

Rekenkundige rijen. WISNET-HBO update aug. 2013

Rekenkundige rijen. WISNET-HBO update aug. 2013 Rekenkundige rijen WISNET-HBO update aug. 2013 1 Inleiding Een rij (sequtentie) is een serie getallen achter elkaar opgeschreven met komma's ertussen. Ieder getal in zo'n rij noemen we een term. Het is

Nadere informatie

Begeleid Zelfstandig Leren (BZL)

Begeleid Zelfstandig Leren (BZL) Begeleid Zelfstandig Leren (BZL) De Beaalde Integraal - Riemannsommen 1 Rijvariabelen u en v van het grafisch rekentoestel.... 1.1 Rijen.... 1. Odracht 1... 1.3 Rekentoestel... 3 1.4 Odracht... 4 1.5 Odracht

Nadere informatie

Functiewaarden en toppen

Functiewaarden en toppen Functiewaarden en toppen Formules invoeren Met [Y=] kom je op het formule-invoerscherm. Reeds ingevoerde formules wis je met [CLEAR]. Krijg je niet een scherm waarop Y1, Y2,... te zien zijn, kies dan bij

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Functies. Verdieping. 6N-3p 2013-2014 gghm

Functies. Verdieping. 6N-3p 2013-2014 gghm Functies Verdieping 6N-p 01-014 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Hoofdstuk 5 - Recursie

Hoofdstuk 5 - Recursie Hoofdstuk 5 - Recursie Een banktegoed waarover je jaarlijks rente krijgt uitgekeerd is een voorbeeld van recursie. Je kunt steeds het nieuwe banktegoed berekenen op basis van het banktegoed van vorig jaar.

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A

www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl voorbeeldhoofdstuk havo wiskunde A www.samengevat.nl havo wiskunde A Drs. F.C. Luijbe Voorwoord Beste docent, Voor u ligt een deel van de nieuwe Samengevat havo wiskunde A. Dit katern

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Formules en grafieken Hst. 15

Formules en grafieken Hst. 15 Formules en grafieken Hst. 5. De totale kosten zijn dan : 0,5. 0000 = 0.000 dollar. Dan zijn de kosten per ton, dollar. De prijs is dan :,. 0.000 = 4.000 dollar. 0,50 dollar per ton en 4000 mijl. Aflezen

Nadere informatie

Overzicht Discrete modellen 1/5

Overzicht Discrete modellen 1/5 Overzicht Discrete modellen 1/5 Bij het onderwerp Discrete Modellen worden rijen bestudeerd. Een rij is een reeks getallen (termen genoemd) waarvan de volgorde kan worden vastgelegd door ze te nummeren.

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Paragraaf 2.1 : Snelheden (en helling)

Paragraaf 2.1 : Snelheden (en helling) Hoofdstuk De afgeleide functie (V4 Wis B) Pagina 1 van 11 Paragraaf.1 : Snelheden (en helling) Les 1 Benadering van de helling tussen twee punten Definities Differentiequotiënt = { Gemiddelde helling }

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde.

5.0 Voorkennis. Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. 5.0 Voorkennis Rekenen met machten: Let op het teken van de uitkomst; Zet de letters (indien nodig) op alfabetische volgorde. Vermenigvuldigen is eponenten optellen: a 3 a 5 = a 8 Optellen alleen bij gelijknamige

Nadere informatie

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($).

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($). C von Schwartzenberg 1/14 1a 0,5 $/ton (zie de verticale as bij punt A) 0 000 0,5 = 10 000 ($) 1b,1 $/ton (ga vanuit A verticaal omhoog naar de rood gestippelde grafiek) 0 000,1 = 4000 ($) us 4, keer zoveel

Nadere informatie

Eindexamen havo wiskunde A II

Eindexamen havo wiskunde A II Eindexamen havo wiskunde A 0 - II Benzineverbruik maximumscore 4 Het berekenen van de kans dat het benzineverbruik meer dan 6,0 is met de normaleverdelingsfunctie van de GR Dit geeft 0,0 ( nauwkeuriger)

Nadere informatie

. noemer noemer Voorbeelden: 1 Breuken vereenvoudigen Schrijf de volgende breuken als één breuk en zo eenvoudig mogelijk: 4 1 x e.

. noemer noemer Voorbeelden: 1 Breuken vereenvoudigen Schrijf de volgende breuken als één breuk en zo eenvoudig mogelijk: 4 1 x e. Tips: Maak de volgende opgaven het liefst voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een som niet lukt, werk hem dan uit tot waar je kunt en ga verder met de volgende

Nadere informatie

Formules grafieken en tabellen

Formules grafieken en tabellen Formules grafieken en tabellen Formules invoeren Met kom je op het formule-invoerscherm. Reeds ingevoerde formules wis je met C. Krijg je niet een scherm waarop Y, Y,... te zien zijn kies dan bij eerst

Nadere informatie

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1 Antwoordmodel VWO wa -II Antwoorden Startende ondernemingen % komt overeen met een kans van, (per 9 jaar) Per jaar is dat een kans van, 9 het antwoord,9 5 CV8 Lees verder De kans is,9 =,656(,66) Een overlevingskans

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Differentiaalrekening. Elementaire techniek van het differentieren.

Differentiaalrekening. Elementaire techniek van het differentieren. Differentiaalrekening Elementaire techniek van het differentieren. Saxion Hogescholen Oktober 2008 Differentiaalrekening Een van de belangrijkste technieken in de wiskunde is differentiaalrekening. Deze

Nadere informatie

1.1 Differentiëren, geknipt voor jou

1.1 Differentiëren, geknipt voor jou 1.1 Differentiëren, geknipt voor jou Je hebt leren omgaan met hellings of, wat hetzelfde is: s. We frissen de begrippen en rekenmethoden die hierbij horen nu wat op. Stel dat je met een (gewone) schaar

Nadere informatie

exponentiële standaardfunctie

exponentiële standaardfunctie 9.0 Voorkennis In de grafiek is de eponentiële standaardfunctie f() = getekend; D f = R, B f = (0, ) met de -as als asymptoot (Dit volgt uit: lim 0 ); Elke functie g met g > heeft deze vorm; Voor g > is

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

H9 Exponentiële verbanden

H9 Exponentiële verbanden H9 Exponentiële verbanden Havo 5 wiskunde A Getal & Ruimte deel 3 PTA 1 Oefenmateriaal examens 2 Voorkennis Rekenen met procenten Formule van procentuele verandering Vermenigvuldigingsfactor Procent op

Nadere informatie

Eindexamen wiskunde A1-2 havo 2007-II

Eindexamen wiskunde A1-2 havo 2007-II Eindexamen wiskunde A- havo 007-II Beoordelingsmodel Sprintsnelheid maximumscore 4 De toenamen zijn achtereenvolgens 37,5 ; 0,5 ; 3,0 ; 3,5 ; 3,5 De staven zijn getekend bij 0, 40, 60, 80 en 00 meter Er

Nadere informatie

De grafiek van een lineair verband is altijd een rechte lijn.

De grafiek van een lineair verband is altijd een rechte lijn. 2. Verbanden Verbanden Als er tussen twee variabelen x en y een verband bestaat kunnen we dat op meerdere manieren vastleggen: door een vergelijking, door een grafiek of door een tabel. Stel dat het verband

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

7.1 De afgeleide van gebroken functies [1]

7.1 De afgeleide van gebroken functies [1] 7.1 De afgeleide van gebroken functies [1] Regels voor het differentiëren: f() = a geeft f () = a f() = a geeft f () = a f() = a geeft f () = 0 Algemeen geldt: f() = a n geeft f () = na n-1 Voorbeeld 1:

Nadere informatie

Dynamische modellen 1

Dynamische modellen 1 Dynamische modellen 1 Inhoud 1 Voorbeelden van dynamische systemen 3 2 Rijen 8 3 Iteratie 18 4 Limieten berekenen 22 5 Gemengde opgaven 37 Antwoorden 48 Verbeterde experimentele uitgave 2009 voor wiskunde

Nadere informatie

Economie en Maatschappij(A/B)

Economie en Maatschappij(A/B) Natuur en Techniek(B) Natuur en gezondheid(a/b) Economie en Maatschappij(A/B) Site over profielkeuze qompas Economie Gezondheidszorg Gedrag en maatschappij Landbouw Onderwijs Techniek http://www.connectcollege.nl/download/decanaat/havo%20doorstroomeisen%20hbo.pdf

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

7.1 Ongelijkheden [1]

7.1 Ongelijkheden [1] 7.1 Ongelijkheden [1] In het plaatje hierboven zijn vier intervallen getekend. Een open bolletje betekent dat dit getal niet bij het interval hoort. Een gesloten bolletje betekent dat dit getal wel bij

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2006-I

Eindexamen wiskunde A1-2 vwo 2006-I Eindexamen wiskunde A- vwo 006-I Beschuit Bij gewone beschuiten krijg je 3 8,0 4,3 gram per euro 0,9 Bij Twentsche beschuiten krijg je 0 0,7 5, gram per euro 0,93 Bij Twentsche beschuiten krijg je het

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1 (nieuwe stijl) Wiskunde A (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 Tijdvak Inzenden scores Vul de scores van de alfabetisch eerste vijf kandidaten per school in op de optisch

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Transformaties van grafieken HAVO wiskunde B deel 1

Transformaties van grafieken HAVO wiskunde B deel 1 Transformaties van grafieken HAVO wiskunde B deel Willem van Ravenstein 500765005 Haags Montessori Lyceum (c) 06 Inleiding In de leerroute transformaties van grafieken gaat het om de karakteristieke eigenschappen

Nadere informatie

Basistechnieken TI-84 Plus C Silver Edition

Basistechnieken TI-84 Plus C Silver Edition Basistechnieken TI-84 Plus C Silver Edition Als je dit practicum doorwerkt, weet je de eerste beginselen van het werken met de grafische rekenmachine TI-84 Plus C Silver Edition. In de tekst van het practicum

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

10.1 Berekeningen met procenten [1]

10.1 Berekeningen met procenten [1] 10.1 Berekeningen met procenten [1] Voorbeeld 1: Hoeveel is 48% van 560? Dit is 0,48 560 = 268,8 Voorbeeld 2: Een broek van het merk Replay kost normaal 129,-. Deze week is het uitverkoop en krijg je 35%

Nadere informatie

Exponentiële functies

Exponentiële functies Eponentiële functies In de vorige paragraaf hebben we alleen positieve getallen in de eponent gekozen. Nu laten we alle getallen als eponent toe. 1 Als je een fles melk uit de koelkast haalt, zal de temperatuur

Nadere informatie

Werken met Pienter. Ook interessante weetjes ontbreken niet: je vindt ze in de lichtblauwe kaders met het vraagtekenicoon.

Werken met Pienter. Ook interessante weetjes ontbreken niet: je vindt ze in de lichtblauwe kaders met het vraagtekenicoon. Als je een ketting aan punten ophangt, dan gaat de Werken met Pienter Functieleer kan gezien worden als een studie van het beschrijven van verbanden tussen grootheden. Functies zijn dan modellen die een

Nadere informatie

exponentiële verbanden

exponentiële verbanden exponentiële verbanden . voorkennis Procenten en vermenigvuldigingsfactoren Procentuele toename met p%: g = + p 00 p = ( g ) 00 Procentuele afname met p%: g = p 00 p = ( g) 00 De constante factor In 859

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Compex wiskunde A1-2 vwo 2005-I

Compex wiskunde A1-2 vwo 2005-I Zalm Wanneer van een vissoort te veel gevangen wordt, kan de populatie zich niet herstellen en valt er op den duur niets meer te vangen. Visserijbiologen streven dan ook naar een evenwichtssituatie waarbij

Nadere informatie

Hoofdstuk 8 - De afgeleide

Hoofdstuk 8 - De afgeleide Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a

Nadere informatie

Combinatoriek groep 1

Combinatoriek groep 1 Combinatoriek groep 1 Recursie Trainingsdag 3, 2 april 2009 Getallenrijen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in

Nadere informatie

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 5 havo Wiskunde A 11 januari 2010 PTA 2 Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 Houd er rekening mee, dat aan een antwoord alleen in het algemeen geen punten worden toegekend wanneer een

Nadere informatie

Functies. Verdieping. 6N-3p gghm

Functies. Verdieping. 6N-3p gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de bijbehorende grafiek. Je mag de GRM hierbij gebruiken. Y f ( x)

Nadere informatie

Beoordelingsmodel. Antwoorden VWO wa I. Deelscores. Meer neerslag

Beoordelingsmodel. Antwoorden VWO wa I. Deelscores. Meer neerslag Beoordelingsmodel Antwoorden VWO wa 005-I Meer neerslag Maximumscore de opmerking dat de gemiddelde jaarlijkse neerslag in beide plaatsen gelijk is De standaardafwijking in Winterswijk is groter (en dus

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

1d) P U P u P U U 24000

1d) P U P u P U U 24000 UITWERKINGEN VOOR HET HAVO NETWERK A HOOFDSTUK ANDERE FUNCTIES Kern HYPERBOLISCHE FUNCTIES a) aantal personen P 4 6 aantal uren U(p.p.) 4 8 6 48 4 b) 6 en :=4 c) 4 aantal uren U 4 6 8 aantal personen p

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

Meetkundige rijen. WISNET-HBO update aug. 2013

Meetkundige rijen. WISNET-HBO update aug. 2013 Meetkundige rijen WISNET-HBO update aug. 2013 1 Inleiding Een rij (sequentie) is een serie getallen achter elkaar opgeschreven met komma's ertussen. Ieder getal in zo'n rij noemen we een term. Het is gebruikelijk

Nadere informatie

Numerieke benadering van vierkantwortels

Numerieke benadering van vierkantwortels HP Prime Grafische Rekenmachine Numerieke benadering van vierkantwortels Doel: De waarde van een vierkantswortel met een recursieve rij benaderen, het schrijven van een klein programma. Sleutelwoorden:

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2005-I

Eindexamen wiskunde A1-2 vwo 2005-I Eindexamen wiskunde A- vwo 005-I 4 Beoordelingsmodel Meer neerslag de opmerking dat de gemiddelde jaarlijkse neerslag in beide plaatsen gelijk is De standaardafwijking in Winterswijk is groter (en dus

Nadere informatie

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie.

Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van een functie. 2 Domein en bereik Verkennen grafieken Domein en bereik Inleiding Verkennen Werk het Practicum Functies en de [GR] door tot aan Families van functies. Onthoud alvast de uitdrukking karakteristieken van

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014

opdracht 1 opdracht 2 opdracht 3 1 Parabolen herkennen Algebra Anders Parabolen 1 Versie DD 2014 Algebra Anders Parabolen 1 Versie DD 014 1 Parabolen herkennen opdracht 1 We beginnen heel eenvoudig met y = x Een tabel en een grafiek is snel gemaakt. top x - -1 0 1 3 y 0 1 4 + 1 + 3 toename tt + a)

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

Examen HAVO. Wiskunde B1,2

Examen HAVO. Wiskunde B1,2 Wiskunde B1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 18 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

H8: Regelmaat & verandering H9: Kansverdelingen...4-7

H8: Regelmaat & verandering H9: Kansverdelingen...4-7 Oefenmateriaal V5 wiskunde C Voorbereiding op SE-toets 1 wiskunde INHOUDSOPGAVE H8: Regelmaat & verandering...1-3 H9: Kansverdelingen....4-7 Hoofdstuk 8: Regelmaat & veranderingen Rekenkundige rij Meetkundige

Nadere informatie

Voorbereiding PTA1-V5 wiskunde A

Voorbereiding PTA1-V5 wiskunde A Voorbereiding PTA1-V5 wiskunde A ma. 1 mrt. Les 1 Allerlei vergelijkingen oplossen (1) wo. 3 mrt. Les Valt uit: ga zelf iets oefenen! vr. 5 mrt. Les 3 Normale verdeling ma. 8 mrt. Les 4 Allerlei vergelijkingen

Nadere informatie

P2 Exponentiële groei

P2 Exponentiële groei P2 Exponentiële groei Opgave 1 a. Zet in Excel in A1: Aantal jaar en in B1: Spaarbedrag. b. Zet in A2-A11 de getallen 1 t/m 10. Handig doen. Zie hulp bij Excel blad 6. c. Zorg met een formule dat er in

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte.

Grafieken, functies en verzamelingen. Eerst enkele begrippen. Grafiek. Assenstelsel. Oorsprong. Coördinaten. Stapgrootte. Grafieken, functies en verzamelingen Eerst enkele begrippen Grafiek In een assenstelsel teken je een grafiek. Assenstelsel Een assenstelsel bestaat uit twee assen die elkaar snijden: een horizontale en

Nadere informatie

Riemannsommen en integralen

Riemannsommen en integralen Riemannsommen en integralen MET DE TI-NSPIRE Vervangt een deel van 0. uit VWO B deel gghm EEBII 0-0 Inhoud Oppervlakte onder de grafiek... Ondersom... 4 Bovensom... 4 Middensom... 4 Riemannsom... 5 Riemannsom

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie

4. Exponentiële vergelijkingen

4. Exponentiële vergelijkingen 4. Exponentiële vergelijkingen De gelijkheid 10 3 = 1000 bevat drie getallen: 10, 3 en 1000. Als we van die drie getallen er één niet weten moeten we hem kunnen berekenen. We kunnen dus drie gevallen onderscheiden:

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie

13.1 De tweede afgeleide [1]

13.1 De tweede afgeleide [1] 13.1 De tweede afgeleide [1] De functie is afnemend dalend tot het lokale minimum; Vanaf het lokale minimum tot punt A is de functie toenemend stijgend; Vanaf punt A tot het lokale maimum is de functie

Nadere informatie