9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

Maat: px
Weergave met pagina beginnen:

Download "9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a"

Transcriptie

1 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = = = ( + 5 ) = ( + 5) = 8 = 56 ( ( + 5)) = ( 8) = 6 = 56 c = -6 ( 5 + 7) = -0 (5+7) = -4 ( ) = ( ) (5 + 7) = - 4 a nee, a+(4+) en a+4+ zijn alleei a+6 ja, a (4 ) = a en a 4 = a 6 c nee, a (4 ) en a 4 zijn alleei 8a d ja, a:(4:) = a: en a:4: = a:8 5 a : ( 6) (7 4) (6 + ( 7)) : -4 (6 + -4) = = - (4 + 5) + (6 9) = 9 + (-) = = 6 c ( ) : 7 = ( + 8 0) : 7 = ( + 6 0) : 7 = : 7 = 9 6 a (x + 5) = x + 5 (x + 5) + 5(x ) = x+5 + 5x 5 = 8x 5(x + 5) (x + 5) = x + 0 (5x) = 5x (5x) = 5x = 75x ( 5x) = (5x) = 5x ( x 4 ) = x 8 c - ( x 4 ) = - x (- x 4 ) = x a Alleen ij 4 (+) en 4 ( ) 6. TREK AF VAN 8 a A+B C: A B+C: A B C: A (B+C): A (B+C): A B+C = A (B+C) en A B C = A (B+C) 9 a met: 00 (a+) ; zonder: 00 a 00 (a+) = 00 a 0 a met: 4 (a ) ; zonder: 4 a + 4 (a ) = 4 a + a 90 a 90 + a a met: 00 (a++c+d) zonder: 00 a c d 00 (a++c+d) = 00 a c d c a x y z u a x+y z+u a = 7500 = = = (000 + x) = 7500 x = = = = = = (000 x) = x 4 a 54 x x y c met: 54 (x y) ; zonder: 54 x + y d 54 (x y) = 54 x + y 5 a 8500 (000 x) = 8500 (000 -) = = 7497 en x = = 7497 ; klopt 4a + 9 x -4a + x + a + -x + 5-4a 5 6 a (x 5) = (x 7) x 5 = x 4 x 5 = -4 x = haakjes weg min x plus 5 controle: (x 5) = -4 = - (x 7) = -6 = - de Wageningse Methode Antwoorden H6 HAAKJES

2 x 5 = x (x ) x 5 = x + x 5 = x = 6 x = haakjes weg min x plus 5 delen door controle: x 5 = 9 5 = 4 x (x ) = 6 = 4 8 a Breedte C =,60 (,40 x) zonder haakjes: x 0,80 x 0,8 + x =,0 c x 0,8 =,0 x =,8 x =,4 d A:,40 m, B:,00 m, C: 0,60 m 9 reedte van A: x reedte van B: 4,70 x reedte van C: 4,0 (4,70 x) = x 0,50 vergelijking: x + (x 0,50) =,0 oplossing; x 0,50 =,0 x =,80 x =,90 r. A:,90, r. B:,80, r. C:,40 0 prijs fles wijn = x prijs fles sherry = x prijs fles cognac = 7 ( x) = 5 + x vergelijking : x + (5 + x) = 0 oplossing: x + 5 = 0 x = 5 x = 7,50 wijn: 7,50, sherry: 4,50, cognac:,50 6. TEGENGESTELDE a Van Corien: 7 a, van Joris: -7+a Van Corien: 7 a+, van Joris: -7+a c Van Corien: a+, van Joris: -+a (7 a) + (-7 + a) = 0; klopt. a a + a = 0-04, 0,78, 0, 4 a -x -a+ c+d -a n -5 z+p +a+y -x 5 -x is het tegengestelde van het kwadraat van x, dus (x x) (-x) is het kwadraat van het tegengestelde van x, dus -x -x (en dat is gelijk aan x ). 6 -a+ a a+ 7 + (-x+4) = -x x + (-x 4) = -x + -x (x 6) = x x 4 + (-5+x) = 5x 9 x + (-+x) = 0 6 (4x 6) = 6 + (-4x+6) = 4x 8 a (x ) + (4x 7) ( x) = (x 9) + (4x 7) (6 x) = (x 9) + (4x 7) + (-6 + x) = 9x 8 (-x + 4 ) + -(x 7) = 8 (-x + 4) + (-x + 4) = 8 + (x 4) + (-x + 4) = 8 c x (x y) + (-x y) = x (x 6y) + (-x y) = x + (-x + 6y) + (-x y) = -x + 4y d (x y) (-x y) (-x y) = (x y) + (x + y) + (x + y) = 5x + y 9 a (x + ) (x + 4) = 6 (x + ) (4x + 8) = 6 (x + ) + (-4x 8) = 6 -x 6 = 6 -x = x = -4 controle: (x + ) (x + 4) = - -4 = - -8 = = 6 -(x+) 5(6x 7) = 94 8x -4x 6 + (-0x + 5) = 94 8x -4x + 9 = 94 8x -6x = 65 x = -,5 controle: -(-5+) 5(-5 7) = = = = PRODUCTEN VAN TWEETERMEN 0 a c n + d manier : n + (n + ) = n + n + manier : (n + )(n + ) = (n + ) e (n + ) = n + n + f 0 = (00 + ) = = 00 a n, 5n, 5n, 5 n + 5 ij n + 5 c (n+5) = n + 0n + 5 a n, n, 4n, (n + )(n + 4) = n + 7n + de Wageningse Methode Antwoorden H6 HAAKJES

3 c x 0 x x 5 d (n + )(n + 5) = n + 7n + 0 e (n + )(n + 4) = n + 6n + 8 a 7a a (a+)(x+5) = ax + x + 5a + 5 c (p+7)(q+5) = pq + 7q + 5p + 5 d q + p + pq 4 (-+5)(-7+) = 4-4 = = = Teken een rechthoek van a+ ij c+d. Verdeel hem in vier stukken en schrijf de oppervlakte op twee manieren op. c d a x 6 a = = = 59 7 a x 0x + x 4x x + 7x 8 x 7x 8 x 6 x 8x + 6 x + x x + x + 4 x 7x + x x 6x + x 8 6x x 8 x 6x 6 4x 6x 6 x + x x + x + c p + 4pq + 4q p 4pq + 4q 5p + 0pq + 4q 5p 0pq +4q 5p 0pq + 4q 5p + 0pq +4q -5p + 4q -5p +0pq 4q 8 a x 6 = x 4x = -4x = -4x x = 5 controle: (5+4)( 5 4) = 9 = 9 (5 ) = = 9 x (x +x+) = x 4x + 4 x x = x 4x + 4 -x = -4x + 4 x = 5 x = 5x controle: ( ) ( +) = 6 4 ( ) = 4 = 4 ( ) = ( ) = 4 c 4(x x ) = 4x 4x 8x = 4x -8x = 0-8x = x = - controle: 4(- +)( - ) = = 9 ( - ) = (-) = 9 d x + 5x = x + 6x + 5 5x = 6x + 5 -x = 5 x = -5 controle: -5(-5+5) = -5 0 = 0 (-5+)(-5+5) = -4 0 = 0 9 a (x+)(x+) (x )(x ) (x+)(x+6) (x )(x 6) (x+)(x ) (x )(x+) (x+6)(x ) (x 6)(x+) (a+) (a ) (4a+)(a+) (4a )(a+) (a+5)(a+) (a 5)(a ) (a+)(a+5) (a )(a 5) 40 a x x + 5, x 4 c x = (x + 5)(x 4) d x = x + x 0 x = x + x 0 0 = x 0 0 = x controle: x = 400 (x + 5)(x 4) = 5 6 = 400 e 400 plaatsen 4 a 4 ; ( ) = = = 906 c n (n ) ; (n )(n ) d n (n ) = (n )(n ) e n (n ) = n n + (n )(n ) = n n + 4 a 0 personen extra mee: korting per persoon = 0 0,05 = 0,50 De us kost 40 5,50 = ,05 = 5,75 ; 5 5,75 = 0, ,05 = 5,5 ; 47 5,5 = 4,05 c prijs per persoon = 6 0,05n, dus (0 + n)(6 0,05n) = ,5n 0,05n d Dan n = = 50 of = 50 4 a x 0 ij x + meter x ; (x 0)(x + ) c x = (x 0)(x + ) de Wageningse Methode Antwoorden H6 HAAKJES

4 d x = x + x 0 0 = x 0 0 = x 60 = x e De vierkante akker is 60 ij 60 meter. De rechthoekige akker is 50 ij 7 meter. De oppervlakte van eide akkers is 600 m 44 (a+) = (a+)(a+) = a + a + a + = a + a + (a ) = (a )(a ) = a a a + = a a + (a+)(a ) = a a + a + = a 45 (a+) is de oppervlakte van het hele vierkant. a, a, a en zijn de oppervlaktes van de vier stukken. 46 a 9x + 6x + 9x 6x + 9x x +x+ (x x+) = 4x x +x+ + (x x+) = x + (x ) = (x ) x + = x 4 x + 47 a (n )(n+) (n )(n+) = n (n 4) = n n + 4 = n + (n+) (n+) = n + (n +n+4) (n +n+) = n + n + n + 4 n 4n = 48 a (x+8) (x 8) (x 8)(x+8) (x+) (x ) (x )(x+) c (0x+y) (0x y) (0x y)(0x+y) 49 a (x ) c (x ) is voor elke x positief of 0, want: * als x> is (x ) een positief getal x een positief getal, en dus positief * als x< is (x ) een negatief getal maal een negatief getal, en dus positief * als x= is (x ) = 0 = 0 50 a x 0x+00 = (x 0) 0 x 0x is 00 kleiner dan x 0x+00 Daar kunnen alle getallen -00 uitkomen. c x 0x+7 is 6 kleiner dan x 0x+00 Daar kunnen alle getallen -6 uitkomen. OKEROPGAVEN a Bijvooreeld: = = 4 : = 4 7 = 4 = = (4 ) 4 = 4 ( ) 9 = (4 ) 5 = 4 0 = 4 c Ja, ijvooreeld (4 ) = 4096 Het grootste getal dat je kunt maken is 4 a juist juist juist c juist ( 4 ). 5 Als d, s en t het aantal knikkers is dat Daan, Sem en Thomas eerst hadden, dan heen ze daarna: d +4, s+ 5 en t+5 4 knikkers. Daan heeft er 0, dus d +4 = 0, dus d = 8. 7 a ( + ) : = 7 ( : ( + )) = -6 0 a 99, 6, 0, -5, 0, 7, 05, 00 x, 00+x 00-y 0 00 x x 00 y c De uitkomst is steeds het getal waarmee je egon. d 00 (00 x) = x Vul twee velden in zoals hiernaast. Uit een diagonaal volgt dat het middelste veld 6 is. Uit de tweede rij volgt dat? = 4. 5 a Noem de reedte van het gemeenschappelijke deel: z. Dan = z. Dus z = 5. Dus de oppervlakte is 45. Noem de reedte van het gemeenschappelijke deel: z. Dan y = x + x z. Dus z = x y. Dus de oppervlakte is x(x y). 6 linksoven rechtsoven + rechtsonder linksonder verandert als je de getallen aan een zijde eide evenveel verhoogt of verlaagt. Dus lijft daar altijd = -5 uitkomen. Dat is zo ij figuur A. 7? s 0 s 0 de Wageningse Methode Antwoorden H6 HAAKJES 4

5 9 aantal meisjes = aantal meisjes dat heeft opgelost + aantal meisjes dat wel heeft opgelost = aantal jongens dat wel heeft opgelost + aantal meisjes dat wel heeft opgelost = aantal leerlingen dat wel heeft opgelost. Antwoord B dus. 0 e vaas: aantal rozen: x aantal fresia s: x e vaas: aantal rozen: 5 x aantal fresia s: (5 x) = x x is inderdaad minder dan x. a Tussen - en c - 6 Nee. Kies ijvooreeld de getallen en. Het tegengestelde van het product van de getallen is dan -6. Het product van de tegengestelden is dan - - = 6. 8 a Het product van twee getallen die elkaars omgekeerde zijn is. Dat is dat getal zelf weer. dat is dat getal zelf weer. c Er is geen verschil. d Het omgekeerde van een product is het product van de omgekeerden. Er komen aan de oven rand n+ verticale lucifers ij en n horizontale. Er komen aan de rechter rand n+ horizontale lucifers ij en n verticale. En nog twee lucifers in de hoek (rechtsoven). Dus totaal: 4n+4 lucifers erij. 4 Pas de distriutie wet nog twee keer toe: (a+)c = ac + c en (a+)d = ad + d. Alles opgeteld is dat ac + c + ad + d. 5 a d e f a c (a++c)(d+e+f) = ad + ae + af + d + e + f + cd + ce + cf Een negenterm (a+)(c+d)(e+f) = ace + acf + ade + adf + ce + cf + de + df Een achtterm 4 a x ij x x 5 ij x c (x )(x ) = x 7x + 6 d (x 5)(x ) = x 7x + 5 e Hoogakker; m meer 4 Dan moet a = 0, dus dat is alleen het geval als a = 0 of = a (a ) is de oppervlakte van het vierkant linksonder. Dat is het hele vierkant (opp. a ), min de strook rechts (opp. a) en min de strook oven (opp. a); maar dan he je het vierkantje rechtsoven (opp. ) er twee keer vanaf getrokken. Om dat goed te maken moet er weer ij geteld worden. De L-vorm is het verschil van twee vierkanten, namelijk a en, en heeft dus oppervlakte a. De rechthoek meet a+ ij a, en heeft dus oppervlakte (a+)(a ). 45 a 4, 6 4, 4, 0 4, 0 4 is het droduct van en -meer-dan- c n(n+) + 4 d (n+ ) = n + n + 4 n(n+) + 4 = n + n + 4 e Dat is = a x +0x+5 = (x+5) 0 x +0x+49 is 4 meer dan x +0x+5. Dus kan x +0x+49 alle waarden 4 aannemen. x +6x+64 = (x+8) 0 x +6x+69 is 5 meer, en kan dus alle waarden 5 aannemen. Op de moet 69 staan. 6 a e f c d a de Wageningse Methode Antwoorden H6 HAAKJES 5

6 EXTRA OPGAVEN a = 5 6x = 80x = 5 6x = 5 40x + 6x = x = -(x y (x y)) = -(x y + (-x + y)) = -y = (-x + y) (x y) = (-x + y) + (-x + y) = -4x + y = -x (y + (-x + y)) = -x (-x + y) = -x + (x y) = -y = -(x (y + (-x + y))) = -(x (-x + y)) = -(x + (x y)) = -(4x y) = -4x + y = 4x 0x + 5 = -4x 0x 5 = (x 0x + 5) = x 0x +50 = (x 0) = 4x 40x + 00 = (xy x + y ) = xy 6x + y 6 = x + + y = x + y + = x + y + = x y + 5 = + (-x+) + (-y+) = -x y + 6 = (x+4)(x+6) = (x 5)(x+5) = (x )(x+) = (x 5y)(x+5y) = (x )(x+) = (x+)(y+) = (x 6)(x 4) = (x+)(y ) a gewicht appel = a gewicht kiwi = 40 a gewicht peer = 400 a vergelijking: 40 a a = 00 oplossing: 740 a = 00 -a = -440 a = 0 c De appel weegt 0 gram, de kiwi 0 gram en de peer 80 gram. a m 4 (x + 5) x c (x + 5) x = x + 0x + 5 x = 00 0x + 5 = 00 0x = 75 x = 7,5 d 7, 5 ij 7, 5 meter 4 a 4, 8 4, 5 4, 4 4 Het is het kwadraat van het grootste getal. c n 4 d 0 4 = x 7 = - 5x = 5 x = controle: -x + = - en x =. x 8,5 = 0,5; en 0,5 ligt midden tussen - en. 6 a oplossing: x + (-+x) + 8 = 9 + x x + 7 = 9 + x - = x controle: - ( -) + 8 = - +8 = ( + -) = = oplossing: x 9 = x x -9 = -x -6 = -x x = controle: ( + )( ) = 6 0 = 0 ( + )( ) = 4 0 = 0 c oplossing: x + (- x ) = - + x - x = - + x - x = - x = x = controle: (+4) = = - 6 -( ) = a BF = BD = 55 x CF = CD = 0 x BC = 45 en BC = BD + CD = 55 x + 0 x Dus 45 = 85 x Dus x = 40, x = 0 8 a BAC = BAM + CAM = C + B = + 8 = 50 AMB = 80 8 = 04 AMC = 80 = 56 BMC = 60 AMB AMC = = 00 BAC = ( + c) BMA = (80 ) CMA = (80 c) BMC = 60 ((80 ) + (80 c)) = 60 (60 c) = 60 + ( c) = ( + c) c BMC is keer zo groot als BAC 5 a (x ) (-x + ) = x 4 x 8,5 = 0,5((-x + ) + (x )) x 8,5 = 0,5(x ) x 8,5 = 0,5x 6x 7 = x de Wageningse Methode Antwoorden H6 HAAKJES 6

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 16 HAAKJES VWO 16.0 INTRO 16.2 TREK AF VAN 8 a 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 1111d 1 2-2 2-1 2= -0,75-3,75 = 3 2 b De uitkomsten zijn allemaal 2. c n 2 +

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21.

15 a De rechthoeken zijn 1 bij 6 lucifers, of 2 bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: Hoofdstuk 21 OPPERVLAKTE HAVO 21. Hoofdstuk 1 OPPERVLAKTE HAVO 1.1 INTRO 15 a De rechthoeken zijn 1 bij 6 lucifers, of bij 5 lucifers, of 3 bij 4 lucifers. Zie figuur: 1 Oppervlakte snelweg = 0 km 18 m = 0.000 m 18 m = 360.000 m. Zijde

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje.

In de 4som-puzzel kun je de gegeven sommen variëren. Nog zo eentje. 4som kaart a In een 4som-puzzel moeten in vier hokjes getallen worden geschreven. Van de (horizontale) rijen en van de (verticale) kolommen is de som gegeven en ook van de diagonalen. Welke getallen moeten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31,

7 2, 3, 5, 7, 11, 13, 17, 19, 29, 31, Hoofdstuk.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7 of 5

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1

de Wageningse Methode Antwoorden H25 RUIMTELIJKE FIGUREN IN HET PLAT VWO 1 H5 Ruimtelijke figuren in het plat VWO 5.0 INTRO a een vierkant ; een lijnstuk ; een vierkant Bijvooreeld zo: Het laagste punt is het midden van het grondvlak. Snij van een kurk aan weerszijden een stuk

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

5 ab. 6 a. 22,9 25,95 cm

5 ab. 6 a. 22,9 25,95 cm Hoofdstuk 5 GELIJKVORMIGHEID VWO 5 Vergroten en verkleinen a d 5 a 9 driehoekjes, zie plaatje: a 0,5 :,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m d 6,9 0,7 m 9 e a Die van ij Die van 0 ij 0, die van

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO

Hoofdstuk 13 SYMMETRIE VWO. b A, H, I, M, O, T, U, V, W, X, Y c B, C, D, E, H, I, K, O, X 13.0 INTRO Hoofdstuk 13 SYMMETRIE VWO 13.0 INTRO 1 a Rechtsoven staat het woord in spiegelschrift Linksonder staat het woord ondersteoven Rechtsonder staat het woord achterstevoren en ondersteoven. Alleen de H, I,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 58 Voorkennis V-1a /A 5 74, /B 1 5 18 en /D 1 5 88 /A 1 /B 1 1 /D 1 5 74 1 18 1 88 5 180 c /B 2 5 104, /C 5 55 en /D 2 5 21 d /B 5 /B 1 1 /B 2 5 18 1 104 5 122 en /D 5 /D 1 1 /D 2 5 88 1 21 5 109, dus

Nadere informatie

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos 9e editie Moderne wiskunde Uitwerkingen Op stap naar 4 havo Dik Bos Inhoud Hoofdstuk Getallen 000 - Rekenen met reuken 000 - Deimale getallen, proenten en fator 000-3 Kwadraten 000-4 Wortels 000-5 Mahten

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

Symmetrie en oppervlakte

Symmetrie en oppervlakte Symmetrie en oppervlakte 1 a loo 4 /d 6 1 212 1 313 414 c loo 1: 180 loo 2: 180 loo 3: 90 loo 4: 90 d alle loo s zijn puntsymmetrisch 7 a 2 a lijnsymmetrisch draaisymmetrisch puntsymmetrisch A B nee C

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vwo VWO Reht, sherp of stomp? a AB 7 AC BC 8 6 6 Nee, de optelling van de kwadraten klopt niet, want 6 6 en geen 6. Nee, nabc is geen rehthoekige driehoek, want de optelling van de kwadraten klopt

Nadere informatie

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4

Wiskunde klas 3. Vaardigheden. Inhoudsopgave. 1. Breuken 2. 2. Gelijksoortige termen samennemen 3. 3. Rekenen met machten 3. 4. Rekenen met wortels 4 Vaardigheden Wiskunde klas Inhoudsopgave. Breuken. Gelijksoortige termen samennemen. Rekenen met machten. Rekenen met wortels. Algebraïsche producten 6. Ontbinden in factoren 6 7. Eerstegraads vergelijkingen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.

Nadere informatie

Hoofdstuk 7 Goniometrie

Hoofdstuk 7 Goniometrie V-1a 4 Voorkennis 5 C A 5 m B C = 10 5 = 9 ABC is geen rehthoekige driehoek. V-2a 76 14 K m L d M = 10 14 76 = 90 L 0 De rehthoeksn zijn de n LM en KM. De langste is KL. d LM = 0 KM = 16 KL = 900 256 +

Nadere informatie

Paragraaf 4.1 : Gelijkvormigheid

Paragraaf 4.1 : Gelijkvormigheid Hoofdstuk 4 Meetkunde (V4 Wis B) Pagina 1 van 8 Paragraaf 4.1 : Gelijkvormigheid Les 1 : Gelijkvormigheid Definities sin( A) = Overstaande Schuine cos( A) = Aanliggende Schuine = O S = A S tan( A) = Overstaande

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a Voorkennis C A m B C = 10 = 9 ABC is geen rehthoekige driehoek. V-a K m L d M = 10 = 90 L 0 M De rehthoekszijden zijn de zijden LM en KM. De langste zijde is zijde KL. d zijde kwadraat LM = 0 KL =

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

H28 VIERKANTSVERGELIJKINGEN

H28 VIERKANTSVERGELIJKINGEN H8 VIERKANTSVERGELIJKINGEN vwo 8.0 INTRO - - 8. TERUGBLIKKEN 3 a x = 3½ b x + 7 = x + 7 = x + 6 = x Dus x = 3 c x = of x = - d x + 6 = of x + 6 = - x= - of x = -0 e Er is geen olossing, want het kwadraat

Nadere informatie

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3

x = 12 of x = -12 x = 5 of x = -5 x = 5 of x = -7 x = 7 of x = x = 2 15 a x(x + 10) = 600 b x = 20 meter 16 x(x + 5) = 24, dus x = 3 Hoofdstuk VWO.0 INTRO De som is, of 0, of. Dat zijn de enige met vier mogelijkheden, zie eerste twee kolommen. Som Mogelijkheden Product Manieren om het product te schrijven + 8 + 7 + + 5 8 8 0 8 of 7

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999

ANTWOORDEN blz. 1. d. 345 + 668 = 1013; 61 007 + 50 215 = 111 222; 102 240 30 628 = 71 612; 1 000 000 1 = 999 999 ANTWOORDEN blz. 3 a. Zeer onwaarschijnlijk Zeer onwaarschijnlijk a. Dan heb je ergens een schuld uitstaan 86 Dan hadden beide een kopie van de kerfstok; om fraude te voorkomen a. MMXII, MCCCXXVII, DLXXXVI,

Nadere informatie

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1

de Wageningse Methode Antwoorden H12 GETALLEN EN GRAFIEKEN 1 Hoofdstuk GETALLEN EN GRAFIEKEN.0 INTRO a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz.,5 m/u 0,5 m/u d 8 uur en 40 minuten tot 0 gram:

Nadere informatie

H23 VERBANDEN havo de Wageningse Methode 1

H23 VERBANDEN havo de Wageningse Methode 1 H23 VERBANDEN havo 23.0 INTRO a - de oven- en ondergrens van de aeroe zone. 2 Op plaats 503 23. VERBANDEN IN DE PRAKTIJK 3 a km t 0 6 2 5 8 36 a 0 2 5 6 2 d k = 30 t + 0 e k = 30 t + 20 f Zie assenstelsel

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm

Nadere informatie

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven

2003 De Wageningse Methode. Foto s De Wageningse Methode. Druk/Verkoop Tamminga bv, Postbus 176, 6920 AD Duiven INHOUDSOPGAVE Routes in Vakhorst 1 Oppervlakte 6 Formules 9 Roosterkwartier 11 Test 15 Op de grens van Roosterkwartier en Vakhorst 16 Met negatieve getallen 18 Formules uit plaatjes 0 Zonder plaatjes Terugblik

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a Als x 5 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 1 3 5,6 5 67, m. b De lengte is 1 meter, de totale breedte is 5 1 x meter, dus voor de oppervlakte geldt A 5 1(5 1 x).

Nadere informatie

4 a x x + 36 = 16 x x + 20 = 0 b x x + 20 = (x + 2)(x + 10) c x = -2 of x = -10

4 a x x + 36 = 16 x x + 20 = 0 b x x + 20 = (x + 2)(x + 10) c x = -2 of x = -10 H8 VIERKANTSVERGELIJKINGEN VWO 8.0 INTRO - - 8. TERUGBLIKKEN a x = b x + 7 = x + 7 = x + 6 = x x = c x = of x = - d x + 6 = of x + 6 = - x = - of x = -0 e Er is geen olossing, want het kwadraat van een

Nadere informatie

8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b

8 A vijfzijdig prisma ; B kubus ; C vierzijdige piramide. 10 b de laatste. 11 a Bijvoorbeeld: c = 6 cm a,b. 13 b 5.1 NZIN N UISLN 2 8 vijfzijdig prisma ; B kuus ; vierzijdige piramide 9 3 a voor oven zij 10 de laatste 1:200 c 11 a Bijvooreeld: voor oven c 1 2 3 = 6 cm 3 12 a, d nne heeft gelijk. In het zij-en oevnaanzicht

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht?

9.0 INTRO. Onder nul. In de nacht van 29 op 30 december was de temperatuur nog vier graden lager. a Hoe koud was het die nacht? 57 9.0 INTRO Onder nul 1 Temperaturen worden in ons land gemeten in graden Celsius ( C). Bij 0 C bevriest water. In de winter is het vaak kouder dan 0 C. Zo was de middagtemperatuur op 9 december 006 in

Nadere informatie

WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen

WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen 1 We proberen alle mogelijkheden van klein naar groot: p = 1 is uitgesloten: dan zou elke dag hetzelfde resultaat geven. p = 2 is uitgesloten: dan zouden dag 1 en

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a d e 128 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rehthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 5 28 roostervierkantjes.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Als x = 0,6 is de totale breedte 5,6 meter. De totale oppervlakte is 3 5,6 = 67, m. b De lengte is meter, de totale breedte is 5 + x meter, dus voor de oppervlakte geldt A = (5 + x). Dus

Nadere informatie

8 a. x K (in euro s) x K (in euro s)

8 a. x K (in euro s) x K (in euro s) Hoofstuk 6 RECHTE LIJNEN 6.0 INTRO b, =, km c k = l a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn 8 naar rechts gaat ga je omhoog, us als je naar rechts

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a 7 + e 7 + 0 00 0 ( ) 0 f 8 ( + ) 0 0 0 8 0 80 c 7 + 9 7 g 9 0 7 40 0 40 47 d + h + 9 8 0 8 7 9 0 0 0 0 B-a 0,4 8 7, e 0,,, 0,7 8, 8,87 f 0,00 0 0,7 c 0,77 9,4 g 0,004 88,8 d

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 97-9: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (Annual High School Mathematics Examination - USA en

Nadere informatie

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1

7 a. 8 a. de Wageningse Methode Antwoorden H24 GONIOMETRIE HAVO 1 H GONIOMETRIE HAVO.0 INTRO a : 00 (het touw is in de tekening 6 cm) a 6 km : 00.000 = 6 cm b 6 a Schaal :. b 9. TEKENEN OP SCHAAL a 7 a (moeilijk nauwkeurig te meten) b : 000 c Ik meet cm dus in werkelijkheid

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Hoofdstuk 8 - Ruimtefiguren

Hoofdstuk 8 - Ruimtefiguren Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden B-1a Blok - Vaardigheden Blok - Vaardigheden Extra oefening - Basis De getallen 16 en 16 6 ijn asolute aantallen. De percentages ijn relatieve aantallen. c aantal mensen 16 6 000 16 60 9 686 percentage

Nadere informatie

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p.

7t + 10 = 15t + 9 10 = 8t + 9 1 = 8t 1 = t 8. b + 6 = 8b + 1 6 = 7b + 1 5 = 7b 5. Controle: b + 6 = 5 5. 2p + 9 = 5p 9 = 3p 3 = p. Hoofdstuk VERGELIJKINGEN havo. INTRO pond druiven Een appel kost, en een kiwi,. Ton is jaar, Janneke is jaar en Gerd is jaar.. WAT IS HET GETAL X? 6 - of - géén oplossingen -9 -. DE WEEGSCHAALMETHODE 8

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 =

Hoeveel kinderen zitten er in elke groep van de Kameleonschool? Kleur het goede aantal hokjes. b 28 = les 23 en 24 blok 4 41 Teken de afstanden. 1 cm is in het echt 10 km. Van Amsterdam naar Alkmaar: 40 km. Controleer met je liniaal. aa Van Amsterdam naar Den Helder: 80 km. 8 cm b Van Almelo naar Utrecht:

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is. 1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,

Nadere informatie

Goochelen met oppervlaktes van driehoeken Niet rekenen maar tekenen onder leiding van Ludolph van Ceulen

Goochelen met oppervlaktes van driehoeken Niet rekenen maar tekenen onder leiding van Ludolph van Ceulen Goochelen met oppervlaktes van driehoeken Niet rekenen maar tekenen onder leiding van Ludolph van Ceulen 1540 1610 Margot Rijnierse Inleiding Basiskennis: oppervlakte driehoek is 1 2 basis hoogte. Ludolph

Nadere informatie

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5

Opgave 1: a. als je vanuit punt A 1 naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te 5 0 2,5 Hoofdstuk 6: De afgeleide functie 6. Hellinggrafieken Opgave : als je vanuit punt A naar rechts gaat, moet je 6 omhoog om weer op de raaklijn te komen, dus rc 6 b. c. d. x 0 4 helling 6,5 0, 5, 5 0,5 Opgave

Nadere informatie

Hoofdstuk 12 GETALLEN EN GRAFIEKEN. d e = 1,5p ; p = 3 2 e e euro's kronen f k = 9e ; e =

Hoofdstuk 12 GETALLEN EN GRAFIEKEN. d e = 1,5p ; p = 3 2 e e euro's kronen f k = 9e ; e = Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1.0 INTRO 1 a De slak klimt een uur met onstante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u 0,5 m/u d 8 uur en 40 minuten

Nadere informatie

Hoofdstuk 6 - Oppervlakte en inhoud

Hoofdstuk 6 - Oppervlakte en inhoud Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk - Oppervlakte en inhoud ladzijde 0 V-a Er passen vierkanten in de puzzel dus één vierkant neemt -deel in eslag. De oppervlakte van de puzzel is = 44

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer.

5. C De routes langs A en C zijn even lang, dus is de route langs C ook 215 meter langer. ANTWOORDEN KANGOEROE 2001 BRUGKLAS en KLAS 2 1. E 2. E 18 doosjes voor de rode, 13 voor de blauwe: totaal 31 doosjes 3. C De ringen A, B en D zitten allemaal alleen door ring C. 4. B De twee getallen moeten

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1

de Wageningse Methode Antwoorden H26 RECHTE LIJNEN HAVO 1 H6 RECHTE LIJNEN HAVO 6.0 INTRO a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn naar rechts gaat ga je omhoog, us als je naar rechts zou gaan, zou je omhoog

Nadere informatie

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden

Laat men ook transversalen toe buiten de driehoek, dan behoren bij één waarde van v 1 telkens twee transversalen l 1 en l 2. Men kan ze onderscheiden Lesbrief 6 Meetkunde 1 Hoektransversalen in een driehoek ABC is een driehoek. Een lijn l door een hoekpunt A van de driehoek heet een hoektransversaal van A. We zullen onderzoeken onder welke voorwaarden

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

ANTWOORDEN PLAN B KORTE ANTWOORDEN EN UITWERKING

ANTWOORDEN PLAN B KORTE ANTWOORDEN EN UITWERKING ANTWOORDEN PLAN B KORTE ANTWOORDEN EN UITWERKING Korte antwoorden Eerste jaar 1) x = ) x = 3) 4) 83 = 83 7 17 119 5 6 5) 3 8 6) + 7) 8) 3 10 6 9) 3 7 14 10) 13 11) Bij de vermenigvuldiging van machten

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie