Boek 2, hoofdstuk 7, allerlei formules..

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Boek 2, hoofdstuk 7, allerlei formules.."

Transcriptie

1 Boek, hoofdstuk 7, llerlei formules Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon. Een bedrijf neemt vier keer zo veel schoonmkers in dienst. Wt gebeurt er met de loonkosten? Deze situtie noem je evenredig.. d. evenredig b. c. omgekeerd evenredig e. rr voorbeeld 3. De stndrdformule is q p = getl (omgekeerd evenredig) Dus invullen = 8150 Formule vn q vn mken : 8150 q = p 8150 b. q = = 5416,7 dus verkoop vn 5417 pennen. 15 c.5 = dus p = = 14, 00 euro p 5 4. De stndrdformule is W = S (recht evenredig) 5. 6 Dus invullen 5,6 = 50 = = Formule vn W vn mken : b. W = = 8,96 cm W = 0.11 S 5. De stndrdformule is T d = getl (omgekeerd evenredig) Dus invullen = 4000 Formule vn T vn mken : 4000 T = d 4000 b. T = =0.83 grden 4835 c. 1.4 = d = = 857 meter d De stndrdformule is p t = getl (omgekeerd evenredig) Dus invullen 38 3 = 114 Formule vn p vn mken : 114 p = t 114 b. p = =0.7% c. 5% over, dus 5 = t = =.8 jr t 5 7. De stndrdformule is H R= getl (omgek. evenredig, snelheid 30km/uur) Dus invullen =

2 39.5 Formule vn H vn mken : H = met R in meter en H in grden R b. H = = 30.6 grden c. 3. = R = = 16,49 meter 1.5 R d. H* = 90 - H H* = 90 - R 5. Formules vn de vorm y = + b 8. b. ls steeds groter wordt ndert y nr 0 bij y = 4/, c. nr 5 bij y = 4/ + 5 nr -8 bij y = 4/ - 8 e. y = 4/ verndert in y = 4/ + 5 door er 5 bij te doen y = 4/ verndert in y = 4/ - 8 door er 8 f te doen 9. horizontle symptoot: y = 7, verticle symptoot = 0 b. horizontle symptoot: y = 1.8, verticle symptoot = 0 c. horizontle symptoot: y = 400, verticle symptoot = 0 d. horizontle symptoot: y = 6, verticle symptoot = horizontle symptoot: y = 0, verticle symptoot = 0 b. los op A = 4, en kijk nr je grfiek wr A kleiner is dn dit kn lgebrïsch : 4 = = s = s = 37.5 s s 4 dus ls s > 37.5, dn is A < Het volgt uit de formule: ls q groter wordt, dn neemt 4000: q f Het volgt uit de prktijk, ls je met dezelfde mchines/ rbeidskrcht meer producten mkt, zijn de kosten per product minder b. horizontle symptoot: y = 30 dit zijn de minimle kosten ls de productie per dg heel groot wordt. c. los op K = 45, en kijk nr je grfiek wr K kleiner is dn dit kn lgebrïsch : 45 = = q = q = 67 q q 15 dus ls q > 67 per dg, dn is K < 45 euro d. In de prktijk wrschijnlijk niet, wnt dn moeten er meer dn 0 producten per dggemkt worden 30,50 = ,50 = q = q = 0 q q

3 1. Let op, in deze opgve geldt : L = en f = y horizontle symptoot: f = 0, prktische betekenis, wnneer de vleugellengte heel groot wordt, ndert het ntl vleugelslgen tot 0. In werkelijkheid worden vleugels niet veel meer dn meter = 000 mm lng, dus in werkelijkheid bestn er vogels die niet meer dn 0.0 keer per seconde met hun vleugels hoeven te bewegen. (Door een gunstig gebruik vn thermiek) b. De verticle symptoot L = 0 prktische betekenis, Het gt om dieren met een vleugellengte die ndert nr 0, dt zijn dus kleine insectjes, bv een insect met vleugellengte 1 mm lt die vleugeltjes 10 keer per seconde bewegen. c. 0< L < 50 dus.4 <f < 6 Deze f heeft lleen met norml vliegen te mken, niet met kunstjes, zols stilstn in de lucht en chteruit vliegen. 10 d. f = ; 10< f< 40 ; bereken eerst f = 10, en dn f = 40, L ligt dn in het gebied drtussen L = L = L = 1 40 = L = L = 3 L 10 L 40 Dus de vleugellengten vn wespen vriëren vn 3 tot 1 mm. 13. P neemt f ls de lichmsgrootte toeneemt ( er zijn ltijd veel meer kleine diertjes, dn grote) b. H neemt toe ls de lichmsgrootte toeneemt (een groot dier eet meer voedsel dn een klein dier) c. H = 90 : 500 = 0.18 De dieren hebben 0.18 kg per dier nodig,dus 180 grm voedsel per dg d. H = 0.5 (H in kg per dg) dus P = 90 : 0.5 = 180 dieren per km e. In deze opgve geldt : P = en H= y horizontle symptoot: P = 0, prktische betekenis, wnneer de voedselbehoefte heel groot wordt, ndert het ntl dieren tot 0 per km Dit zijn de grote grzers. De verticle symptoot H = 0 prktische betekenis, Het gt om dieren met een voedselbehoefte die ndert nr 0, dt zijn dus kleine diertjes, bv insecten en bodemorgnismen wrvn er heel veel per km voorkomen. f. Het prk is 100 km, er zijn 100 zwijnen, dus P = 1 zwijnen per km H = 90 : 1 = 7.5 kp voedsel per dg per zwijn. Dt is = kg per week voor de hele zwijnenpopultie. g. P = 0 mr H = 5 De popultiedruk P bij H = 5 is: P = 90 : 5 = 18 dt betekent dt er voor 18 herten per km te eten is Er zijn 0 herten per km, dus er moet voor herten per km worden bijgevoerd dt is 10 kg Het prk is 100 km Voor het totle prk moet 1000 kg per dg worden bijgevoerd. 14. niet bespuiten betekent : = 0, dn is P = = 100 kg per boom. b. De opbrengst per boom neemt ntuurlijk toe (nders zou er niet gespoten worden) In de formule zie je dt 150 : (1 + ) fneemt, ls toeneemt, wrdoor de P groter wordt. c. Neem =[0, 10] (dt stt in de tekst, en gebruik zoom fit y = [0, 160], yscl = 10 Kies een ntl punten om te tekenen, zoek die uit met je tbel, of met de optie vlue Schrijf de wrdes vn die punten op. Vergeet niet om lngs de ssen te zetten wr de grfiek over gt. d. Opbrengst wordt groter, vn 141,3 kg per boom nr 143,3 kg per boom, dus dt is een procentuele toenme vn : 141,3 100 = 1,4% (dt heeft dus weinig zin, wnt bestrijdingsmiddel is best wel duur) 1

4 15. fnemend stijgen. b = = - 1+ t 1+ t 70 = 1+ t 1 + t = 1 + t = t = 10.4 t = 5. Dt is dus op de 5 de dg. c. Voer de formule in op de GR, denk n hkjes, y1 = 100 /(1+) bereken Y1(5)- Y1(4) = er zijn dus 16 insecten bijgekomen d. Plot de grfiek, neem = [0, 100], gebruik zoom fit, y = [500, 150] met y scl = 50 of 100 gebruik Y = 1190 en Y3 = 1195, y window = [1180, 110], scl = dn intersect, bij y = 1190 geldt t = 39,5 dgen, bij y = 1195 geldt t = 79,5 dgen Die 5 insecten erbij duurt dus 40 dgen. e. idem d., mr nu Y = 1100 en Y3 = 1105, y window = [1095, 1110], scl = 1 window =[0, 10] intersect, bij y = 1100 geldt t = 3,5 dg, bij y = 1195 geldt t = 3,7 dg Deze toenme vindt dus plts op de derde dg., duurt 0. dg = 0. 4 = 4.8 uur 16. Voer de formule in op de GR, Y1 = / met per 1000m Het gt om 000m, dus = kies Y1() = 35 euro per m, per jr, Ze moeten = per jr betlen. b =400 m, =.4 bereken Y1(.4) = euro per m, per jr, Ze moeten = per jr betlen. c. De kosten per m dlen, ls je een groter oppervlkte lt schoonmken, de totle kosten stijgen, omdt je meer meters lt schoonmken. d. plot de grfiek, en de lijn Y = 9,5, =[0,10], zoom fit geeft y = [0, 180], scl = 10 intersect = 7.5 dus het oppervlkte is groter dn m e. K* = 1000 ( / ) 17. Voer de formule in op de GR, Y1 = 0.6/(100 ) (vergeet de hkjes niet) K = 4 dus kies Y = 4 = %, dus =[0, 100], scl = 10, zoomfit y =[0, 60] scl = 5 Intersect = 86,96 % er komt dus 13% verontreiniging in het meer terecht b. Bij de term 100 Delen door 0 kn niet, bij = 100 zou je wel moeten delen door 0 c. Y1(50) Y1(40) = 0. miljoen euro toenme en Y1(40) = 0.4 miljoen euro nieuw oud 0. toenme in % = 100 = 100 = 50% toenme vn de kosten oud

5 nieuw oud ( Y1(99) Y1(89)) d. 100 = 100= 113.5% toenme in de kosten oud Y1(89) dt is ongeveer een vertienvoudiging vn de kosten e. De ltste procenten verontreiniging verwijderen zijn veel duurder, dn de eerste % verontreiniging verwijderen. 53 Formules vn d vorm y = n 18. zie pltje b. (0, 0) en (1, ½ ) c. vn en 6 Dit soort grfieken vn de vorm y = n noem je mchtsfuncties. Als de mcht even is zijn ze positief 19. Voer in Y1= linkerdeel en Y= rechterdeel, (mk pssend met zoomfit), intersect.. = 65. b. =[0, 5] y =[0,1500] = 1.69 c. =[0, 5] y =[0,15] = 0. d. =[0, ] y =[0,4] = zie voorbeeld in het boek, blz 88 N = t N = 350 en t = 18 invullen 350 = = 30.8 = (delen door 30.8) N = 11.56t drop ligt punt (5, p) dus N = p en t = 5 invullen p = p = P = 3 n P = 57 en = 18 invullen 57= 3 18 n 19 =18 n n= 1.0 ( invoeren, en intersect) b. A = 17.3 n A = 8 en = 5 invullen 8= n 0.46 =5 n n= -0.4( invoeren, en intersect). y = y = 3 en = 8 invullen 3 = = = 17.6(delen door0.1706) b. y = 18 n y = 3 en = 8 invullen 3= 18 8 n =8 n n= -0.86( invoeren, en intersect) 3. b = en = 80 invullen dn volgt q = 8847 stoelen b stoelen 1.10 = stoelen berekening: = b ( ) 5.77 =b = 1907 euro (60 80 ) Je kn ook de formule invoeren Y1 = b. 55 Het kpitl is toegenomen met : nieuw oud oud 0 en Y = en dn intersect = 100 = 18,9%

6 c. Kies bv b = 3000 en = 160, reken uit en je komt tot een productie vn stoelen dt is de verdubbeling die je moet ntonen = 0.00 b = formule wordt: L = 10.83h 1 c. reken uit bij h = 0.9 en h = 1.7 h = 0.9 geeft L = 1.03 en h = 1.7 geeft L = 6.37 De lengte vn het stopteken moet tussen 1 en 6.40 meter liggen d. L voor de vrchtwgenchuffeur is : 9.88, dus dt zit wel goed. 5. evenredig : y = b. Evenredig :y =, omgekeerd evenredig : y = 6. stndrdformule : y = = 6 en y = 1 invullen 1 = 6 1 = 36 = Formule: y = 0.33 b. stndrdformule : y = = 6 en y = 1 invullen 1 = : = = 43 c. stndrdformule : y = t = = 0.3 en P = y = 10 invullen 10 = : = = W = m invullen: W = 6700 en m = = = 15.9 = 41.4 (delen door ) b. m =, voer de formule in op je GR en Y1() = 708 kj c. plot met =[ ] en y = [ 0, 00], Y = en intersect De stier is 583 kg 8. stndrdformule : y = v = = 40 en A =y = 10 invullen 10 = = 1600 = Formule: A = v b. A = = 30.6 meter c. A = = 1,5 meter, de remweg verviervoudigd d. 30 = v v = 480 v = + of - 4, dus v = 69,3 km/uur 9. stndrdformule : y = d = = 4 en L =y = 50 invullen 50 = : = = L = d b. L = = 00 (db?) c. 0 = dus d = = 40 d = 6.3 meter d 0 d. Ze hoort het = 4 keer zo zcht. 30. mk de berekeningen y: bij de tbel, de uitkomst is steeds 0.3 (fgerond) Vndr de formule: A = 0.3 l b. 00 = 0.3 l l =666.7 l = 5.8 mm 31. H = G vul in H = 56, G = 10 dn volgt = 56 : =1, dus H = 1G Als je vervolgens in deze formule de getllen uit de tbel voor G invult, krijg je steeds de uitkomsten H. b. H = dus H = 186,4 grm 15

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = =

naam blad : 37 = 299 : 23 = 882 : 63 = 364 : 26 = : 47 = : 43 = 47 kan keer van af kan keer van af 47 = = 7b Hulp bld 1 nm 1 Reken uit met de rekenmchine 444 : 37 = 299 : 23 = 882 : 63 = 364 : 26 = 2 Reken uit met rest Voorbeeld: 469 : 37 = ntwoord op de rekenmchine: 12,675675 37 kn 12 keer vn 469 f 12 37

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

naam werkboek groep 5

naam werkboek groep 5 nm werkboek groep 5 blok 8 les Reken uit tussen streepjes. 333 + 53 =............ 73 + 05 =............ 66 + 8 =............ 33 + 357 =............ 64 + 4 =............ 7 + 63 =............ 08 + 409 =...

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2002-I

Eindexamen wiskunde A1-2 vwo 2002-I Eindexmen wiskunde A- vwo 00-I Antwoordmodel Vogels die voedsel zoeken Mximumscore Stilstn duurt telkens 5 seconden Tussen twee stops wordt 5 cm gelegd De tijd tussen twee stops is,5 seconde De snelheid

Nadere informatie

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken?

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken? 0 vergelijken en op volgorde zetten vn eenvoudige reuken en kommgetllen reuken omzetten in kommgetllen en omgekeerd Welke reuk is het grootst? 5 6 2 7 9 5 5 9 2 5 7 2 7 8 8 9 8 5 00 5 6 7 20 5 7 27 70

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

C 1 C 2. 42 blok 6. Er zijn 1440 tegels nodig.

C 1 C 2. 42 blok 6. Er zijn 1440 tegels nodig. 42 blok 6 C De zomervkntie komt ern! Voor de zomervkntie moet het zwembd in de gemeente Dorpstein gebruiksklr worden gemkt. Het 4 meter brede tegelpd rondom het zwembd moet vn nieuwe tegels vn 50 bij 50

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ICT - Grfieken met VU-grfiek ldzijde 64 1 De snijpunten met de x-s zijn ( 3, ), (4, ) en (5, ). f( 3) =, 5 ( 3) 3 ( 3) 35, 3+ 3= f( 4) =, 5 ( 4) 3 ( 4) 35, 4+ 3= f( 5) =, 5 ( 5) 3 ( 5) 35, 5+ 3= Met de

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

15 a b

15 a b Formules geruiken 7 1 20 79:4 20 2 158 2 79 158 3 237 sinsppels 3 79 237 40 itroenen d 79:2 40 4 14 pkken melk 79:6 13,1 fgerond 14 pkken 5 30 kg 237:8 30 kg 6 krtjes d 30:5 6 krtjes e 38,70 f 6 6,45 38,70

Nadere informatie

e f l a b t 18 k 0,25 15 c p 5 16 c p temperatuur C 18 temperatuur C

e f l a b t 18 k 0,25 15 c p 5 16 c p temperatuur C 18 temperatuur C Formules geruiken 7 1 5,00 j j 2 4,00 j 3 9,6 48 10 4,8 4,8 2 9,6 4 60 0,10 6 2de 60 10 6 60 0,05 3 60 20 3 60 5 12 60 0,2 12 d 90 0,10 9 90 10 9 e 90 0,05 4,5 90 20 4,5 f 90 5 18 90 0,2 18 g 75 10 7,5

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

3 Exponentiële functies en logaritmische functies

3 Exponentiële functies en logaritmische functies Eponentiële functies en logritmische functies Bij wiskunde B heb je l eerder te mken gehd met eponentiële en logritmische functies. In dit hoofdstuk gn we er wt dieper op in en lten we een ntl toepssingen

Nadere informatie

Verschil zal er zijn mvbo bovenbouw WERKBLAD

Verschil zal er zijn mvbo bovenbouw WERKBLAD Vershil zl er zijn mvo ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4.

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Toetsopgaven vwo B deel 3 hoofdstuk 10

Toetsopgaven vwo B deel 3 hoofdstuk 10 Toetsopgven vwo deel 3 hoofdstuk 10 Opgve 1 In de figuur hiernst zie je 15 kubusjes met ribbe. e punten,, en zijn hoekpunten vn een kubusje, punt is het midden vn een ribbe en de punten en delen een ribbe

Nadere informatie

Geef een tegenvoorbeeld als de uitspraak niet waar is. Als a een positief getal is, dan is a negatief.

Geef een tegenvoorbeeld als de uitspraak niet waar is. Als a een positief getal is, dan is a negatief. V* Vul n. ( ) 7 7 7 7 7 7 9 9 9 9 9 9 7 7 7 7 7 7 V** Is de uitsprk wr of niet wr? Geef een tegenvoorbeeld ls de uitsprk niet wr is. b d e ls een positief getl is, dn is negtief. = dn = ls b een negtief

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Blok - Vrdigheden ldzijde 0 Dt geldt voor h, len m ; de grfieken zijn symmetrish in de y -s. Die zijn tegengesteld; ijvooreeld g( ) g () De grfiek is symmetrish in de oorsprong. funtie symmetrie in de

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600 LES 1 Reken uit (met cijferen of kolomsgewijs) 5 74 = 1 87 8 45 = 2 76 4 62 = 2 492 6 517 = 12 9 462 = 4 158 7 219 = 1 5 4 Vn verhl nr rekentl Reken uit met cijferen of kolomsgewijs. Vder koopt een ndere

Nadere informatie

3 Reken uit (met cijferen of kolomsgewijs) = = = = = = 4 Van verhaal naar rekentaal

3 Reken uit (met cijferen of kolomsgewijs) = = = = = = 4 Van verhaal naar rekentaal LES 1 3 Reken uit (met cijferen of kolomsgewijs) 5 374 = 6 517 = 8 345 = 9 462 = 4 623 = 7 219 = 4 Vn verhl nr rekentl Reken uit met cijferen of kolomsgewijs. Vder koopt een ndere uto. Hij etlt cht mnden

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ldzijde f () Er is geen symmetrie in een vertile lijn. Alle rklijnen heen een positief hellingsgetl. Wrshijnlijk (0, 0). d f () e - ICT - Rklijnen ldzijde Geruik dt d y om de hellingsgetllen vn de rklijnen

Nadere informatie

Verschil zal er zijn hv bovenbouw WERKBLAD

Verschil zal er zijn hv bovenbouw WERKBLAD Vershil zl er zijn hv ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4. In

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y

Nadere informatie

opdrachtenboek groep 6

opdrachtenboek groep 6 opdrchtenboek groep 6 53933 blok opdrchtenboek groep 6 blok Mlmberg, s-hertogenbosch Alle rechten voorbehouden. Niets uit deze uitgve mg worden verveelvoudigd, opgeslgen in een geutomtiseerd gegevensbestnd,

Nadere informatie

lesboek groep 6 blok 1

lesboek groep 6 blok 1 lesboek groep 6 9 blok lesboek groep 6 blok Mlmberg, s-hertogenbosch Alle rechten voorbehouden. Niets uit deze uitgve mg worden verveelvoudigd, opgeslgen in een geutomtiseerd gegevensbestnd, of openbr

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

Formules en grafieken Hst. 15

Formules en grafieken Hst. 15 Formules en grafieken Hst. 5. De totale kosten zijn dan : 0,5. 0000 = 0.000 dollar. Dan zijn de kosten per ton, dollar. De prijs is dan :,. 0.000 = 4.000 dollar. 0,50 dollar per ton en 4000 mijl. Aflezen

Nadere informatie

rekenboek 8a taken 513830

rekenboek 8a taken 513830 rekenboek 8 tken 80 Een voorproefje vn groep 8 Het mteril vn De wereld in getllen voor de onderbouw is gereed. Dit schooljr (009-00) verschijnen lle mterilen voor de bovenbouw. U kunt dus vnf het schooljr

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Formularium Wiskunde 1 ste graad

Formularium Wiskunde 1 ste graad Kls: Nm: Formulrium Wiskunde 1 ste grd Vkwerkgroep Wiskunde T. I. SINT-LAURENS MARIA MIDDELARES Ptrongestrt 51 9060 Zelzte Tel. (09)45 7 1 Fx (09)45 40 65 Internet: http://tislmm.pndor.be E-mil: so.tislmm.zelzte@frcrit.org

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a Werkbld Een feestml Nm: Ieder lnd en iedere cultuur kent specile dgen. Dn gn fmilies bij elkr op bezoek. Op die specile dgen is er meestl extr ndcht voor het eten. Hier zie je wt voorbeelden vn feesten

Nadere informatie

Hoofdstuk 1 Introductie Analytische Meetkunde

Hoofdstuk 1 Introductie Analytische Meetkunde Hoofdstuk 1 Introductie Anlytische Meetkunde 1.1 Wr ligt de scht? Op een zolder heb je een oude krt gevonden. Op een onbewoond Crïbisch eilnd is een scht begrven. De beschrijving is heel duidelijk: Loop

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie

handleiding groep 8 blok 1

handleiding groep 8 blok 1 6 7 hndleiding groep 8 blok en 8 9 0 hndleiding groep 8 blok Overzicht vn de leerinhoud Inhoud Inleiding Les t/m Remediëring Domein Doel Les 6 7 8 9 0 A (f) Bewerkingen Cijferen Kinderen kunnen een combintie

Nadere informatie

bezorgerboekje informatie voor

bezorgerboekje informatie voor bezorgerboekje informtie voor Inhoud 2 3 4 6 10 12 13 14 15 Welkom Onmisbre schkel / De Persgroep Distributie Wetten en regels Inschrijven / Bezorgovereenkomst /Arbeidstijdenwet / Arbeidsomstndighedenwet

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk. Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt

Nadere informatie

#JONGERENGIDS. @student @werkzoekende @starter. van brabant

#JONGERENGIDS. @student @werkzoekende @starter. van brabant #JONGERENGIDS @student @werkzoekende @strter by Socilistische Mutuliteit vn brbnt Sport en Fitness Je prestties verdienen goede locties! Krijg 45 terug vn je sport- of fitnessbonnement. #WELKOM De Socilistische

Nadere informatie

Profijt van de gemeentelijke overheid

Profijt van de gemeentelijke overheid Profijt vn de gemeentelijke overheid De invloed vn het gemeentebeleid op de koopkrcht vn de minim in Groningen Dr. M.A. Allers Profijt vn de gemeentelijke overheid De invloed vn het gemeentebeleid op de

Nadere informatie

= = = = = = = =

= = = = = = = = 0 ld nm Hulp Reken uit met cijferen 0 Reken uit met splitsen Honderdvouden ij elkr en dn de rest ij elkr. + 0 = 0 + = 0 + = 0 + 0 = + 0 = 0 + 0 = 0 + = 0 + = Honderdvouden vn elkr f en dn de rest vn elkr

Nadere informatie

INLEIDING. Gezond eten Gezond drinken Genoeg slapen Goed bewegen

INLEIDING. Gezond eten Gezond drinken Genoeg slapen Goed bewegen b o r p! f G t i F s i t r G t l p r u e l k r ee INLEIDING Structuur, inzicht en plezier bij gezond leven Dr geloven wij in bij FitGf! Drom hebben we een klender met stickers ontworpen! Voor kinderen,

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

Accenten blok 10 10 7 = 7 = 7 = 7 = 7 = 7 = 1 minder. de helft. 1 meer 1 meer. 1 minder

Accenten blok 10 10 7 = 7 = 7 = 7 = 7 = 7 = 1 minder. de helft. 1 meer 1 meer. 1 minder Accenten lok 0 0 De leerlingen leren het optellen vnf een tienvoud in één sprong, ijv. 0. 0 7 de helft minder 7 Bij het rekenen met geld leren de leerlingen edrgen ls,98 fronden. 7 7 minder meer meer 7

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B (pilot) Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

1 De onderneming in de wereldeconomie

1 De onderneming in de wereldeconomie 1 De onderneming in de wereldeconomie Meerkeuzevrgen 1.1 Glolisering is een proces vn wereldwijde economische integrtie door een sterke toenme vn de interntionle hndel en investeringen. wrij de wereldproductie

Nadere informatie

Inhoudsmaten. Verkennen. Uitleg. Opgave 1. Dit is een kubus met ribben van 1 m lengte. Hoeveel bedraagt de inhoud ervan?

Inhoudsmaten. Verkennen. Uitleg. Opgave 1. Dit is een kubus met ribben van 1 m lengte. Hoeveel bedraagt de inhoud ervan? Inhousmten Verkennen Opgve 1 Dit is een kuus met rien vn 1 m lengte. Hoeveel ergt e inhou ervn? Kun je e nm kuieke meter ls eenhei vn inhou verklren? In hoeveel kleinere kuussen is eze kuieke meter vereel?

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie