e f l a b t 18 k 0,25 15 c p 5 16 c p temperatuur C 18 temperatuur C

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "e f l a b t 18 k 0,25 15 c p 5 16 c p temperatuur C 18 temperatuur C"

Transcriptie

1 Formules geruiken 7 1 5,00 j j 2 4,00 j 3 9, ,8 4,8 2 9, ,10 6 2de , ,2 12 d 90 0, e 90 0,05 4, ,5 f ,2 18 g ,5 75 0,10 7,5 h , ,02 3,75 i ,2 15 j ,6 56 0,10 5,6 k ,8 56 0,02 2,8 l ,2 56 0,2 11, het eerste getl wordt met 2 vermenigvuldigd het tweede getl wordt door 2 gedeeld e getl wordt met 2 vermenigvuldigd 2 e getl wordt door 2 gedeeld de d e f g h j is 1 23 minder dn min d e f l t 18 k 0,25 15 p 5 16 p tempertuur C 18 tempertuur C 19 u u u 1, d u e u f u 1, ,6 g u ,1 20 w l kg w l kg nee, wnt voor heel kleine mensen zou je een negtief gewiht kunnen krijgen 21 omtrek 5 15,71 m O d O 7 21,99 m 22 oppervlkte irkel ,63 m 2 A d d 4 A ,48 m 2 23 inhoud ilinder m 3 I A h I m 3 d I m 3 24 oppervlkte rehthoek lengte lnge zijde lengte korte zijde O l k O oppervlkte, l lnge zijde en k korte zijde 25 ntl punten 0 ijfer ntl punten 10 ijfer de formule is gelijk Noordhoff Uitgevers v 41

2 26 ntl punten 0 ijfer ntl punten ijfer ntl punten ntl punten 8 ijfer ntl punten ijfer ntl punten ntl punten 0 ijfer 4 1 ntl punten ntl punten 8 ijfer 4 1 ntl punten de formule is gelijk. 28 ntl punten 0 ijfer ntl punten ijfer ntl punten ntl punten 3 ijfer ntl punten ,5 ijfer ntl punten ,5 29 nee ntl punten 0 ijfer ½ ntl punten 2 ijfer ½ het ijfer moest 3 zijn. 30 prijs per krtje 57, ,50 prijs per krtje totlprijs 0,2 57,50 0,2 11,50 31 vooreeld lengte 10 m, reedte 5m omtrek m omtrek m 32 vooreeld sis 10 m, hoogte 10 m opp m 2 opp m 2 33 V I R V 16 13, R V I R , r 10 h r : 10 h r h r + 10 h r 10 h r h r 10 h r + 10 h r h 10 r : 10 h r 10 r h 10.m m minuten minuten d minuten.m. 2.m. : minuten minuten d n 25 minuten h 34 I V R I 24 13, R V I R ,75 j 42 Noordhoff Uitgevers v

3 41 ls je de omtrek weet mr de dimeter niet d π o d : π o dimeter omtrek m d strl m.p. : 8.p. 8 ntl punten ijfer 8 ntl punten d ntl punten 6, e punten f punten.m. : Volgens de voorrngsregels gt voor, in dit gevl moet 10 eerst dus dit tussen hkjes. ntl minuten u. 0,25 35 t.e. ntl uren ntl euro 35 0, ,25 12 uur 46 : edrg 7 25 ntl km 0,20 edrg 175 ntl km 0,20 48 edrg ntl dgen ,20 edrg ntl dgen edrg 5 20 ntl km 0,25 edrg 100 ntl km 0,25 het huuredrg ij 5 dgen huur edrg ntl dgen d edrg 140 ntl km 0,25 e edrg ntl dgen 20 12,5 f ,25 77,50 50 edrg ntl dgen ,25 edrg ntl dgen het huuredrg ij 100 km edrg 3 20 ntl km 0,25 edrg 60 ntl dgen 0,25 51 edrg 5 17 ntl km 0,35 edrg 85 ntl km 0,35 edrg ntl dgen ,35 edrg ntl dgen 17 17,50 verhuurder B d verhuurder B is goedkoper 52 edrg ntl fietsen 3 7,50 edrg ntl fietsen 22,50 wt de huurprijs is ij 3 dgen huur edrg 5 ntl dgen 7,50 edrg ntl dgen 37,50 d wt de huurprijs is ij de huur vn 5 fietsen 53 edrg ntl fietsen 3 6,50 1 edrg ntl fietsen 19,50 1 wt de huurprijs is ij 3 dgen huur edrg 5 ntl dgen 6,50 1 edrg ntl dgen 32,50 1 d wt de huurprijs is ij de huur vn 5 fietsen e verhuurder A: edrg 5 3 7,50 112,50 verhuurder B: edrg 5 3 6, ,50 f verhuurder B is goedkoper 54 de vste kosten vn de zl de vste kosten vn de dj, zlkosten per uur dj kosten per uur de totle huurprijs per uur 55 totle kosten ntl uren 56 totle kosten ntl uren 57 kosten ntl plntjes 0,50 3 oprengst ntl plntjes 4 winst ntl plntjes 4 ntl plntjes 0,50 3 winst ntl plntjes 3,50 3 Noordhoff Uitgevers v 43

4 58 O h 2,5 h O 1 2 h O 2 50, 50 7,1 h , h 14,1 72 inhoud 40 hoogte hoogte m 6 7,5 9 10,5 12 inhoud m I 3 1 G G I 2 1 h 6 h 2 h h 2 h 2 35 h 5,9 m 60 t/m 65 test jezelf inhoud (m 3 ) eieren 2 doosjes 6 eieren 2 doosjes 12 eieren 6 ntl eieren ntl doosjes eieren d ntl doosjes doosjes hoogte 67 47,50 5 9,50 prijs per krtje 47,50 0,2 9, : Omdt hier voor moet gn. d u 50 2 u u d hoogte inhoud ,25 m 3 73 edrg ntl fietsen 7 prijs edrg ntl fietsen 7 4,25 edrg ntl fietsen 29,75 edrg 5 29,75 148,75 d edrg 3 7 3, ,75 67,20 66,50 133,70 Het voordeligst ij het fietsverhuuredrijf e Bij het fietsenverhuuredrijf 69 5 : d omtrek vn een oom ereken je met: dimeter De oppervlkte vn de lp ereken je met: omtrek hoogte de jute wordt in een duele lg gelegd, dus 2 O 2 d h O 2 0, ,27 m 2 70 T 2 l g T 2 3,14 0,8 9,8 1,8 seonden 71 omtrek m omtrek m 75 edrg ,- ntl prden edrg prden 76 l 0, m 56,55 meter l 0, m 88,31 meter l 0, m 19,23 meter d ,5 d 2 d ,5 891,8 d 891,8 29,9 meter 44 Noordhoff Uitgevers v

5 77 inlusiefprijs exlusiefprijs 0,19 exlusiefprijs inlusiefprijs 1 exlusiefprijs 0,19 exlusiefprijs inlusiefprijs 1,19 exlusiefprijs 16,50 1,06 17,49 exlusiefprijs inlusiefprijs 1,06 exlusiefprijs inlusiefprijs 1,19 d prijs 9,50 1,19 7,98 78 stopfstnd 0,2 snelheid 0,01 snelheid 2 snelheid retie remweg stopfst ,2 0, ,25 meter ntl pillen hoeveelheid ismutsugllt d ntl pillen hoeveelheid zinkoxide lium ntl ml infuus 172 mgnesium ntl ml infuus 38 lium mg mgnesium mg ntl minuten ntl minuten 20 : 20 hoeveelheid infuus hoeveelheid infuus ntl minuten hoeveelheid infuus minuten nt. min. nt. min. 15 : hoeveelh. infuus hoeveelh. infuus ntl minuten hoeveelheid infuus min. 83 nee, Nederlndse shoenmt 37 is Britse shoenmt 4, volgens de formule komt dit op een lgere hkhoogte uit 84 7,8 0,5 12 0,375 s 7,8 6 0,1875 s 1,8 0,1875 s s 1,8 0,1875 9,6 Britse mt 0,6 komt overeen met Nederlndse mt 43, ,- 50,- 8,- d 100,- e 100,- f 200,- g 160,- h 360, ,- 15,- 60, op 3 doet niet n sport leerlingen 88 en f en g en e d en h 89 tijd uren 5 10 edrg tijd uren edrg tijd uren edrg tijd uren edrg uur voor 96, grm wlnoten voor 2, uur 60 minuten 4 uur 240 minuten 660 minuten 11 uur d 30 minuten ½ uur e 1 dg 24 uur f 60 dgen 1440 uur g 600 uur 25 dgen h 120 uur 5 dgen mg mg Noordhoff Uitgevers v 45

6 mg 95 4mL 10 ml mg 97 drnkje: 5 mg/ml infuus: 50 mg/500 ml dus infuus meer verdund onentrtie is lger 98 ntl ml ntl mg 50 0,1 dus 0,1 mg/ml ,5 7,6 19 0,4 7,6 j, wnt dit is de tegenformule. 7,6 2,5 19 punten 100 kosten ,50 120,- ntl lessen ntl lessen 7,50 : 7, kosten kosten d ntl lessen kosten 30 7,50 e 187, ,50 21 lessen 101 I 6 2 h 12 3 h I m 3 h I 3 d h I 3 h ,18 m 46 Noordhoff Uitgevers v

15 a b

15 a b Formules geruiken 7 1 20 79:4 20 2 158 2 79 158 3 237 sinsppels 3 79 237 40 itroenen d 79:2 40 4 14 pkken melk 79:6 13,1 fgerond 14 pkken 5 30 kg 237:8 30 kg 6 krtjes d 30:5 6 krtjes e 38,70 f 6 6,45 38,70

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO

15 5 omhoog. Hoofdstuk 26 RECHTE LIJNEN. 6 ad 26.0 INTRO Hoofdstuk 6 RECHTE LIJNEN 6.0 INTRO 6 d km kost,0: =,9 drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls je nr rechts zou gn, zou je omhoog

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO

H26 RECHTE LIJNEN VWO. 6 ad 26.0 INTRO H6 RECHTE LIJNEN VWO 6.0 INTRO 6 d km kost,0: =,0 (oude druk) km kost,0: =,9 (nieuwe druk) drnkje kost : =,0, dus de entree is,0,0 = 0,-. Nee, ls je ij de onderste lijn nr rechts gt g je omhoog, dus ls

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Rangschik van klein naar groot. Vul aan. Meet de lengte van onderstaande voorwerpen.

Rangschik van klein naar groot. Vul aan. Meet de lengte van onderstaande voorwerpen. 582 Rngshik vn klein nr groot. 583 Vul n. 0,3 km 500 m 200 000 m 25 000 dm... 0,3 m 40 m 12 dm 240 mm... 1 mm is... mm kleiner dn 1 m. 8 m is... m kleiner dn 1 m. d 9 92 70 47 3 m is... mm kleiner dn 1

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ICT - Grfieken met VU-grfiek ldzijde 64 1 De snijpunten met de x-s zijn ( 3, ), (4, ) en (5, ). f( 3) =, 5 ( 3) 3 ( 3) 35, 3+ 3= f( 4) =, 5 ( 4) 3 ( 4) 35, 4+ 3= f( 5) =, 5 ( 5) 3 ( 5) 35, 5+ 3= Met de

Nadere informatie

Boek 2, hoofdstuk 7, allerlei formules..

Boek 2, hoofdstuk 7, allerlei formules.. Boek, hoofdstuk 7, llerlei formules.. 5.1 Evenredig en omgekeerd evenredig. 1. y wordt in beide gevllen 4 keer zo klein, je noemt dt omgekeerd evenredig. b. bv Er zijn schoonmkers met een vst uurloon.

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde

Havo B deel 1 Uitwerkingen blok 1 Moderne wiskunde Hvo B deel Uitwerkingen lok Moderne wiskunde Blok Vrdigheden ldzijde 0 l gt door (0, ) dus strtgetl l gt door (0, ) en (, ), dus nr rehts en omlg ofwel nr rehts en 0, omlg. Het hellingsgetl is dn 0, y

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Bewerkingen met eentermen en veeltermen

Bewerkingen met eentermen en veeltermen 5 Bewerkingen met eentermen en veeltermen Dit kun je l 1 werken met letters ls onekenden, ls vernderlijken en om te verlgemenen 2 een tel mken ij een situtie 3 de fsprken over lettervormen toepssen 4 oppervlkteformules

Nadere informatie

Lengteverandering bij temperatuurverandering.

Lengteverandering bij temperatuurverandering. 2 Uitzetting. Opgve 2.1 Lengteverndering ij tempertuurverndering. De ene stof zet sterker uit dn de ndere. Deze mterileigenshp wordt ngegeven met de lineire uitzettingsoëffiiënt (α). De lineire uitzettingsoëffiiënt

Nadere informatie

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel M De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde de strl de dimeter een middelpuntshoek een middellijn O:... [XY]:... OS

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

MEETKUNDE 5 Cirkels en cilinders

MEETKUNDE 5 Cirkels en cilinders MEETKUNDE 5 Cirkels en ilinders M22 De irkel 254 M23 De ilinder 262 253 M22 De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: de tweede ronde

Junior Wiskunde Olympiade 2012-2013: de tweede ronde Junior Wiskunde Olympide 0-03: de tweede ronde Volgende enderingen kunnen nuttig zijn ij het oplossen vn sommige vrgen.,44 3,73 5,36 π 3,46.ls + =en =3,dnis gelijkn () 5 () 6 () 3 () 9 (E) 3.Hetgetl (

Nadere informatie

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken?

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken? 0 vergelijken en op volgorde zetten vn eenvoudige reuken en kommgetllen reuken omzetten in kommgetllen en omgekeerd Welke reuk is het grootst? 5 6 2 7 9 5 5 9 2 5 7 2 7 8 8 9 8 5 00 5 6 7 20 5 7 27 70

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Blok 3. 3-1 Afronden. 175 : 15 11 rest 10 Ze moet minimaal 12 maanden sparen. b 175 : 6 29 rest 1. Ze moet dan 30,- per maand gaan sparen.

Blok 3. 3-1 Afronden. 175 : 15 11 rest 10 Ze moet minimaal 12 maanden sparen. b 175 : 6 29 rest 1. Ze moet dan 30,- per maand gaan sparen. 3-1 Afronden 1a 3 (7,6 8,2) 6,6 9,2 3 15,8 6,6 9,2 47,4 6,6 9,2 63,2 63,2 : 8 7,9 Isa staat gemiddeld 7,9 voor wiskunde. Ze krijgt een 8 op haar rapport. 2a 6,139 wordt 6,14 d 8,4311 wordt 8,43 4,097 wordt

Nadere informatie

Bewerkingen met eentermen en veeltermen

Bewerkingen met eentermen en veeltermen 5 Bewerkingen met eentermen en veeltermen Dit kun je l 1 werken met letters ls onekenden, ls vernderlijken en om te verlgemenen 2 een tel mken ij een situtie 3 de fsprken over lettervormen toepssen 4 oppervlkteformules

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

6.4 Rekenen met evenwichtsreacties

6.4 Rekenen met evenwichtsreacties 6.4 Rekenen met evenwihtsreties An de hnd vn een reeks vooreelden zullen we het rekenwerk ehndelen n evenwihtsreties. Vooreeld 6.2 We estuderen het gsevenwiht: A(g) + B(g) C(g) + D(g) In een ruimte vn

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Blok - Vrdigheden ldzijde 0 Dt geldt voor h, len m ; de grfieken zijn symmetrish in de y -s. Die zijn tegengesteld; ijvooreeld g( ) g () De grfiek is symmetrish in de oorsprong. funtie symmetrie in de

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter.

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter. Opgve 1 Dit is een roosterord. Elk roosterhokje is 5 m ij 5 m. Hoeveel edrgt de oppervlkte vn dit ord? Opgve 2 Welke oppervlktemten ken je l? Noem er zoveel mogelijk. De oppervlkte-eenheid is de vierknte

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

03 02 11 12 dagen. Ongeopend: 22 01 2014. 1 juni 1 juli

03 02 11 12 dagen. Ongeopend: 22 01 2014. 1 juni 1 juli lok les en C Hoelng is het houdr? in de winkelwgen houdrheidsdtum onsumeren innen 0 0 dgen zterdg jnuri 0 Ongeopend: 0 0 Ongeopend: 0 jr Ongeveer mnden 8 0 dgen C Reken met tijd. het is nu over dgen is

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

aantal stroken van euro

aantal stroken van euro Les 1 Vul in ntl vellen vn 1 ntl stroken vn 1 ntl losse zegels 42 zegels 47 zegels 4 zegels 4 Hoeveel s? 25 4 5 15 45 5 Vul in 27 7 752 9 444 Reken uit 5 + = 2 + 7 = = 9 4 = 5 + = 2 + 7 = = 9 4 = 5 + =

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: MEER DAN 0 JAAR ERVARING Dit document estt uit twee delen: de voorereidende opgven en een overzicht met lgerïsche vrdigheden. Mk de volgende opgven het liefst voorin

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Hoofdstuk 1 - Rekenen

Hoofdstuk 1 - Rekenen ladzijde 2 a 7 Marel vindt 32,7 326 werknemers en Cas vindt 329 werknemers. Het antwoord van Cas is het nauwkeurigst. deel van 987 =, dus er komen werknemers lopend of met de fiets. Met de auto komen 987

Nadere informatie

Inhoudsmaten. Verkennen. Uitleg. Opgave 1. Dit is een kubus met ribben van 1 m lengte. Hoeveel bedraagt de inhoud ervan?

Inhoudsmaten. Verkennen. Uitleg. Opgave 1. Dit is een kubus met ribben van 1 m lengte. Hoeveel bedraagt de inhoud ervan? Inhousmten Verkennen Opgve 1 Dit is een kuus met rien vn 1 m lengte. Hoeveel ergt e inhou ervn? Kun je e nm kuieke meter ls eenhei vn inhou verklren? In hoeveel kleinere kuussen is eze kuieke meter vereel?

Nadere informatie

Nu precies. Het kan zo: Hulpsommen Maar het kan ook korter: 1 1 8 = 1 8 1 0 1 8 = 1 8 0 2 0 1 8 = 3 6 0 1638 : 18 1519 : 26

Nu precies. Het kan zo: Hulpsommen Maar het kan ook korter: 1 1 8 = 1 8 1 0 1 8 = 1 8 0 2 0 1 8 = 3 6 0 1638 : 18 1519 : 26 86 lok 6 les C Hoeveel krtjes zijn er verkoht? Een krtje voor het irus kost 8. An het eind vn de dg zit er 86 in de kss. Sht eerst het ntl. 86 : 8 4000 : 0 = Nu preies. Het kn zo: Hulpsommen Mr het kn

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0 of 0 0 of 0 of of De oördinaten van de snijpunten

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

Geef een tegenvoorbeeld als de uitspraak niet waar is. Als a een positief getal is, dan is a negatief.

Geef een tegenvoorbeeld als de uitspraak niet waar is. Als a een positief getal is, dan is a negatief. V* Vul n. ( ) 7 7 7 7 7 7 9 9 9 9 9 9 7 7 7 7 7 7 V** Is de uitsprk wr of niet wr? Geef een tegenvoorbeeld ls de uitsprk niet wr is. b d e ls een positief getl is, dn is negtief. = dn = ls b een negtief

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

de Wageningse Methode Antwoorden H29 PARABOLEN&HYPERBOLEN 1

de Wageningse Methode Antwoorden H29 PARABOLEN&HYPERBOLEN 1 Hodstuk PARABOLEN & HYPERBOLEN. INTRO. CONFLICTLIJN ; ; d,, Q: Afstnd tot E is 7 Afstnd tot k is R: Afstnd tot E is 7 Afstnd tot k is us Q en R liggen even ver vn E ls vn k. e fstnd tot k is e fstnd tot

Nadere informatie

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10 H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het

Nadere informatie

Ruimtemeekunde. Hoofdstuk 7

Ruimtemeekunde. Hoofdstuk 7 Ruimtemeekunde Hoofdstuk 7 a,,9 m,9 9, 9, 0 m a prisma: 0 0 m piramide: 0 : 80 m e inhoud van het prisma is keer zo groot als de inhoud van de piramide. a ilinder: 90 080 m kegel: 90 : 60 m e inhoud van

Nadere informatie

C 1 C 2 C 3. C 4 Vul aan tot 1 l. les 1 en 2. 32 blok 4. Hoeveel heb je nodig van elk gewicht? Kijk goed naar het voorbeeld.

C 1 C 2 C 3. C 4 Vul aan tot 1 l. les 1 en 2. 32 blok 4. Hoeveel heb je nodig van elk gewicht? Kijk goed naar het voorbeeld. 32 lok 4 les 1 en 2 C 1 Hoeveel he je nodig vn elk gewicht? Kijk goed nr het vooreeld. Je weegt: 160 grm / / / 130 grm 180 grm 230 grm 270 grm C 2 Vul n tot 1 kg. 900 g + 100 g 500 g + g c 800 g + g 700

Nadere informatie

a _ 196 + 3 (15 ( 2) 4 ) = 14 + 3 (15 + 2 4 ) = 14 + 3 (15 + 16) = 14 + 3 31 = 14 + 93 = 107 10 5 + 1 = 51 25 5 + 1 = 126

a _ 196 + 3 (15 ( 2) 4 ) = 14 + 3 (15 + 2 4 ) = 14 + 3 (15 + 16) = 14 + 3 31 = 14 + 93 = 107 10 5 + 1 = 51 25 5 + 1 = 126 = 1 + (1 : 3) 1 = 1 + 1 = Mk met e getllen 3, 1, 1, 1 het getl...................................................................................................................................................................................

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Voorbereidende opgaven Examencursus

Voorbereidende opgaven Examencursus Voorbereidende opgven Exmencursus Tips: Mk de voorbereidende opgven voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een opdrcht niet lukt, werk hem dn uit tot wr je kunt en

Nadere informatie

11 Wiskundige denkactiviteiten: digitale bijlage

11 Wiskundige denkactiviteiten: digitale bijlage Wiskundige denkctiviteiten: digitle ijlge Suggesties voor opdrchten wrij de leerlingen uitgedgd worden wiskundige denkctiviteiten te ontplooien. De opdrchten heen de volgende structuur. In de kop stn chtereenvolgend:

Nadere informatie

Hoofdstuk 12 GETALLEN EN GRAFIEKEN. d e = 1,5p ; p = 3 2 e e euro's kronen f k = 9e ; e =

Hoofdstuk 12 GETALLEN EN GRAFIEKEN. d e = 1,5p ; p = 3 2 e e euro's kronen f k = 9e ; e = Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1.0 INTRO 1 a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u 0,5 m/u d 8 uur en 40 minuten

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1 Hoofdstuk GETALLEN EN GRAFIEKEN.0 INTRO a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz.,5 m/u 0,5 m/u d 8 uur en 40 minuten tot 0 gram:

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel Rpportge Enquête ondergrondse fvlinzmeling Zltommel Enquête ondergrondse fvlinzmeling Zltommel VERSIEBEHEER Versie Sttus Dtum Opsteller Wijzigingen Goedkeuring Door Dtum 0.1 onept 4-11-09 VERSPREIDING

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600

6 116 = 696. som: = som: = som: = zo groot één 0 erbij = = 7 600 LES 1 Reken uit (met cijferen of kolomsgewijs) 5 74 = 1 87 8 45 = 2 76 4 62 = 2 492 6 517 = 12 9 462 = 4 158 7 219 = 1 5 4 Vn verhl nr rekentl Reken uit met cijferen of kolomsgewijs. Vder koopt een ndere

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte Hoofdstuk 5 1 a logoen4 /d 1 1 1 313 414 c logo 1: 180 logo : 180 logo 3: 90 logo 4: 90 d alle logo s zijn puntsymmetrisch 6 a a lijnsymmetrisch draaisymmetrisch puntsymmetrisch

Nadere informatie

Voorkennistoets wiskunde voor economie. is te herleiden tot b 12 c 3 4 d 4 3

Voorkennistoets wiskunde voor economie. is te herleiden tot b 12 c 3 4 d 4 3 Opgven Voorkennistoets wiskune voor eonomie Opgven A.. De uitrukking 7 ( ) is te herleien tot ( ) ( ) 6 ntwoor A.. ereken 4. 7 ( ) 6 9 ( ) 7 46 66 48 8 98984 76 ntwoor A.. ereken, 4,7.,489,8766,78,969

Nadere informatie

5.1 Hogeremachtswortels [1]

5.1 Hogeremachtswortels [1] 5. Hogeremchtswortels [] De functie x 2 = p heeft twee oplossingen ls p > 0; De functie x 2 = p heeft één oplossing ls p = 0; De functie x 2 = p heeft geen oplossingen ls p < 0; Het bovenstnde geldt bij

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

Hoe maak je een huiswerkplanning?

Hoe maak je een huiswerkplanning? PLANNEN HOE MAAK JE EEN HUISWERKPLANNING? Hoe mk je een huiswerkplnning? Wt he je ern? In deze les leer je hoe je een huiswerkplnning mkt. Dt is hndig, wnt zo g je goed voorereid n de slg en kun je sneller

Nadere informatie

a Hoeveel zijn dat er ongeveer per jaar? 50 1500 = 75 000 b Hoeveel zijn dat er precies? 52 1519 = 78 988 Eerst rekenden we zo: 5 2 x

a Hoeveel zijn dat er ongeveer per jaar? 50 1500 = 75 000 b Hoeveel zijn dat er precies? 52 1519 = 78 988 Eerst rekenden we zo: 5 2 x lok les C Hoeveel huizen zijn het? C C C Hoeveel zijn dt er ongeveer per jr? 0 00 = 7 000 Hoeveel zijn dt er preies? 9 = 78 988 Hoeveel huizen zijn het? In 008 werden per week gemiddeld 6 huurwoningen

Nadere informatie

Hoofdstuk 8 Beslissen onder risico en onzekerheid

Hoofdstuk 8 Beslissen onder risico en onzekerheid Hoofdstuk 8 Beslissen onder risico en onzekerheid 8.5 Tectronis Tectronis, een friknt vn elektronic, kn vn een nder edrijf een éénjrige licentie verkrijgen voor de fricge vn product A, B of C. Deze producten

Nadere informatie

Breuken. Breuken. Wiskunde voor de brugklas. 1 De cd-roms van Wiskunde Interactief

Breuken. Breuken. Wiskunde voor de brugklas. 1 De cd-roms van Wiskunde Interactief De d-roms vn Wiskunde Intertief Breuk voor de Bsisshool het hoe wrom vn reuk verevoudig 8 4 4 optell 4 + 7 ftrekk 3 4 7 3 vermigvuldig 4 3 del 7 : 3 4 Breuk voor de Bsisshool,Vmo, Hvo/VWO Po het hoe wrom

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv ldzijde f () Er is geen symmetrie in een vertile lijn. Alle rklijnen heen een positief hellingsgetl. Wrshijnlijk (0, 0). d f () e - ICT - Rklijnen ldzijde Geruik dt d y om de hellingsgetllen vn de rklijnen

Nadere informatie

vlieger rechthoek ruit parallellogram vierkant

vlieger rechthoek ruit parallellogram vierkant 4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant

Nadere informatie

Meet de lengte en de breedte van de rechthoek.

Meet de lengte en de breedte van de rechthoek. M15 Rechthoek en lk 692 E Je kunt hieronder eenvoudig de oppervlkte vn een rechthoek vinden door de ruitjes te tellen. Elk ruitje is 1 cm². Hoe groot is de oppervlkte vn deze rechthoek?... 693 B Bereken

Nadere informatie

3 Reken uit (met cijferen of kolomsgewijs) = = = = = = 4 Van verhaal naar rekentaal

3 Reken uit (met cijferen of kolomsgewijs) = = = = = = 4 Van verhaal naar rekentaal LES 1 3 Reken uit (met cijferen of kolomsgewijs) 5 374 = 6 517 = 8 345 = 9 462 = 4 623 = 7 219 = 4 Vn verhl nr rekentl Reken uit met cijferen of kolomsgewijs. Vder koopt een ndere uto. Hij etlt cht mnden

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.

Nadere informatie

C 1 C 2 C 3 C 4. les 1 en 2. 2 blok 5. Reken uit. a. Maak sommen bij de plaatjes. Reken ze uit op een blaadje.

C 1 C 2 C 3 C 4. les 1 en 2. 2 blok 5. Reken uit. a. Maak sommen bij de plaatjes. Reken ze uit op een blaadje. lok les en C 7 7 9 6 8 7 9 0 6 0 0 6 0 0 0 8 0 0 0 0 0 0 0 0 6 0 8 7 8 8 C Mk sommen ij e pltjes. Reken ze uit op een lje. Het p is m ree en 6 m lng. De som is 6 m = m. Een gls limone kost,. De som is,

Nadere informatie

Zo n grafiek noem je een dalparabool.

Zo n grafiek noem je een dalparabool. V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

Gemiddelde en mediaan

Gemiddelde en mediaan G5 Gemiddelde en medin 45 B Bereken het gemiddelde en de medin vn elke reeks getllen. 7 8 9 1 14 14 Gemiddelde: Medin: 17 22 35 14 18 11 44 Gemiddelde: Medin: 1 7 9 6 8 Gemiddelde: Medin: d 18 141 164

Nadere informatie

Q: Afstand tot E is. R: Afstand tot E is

Q: Afstand tot E is. R: Afstand tot E is H9 PARABOLEN & HYPERBOLEN VWO 9. INTRO Q: Afstnd tot E is 69 6 7 () ( ) 9. Afstnd tot k is 9. R: Afstnd tot E is (6 ) 6. 669 6 7 Afstnd tot k is 6. us Q en R liggen even ver vn E ls vn k. e fstnd tot k

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit.

De supermarkt. a Welk karretje heeft de duurste boodschappen? Leg uit waarom je dat denkt. b Hoeveel klanten nog tot de 1000ste klant? Reken uit. lesboek groep 8 1 De supermrkt nt 0ste kl De 0 inuut grtis! mg 1 mhppen doen boods en: bloem bij bloemen extr! grtis 3 193 86 0 klnten 1 Welk krretje heeft de duurste boodshppen? Leg uit wrom je dt denkt.

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

V2.1 Eerlijk verdeeld?

V2.1 Eerlijk verdeeld? Wie verdient wt? v2 Mkt geld gelukkig? L Voor je sisehoeften zols eten, woonruimte en kleding en je l guw dit edrg kwijt. Bedenk mr eens wt de mndhuur is. En hoeveel etl je voor vste lsten 1s gs, liht

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

V = gap E zdz ( 4.1B.1 ) f (z, ξ)dξ = g(z).

V = gap E zdz ( 4.1B.1 ) f (z, ξ)dξ = g(z). 4.1 Wire dipole Advnced theory In dit hoofdstuk introduceren we de lezer in de moment-methode erekening vn prmeters vn een wiredipole. We presenteren deze informtie in het Nederlnds in lg B zodt de lezer

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties vwo AC deel Uitwerkingen Moderne wiskunde Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0

Nadere informatie

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a b c. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Kerstvkntieursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlmse Wiskunde Olympide 99 993 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

Verschil zal er zijn hv bovenbouw WERKBLAD

Verschil zal er zijn hv bovenbouw WERKBLAD Vershil zl er zijn hv ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4. In

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie