MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN

Maat: px
Weergave met pagina beginnen:

Download "MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN"

Transcriptie

1 III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende krchten en het (nlytisch) ontbinden vn een krcht in niet-snijdende componenten, evenls bij het uitwendig evenwicht vn krchten, en voor het beplen vn rectiekrchten en rectiemomenten Moment vn een krcht omheen een punt Het moment vn een krcht omheen een punt C is het vectorieel product vn de fstnd vn het punt tot de krcht, en de krcht. is dus een vectoriële grootheid. Dus : () = (3.1) C D 90 E A B Het ngrijpingspunt A vn speelt voor M C () geen rol, vermits een glijdende vector is en dus mg verpltst lngsheen hr werklijn. Immers, voor elk punt op de werklijn vn de krcht (bijvoorbeeld het eindpunt B vn ) geldt : CA = CB + BA zodt CA CB BA en vermits BA op dezelfde werklijn ligt ls is BA = 0, dus : CA CB. Men kn dus prctisch gezien steeds ls de loodrechte fstnd vn punt C tot de werklijn vn de krcht beschouwen.

2 III - 2 De momentvector () heeft volgende kenmerken : - grootte : met de hoek tussen beide vectoren en : () =.. sin. (3.2) Dit kn geschreven worden ls : () = (. sin ), wrbij (. sin ) de loodrechte fstnd CE is vn de werklijn vn krcht tot punt C. Dus zowel voor de momentvector ls voor de grootte vn het moment geldt : het moment vn een krcht omheen een punt C is het product vn de loodrechte fstnd vn het punt C tot de werklijn vn de krcht, met de krcht. Een mt voor de grootte vn het moment vn een krcht ten opzichte vn een punt C is dn ook de oppervlkte vn prllellogrm ABCD. De loodrechte fstnd vn het punt C tot de werklijn vn de krcht noemt men de krchtrm, of kortweg de rm, zodt voor de grootte vn het moment geldt : moment = krcht x rm (3.3) De eenheid wrin de grootte vn een moment wordt uitgedrukt is Nm, of knm, of Nmm... - richting : de momentvector stt loodrecht op het vlk gevormd door de beide vectoren en. Of de pijl vn de momentvector nr boven of nr onder wijst wordt veell ngeduid door de rechterhndregel, wrbij de duim de pijl ngeeft, en de gekromde vingers de rottie vn de krcht omheen het punt ngeven. - zin : deze wordt conventioneel vstgelegd, wrbij elke conventie gelijkwrdig is; eenml een beplde conventie ngenomen, dient men die bij het oplossen vn een vrgstuk vn begin tot einde n te houden; we zullen in deze cursus een moment (en een koppel, zie rt. 3.4) positief rekenen, ls het een linksdriende rottiebeweging veroorzkt (gezien vnuit de pijlpunt). Uit de bepling vn de momentvector volgt dt het moment vn een krcht om een punt gelijk is n nul wnneer de krcht door het punt gt. Wordt de momentvector in bovennzicht getoond, dn is de projectie vn de momentvector een punt en wordt de momentvector ngeduid door een gebogen pijl wrvn de pijlpunt de zin ngeeft volgens dewelke het moment werkt, of door een cirkeltje met een punt. C of nog : C

3 III Moment vn de resultnte vn snijdende krchten - momentenstelling vn Vrignon : moment vn de resultnte vn snijdende krchten omheen een punt Is R de resultnte vn een ntl snijdende krchten 1, 2, 3,..., dn is : R = = 3 i C 1 R 3 2 Het moment vn deze resultnte R omheen het punt C is : (R) = R = ( ) = Het vectorieel product punt C, wruit volgt : (R) = M C ( 1 ) + M C ( 2 ) + M C ( 3 ) +... Dus luidt de momentenstelling vn Vrignon : = (3.11) i is het moment vn de beschouwde krcht i omheen het ( i ) (3.12) Het moment vn de resultnte vn een ntl snijdende krchten omheen een punt is gelijk n de vectoriële som vn de momenten vn deze krchten omheen dtzelfde punt. Voor de projectie-componenten X, Y en Z vn een krcht bekomen we, met = X + Y + Z dus ook : () = M C (X) + M C (Y) + M C (Z) (3.13) zodt geldt : Het moment vn een krcht omheen een punt is gelijk n de vectoriële som vn de momenten vn de projectie-componenten vn de krcht omheen dtzelfde punt.

4 III - 4 Pssen we dit toe op de projectie-componenten R X, R Y, R Z vn de resultnte R vn een ntl snijdende krchten i. R Y R A R X R Z R XZ Met : en : R = RX + RY + RZ i = X i + Yi + Z i en : R X = X i R Y = Y i R Z = Z i is (zie 3.13) : (R) = M C (R X ) + M C (R Y ) + M C (R Z ) en (zie 3.12) : (R X ) = (X i ) (R Y ) = (Y i ) (R Z ) = (Z i ) (3.14) dus : (R) = (X i ) + (Y i ) + (Z i ) (3.15) Vermits de projectie-componenten R X en X i, R Y en Y i, R Z en Z i, op dezelfde ssen gelegen zijn (op resp. x-, y- of z-s), hebben de bijbehorende momentvectoren ook dezelfde werklijn, zodt ook voor de grootte geldt : (R X ) = (X i ) (R Y ) = (Y i ) 3.4. Koppel vn krchten Bepling (R Z ) = (Z i ) (3.16) Onder een koppel vn krchten verstn we een stelsel vn 2 evenwijdige krchten, met dezelfde grootte mr tegengestelde zin. Hoewel de beide krchten gelijk vn grootte en tegengesteld vn zin zijn is er geen evenwicht, mr een rottie. Een lichm wrop (resulterend) een koppel werkt gt dus roteren.

5 III - 5 Het vlk wrin de 2 krchten gelegen zijn wordt het koppelvlk genoemd. Het resulterend moment vn de 2 krchten omheen een willekeurig punt noemt men het moment vn het koppel, of de koppels. Dit moment vn een koppel stelt men meestl voor door de letter M (soms ook door de letter K), en bij vectoriële voorstelling wordt die letter voorzien vn een pijltje. Vectoriële bendering : A M M 1C b c M 2C C B d M M M b c C () MC( cof b ) c b ( ) b ( b) De vector M is het resulterend moment vn de 2 krchten, en heeft dus de eigenschppen vn een moment vn een krcht omheen een punt. Uit dit vectorieel product blijkt : - het moment vn het koppel is onfhnkelijk vn de ligging vn punt C, en is dus gelijk voor elk punt C. - het moment vn het koppel stt loodrecht op het koppelvlk. - het moment vn het koppel heeft een constnte grootte die gegeven wordt door het product d., wrbij d de loodrechte fstnd is tussen de beide krchten vn het koppel. Voor de zin vn het moment vn het koppel geldt dezelfde conventie ls voor het moment vn een krcht. Uit het voorgnde kunnen volgende eigenschppen fgeleid worden : - Een koppel mg in zijn vlk willekeurig verpltst worden zonder dt het moment vn het koppel wijzigt : grootte, richting en zin blijven ongewijzigd.

6 III Een koppel mg verpltst worden nr en in een vlk evenwijdig n het koppelvlk, zonder dt het moment vn het koppel wijzigt. - Een gegeven koppels (moment vn een koppel) M is gelijkwrdig met een koppel (, - ) gelegen in een vlk loodrecht op de koppels, met dezelfde zin ls M en wrvn de grootte d. gelijk is n de grootte M vn de koppels. Een koppel mg in zijn vlk dus vervngen worden door een nder koppel met ndere wrden voor d en, zolng het product d. mr gelijk blijft. Opmerking : In vele gevllen is het niet nodig het moment vn een koppel voor te stellen ls een vector, en hebben we voldoende n de grootte en drizin vn dit moment vn het koppel, en kunnen we eenvoudig stellen : M = d., wrbij d de loodrechte fstnd is tussen de beide krchten vn het koppel.

7 III Voorbeelden Voorbeeld 1 : betreffende momenten Bepl het moment vn de in punt A ngrijpende krcht = 600 N omheen punt O. 2 m A 40 4 m = 600 N O Er zijn meerdere oplossingswijzen : 1) De krchtrm vn is d, de loodrechte fstnd vn O tot de krcht : 2 m A m d = 600 N 40 O d = 4 cos sin 40 = 4,35 m dus : M O = x 4,35 = Nm

8 III - 8 2) Vervng door hr componenten 1 (horizontl) en 2 (verticl) in A : 1 = 600 cos 40 = 459,6 N 2 = 600 sin 40 = 385,7 N dus, met de momentenstelling vn Vrignon : M O = - 459,6 x 4-385,7 x 2 = Nm 2 m A m 2 O 3) De krcht mg verschoven worden over hr werklijn. Door verschuiving vn tot in punt B wordt het moment vn component 2 geëlimineerd. 2 m 2 B 1 40 A d 1 4 m O De krchtrm d 1 vn 1 wordt : d 1 = tg 40 = 5,68 m dus : M O = - 459,6 x 5,68 = Nm

9 III - 9 4) Anloog wordt door verschuiving vn tot in punt C het moment vn component 1 geëlimineerd. De krchtrm d 2 vn 2 wordt : d 2 = 2 + 4/tg 40 = 6,77 m dus : M O = - 385,7 x 6,77 = Nm 2 m A 4 m C 1 O 40 2 d 2 5) Uitgnde vn M O ls vectoriële grootheid : M O = M O =.sin. 2 m A 40 4 m = 600 N O

10 III - 10 = - ( + 40 ) tg = 4 2 = 2 = 63,43 zodt = - 103, en = = 4,47 m Dus M O = 4,47 x sin (-103,43 ) x 600 = Nm

11 III Voorbeeld 2 : betreffende koppels Het voorgestelde element is ondern onderworpen n een koppel vn krchten vn 100 N. Bepl de hoek wronder de 2 krchten en -, beiden 400 N groot, bovenn op het element dienen in te werken om een gelijkwrdig vervngkoppel te vormen. Afmetingen in mm. 400 N 40 mm 400 N 400 N 400 N 100 mm N 100 mm N De grootte vn het koppel (, - ) dient gelijk te zijn n die vn het gegeven koppel, dus : 400 x 40 cos = 100 x 100 = Nmm = 10 Nm zodt : cos = = = 0,625 wruit volgt : = 51,

12 III Opgven 1. Een krcht = 40 kn werkt op een tndwiel, zie figuur. Bepl de grootte vn het uitgeoefend moment omheen punt O. 2. Een chuffeur oefent een krcht vn 20 N uit op een spk in het vlk vn het stuurwiel zols getoond. Bepl het moment vn deze krcht omheen het middelpunt vn het stuurwiel. 3. Bereken het moment dt door de krcht vn 250 N, werkend op het hndvt vn de Engelse sleutel zols getoond, uitgeoefend wordt omheen de lngss vn de bout.

13 III Bij het oprichten vn een vlggenmst vnuit de getoonde positie dient de krcht in de kbel een moment vn 72 knm uit te oefenen omheen voetpunt O. De vlggenmst is 40 m lng, de kbel is bevestigd in een punt op 10 m vn de top. Bepl krcht. O m 5. Op een msttop werken 2 krchten, de ene met grootte 4 kn, de ndere. Bepl de grootte vn zodnig dt omheen punt O geen resulterend moment werkt.

14 III Twee personen oefenen tegelijk een even grote krcht uit op een drideur op de wijze zols getoond. Als het resulterend moment vn deze 2 krchten omheen de deurspil (O) 15 Nm is, welk is dn de grootte vn de uitgeoefende krchten? 7 Elk vn de 2 schroeven vn een zeeschip ontwikkelt bij volle krcht een stuwkrcht vn 300 kn. Bij een drimneuver stuwt de ene schroef volle krcht vooruit, en de ndere volle krcht chteruit. Welke krcht dient elk vn de 2 sleepboten uit te oefenen op het schip om het dri-effect vn het scheepsschroeven te neutrliseren?

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Keuze van het lagertype

Keuze van het lagertype Keuze vn het lgertype Beschikbre ruimte... 35 Belstingen... 37 Grootte vn de belsting... 37 Richting vn de belsting... 37 Scheefstelling... 40 Precisie... 40 Toerentl... 42 Lgergeruis... 42 Stijfheid...

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

ELEKTRICITEIT GELIJKSTROOMMOTOREN Technisch Instituut Sint-Jozef Wijerstraat 28, B-3740 Bilzen Versie:19/10/2005

ELEKTRICITEIT GELIJKSTROOMMOTOREN Technisch Instituut Sint-Jozef Wijerstraat 28, B-3740 Bilzen Versie:19/10/2005 ELEKTRICITEIT GELIJKSTROOMMOTOREN Technisch Instituut Sint-Jozef Wijerstrt 28, B-3740 Bilzen Versie:19/10/2005 Cursus: I. Clesen, R. Slechten 1 Gelijkstroommotoren... 2 1.1 Bepling... 2 1.2 Toepssingsgebied...

Nadere informatie

Module 2 Uitwerkingen van de opdrachten

Module 2 Uitwerkingen van de opdrachten 1 Modue Uitwerkingen vn de opdrchten Opdrcht 1 nyse Sttisch bepde constructie. Uitwendig evenwicht te bepen met evenwichtsvoorwrden. Drn op de gevrgde ptsen een denkbeedige snede nbrengen en met de evenwichtsvoorwrden

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

Eindexamen wiskunde B vwo 2011 - I

Eindexamen wiskunde B vwo 2011 - I Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =

Nadere informatie

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck Antwoorden Doeboek 1 Kijk op kegelsneden Rob vn der Wll en Liesbeth de Clerk 1 De 3 4 ) 5 Een 6 Als 7 8 ) 9 De Nee, lle punten die 1 entimeter vn het midden liggen, liggen op de irkel. gevrgde figuur bestt

Nadere informatie

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel.

Tentamen. Elektriciteit en Magnetisme 1. Woensdag 11 juli 2012 09:00-12:00. Leg uw collegekaart aan de rechterkant van de tafel. Tentmen Elektriciteit en Mgnetisme 1 Woensdg 11 juli 1 9:-1: Leg uw collegekrt n de rechterknt vn de tfel. Schrijf o elk vel uw nm en studentnummer. Schrijf leesbr. Mk elke ogve o een rt vel. Dit tentmen

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5

INHOUDSTABEL. 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3. 2a. TEKENREGELS (fiche 2a)... 5 INHOUDSTABEL 1. BEWERKINGEN MET RATIONALE GETALLEN (fiche 1)... 3 2. TEKENREGELS (fiche 2)... 5 2b. TEGENGESTELDE GETAL - TEGENGESTELDE SOM (verschil) - TEGENSTELDE PRODUCT (fiche 2b)... 6 2c. OMGEKEERDE

Nadere informatie

Opbouw van het boek: overzicht

Opbouw van het boek: overzicht Opbouw vn het boek: overzicht Opbouw vn het boek: overzicht Deel I: intuïtief Deel II: rigoureus 8: Limieten en continuïteit omschrijving en definities limieten berekenen smptoten continuïteit onderzoeken

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Upgrade KIT I Bedieningshandleiding

Upgrade KIT I Bedieningshandleiding Upgrde KIT I Bedieningshndleiding INHOUDSOPGAVE VOORDAT U BEGINT... 2 NIEUWE FUNCTIES... 2 BORDUREN MET HET RANDBORDUURRAAM (30 cm 10 cm (c. 11-3/4 inch 4 inch))... 3 Info over het rndborduurrm... 3 Voorbeeldprojecten

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan.

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan. 2 Verschuiven Dit is een ewerking vn Meetkunde met coördinten Blok Punten met gewicht vn Ad Goddijn ten ehoeve vn het nieuwe progrmm (2014) wiskunde B vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

3 Onderfunderingen en funderingen... 5 4 Verhardingen... 6 5 Wanneer proeven uit te voeren?... 6 5.1 Plaatproeven...6 5.2 Proctorproeven...

3 Onderfunderingen en funderingen... 5 4 Verhardingen... 6 5 Wanneer proeven uit te voeren?... 6 5.1 Plaatproeven...6 5.2 Proctorproeven... Inhoudsopgve 1 Inleiding... 1 2 Anvullingen... 2 2.1 Anvullingen met geleverd nvulmteril...2 2.2 Anvullingen met tussentijds gestockeerde grond...4 2.3 Grondverbetering...4 3 Onder funderingen... 5 4 Verhrdingen...

Nadere informatie

1 e Bachelor Informatica dinsdag 17-08-2010, 8:30 prof. dr. Peter Dawyndt academiejaar 2009-2010

1 e Bachelor Informatica dinsdag 17-08-2010, 8:30 prof. dr. Peter Dawyndt academiejaar 2009-2010 Exmen: Computergebruik 1 e Bchelor Informtic dinsdg 17-08-010, 8:30 prof. dr. Peter Dwyndt cdemiejr 009-010 groep 1 tweede zittijd Opgve 1 Gegeven is een tekstbestnd tour010.txt wrin de einduitslg vn de

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

2 De kracht van vectoren

2 De kracht van vectoren De krcht vn vectoren Dit is een ewerking vn Meetkunde met coördinten lok Punten met gewicht vn d Goddijn ten ehoeve vn het nieuwe progrmm (015) wiskunde vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in

Nadere informatie

De eenvoudig statisch bepaalde ligger

De eenvoudig statisch bepaalde ligger 1 e eenvoudig sttisch eplde ligger Inleiding : e drgende constructie vn een geouw of een rug is opgeouwd uit een ntl liggers. Voor een rug is dit : 1. de lngsligger die ondersteuning geeft n het rugdek

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correctievoorschrift VWO 04 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vksecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

Anti-Spyware Enterprise Module software

Anti-Spyware Enterprise Module software Anti-Spywre Enterprise Module softwre versie 8.0 Hndleiding Wt is de Anti-Spywre Enterprise Module? De McAfee Anti-Spywre Enterprise Module is een invoegtoepssing voor VirusScn Enterprise 8.0i, wrmee de

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur

Faculteit Biomedische Technologie Tentamen OPTICA (8N040) 15 augustus 2013, 9:00-12:00 uur Fculteit Biomedische Technologie Tentmen OPTICA (8N040) 15 ugustus 013, 9:00-1:00 uur Opmerkingen: 1) Lijsten met de punten toegekend door de corrector worden op OASE gepubliceerd. De ntwoorden vn de opgven

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen. Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen?

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Schöck Isokorb type W

Schöck Isokorb type W Schöck Isokorb type Schöck Isokorb type Inhoud Pgin Toepssingsvoorbeelden 126 Productomschrijving/Cpciteiten 127 Rekenvoorbeeld 128 Inbouwhndleiding 129-130 Checklist 131 rndwerendheid 30-31 ouwkundige

Nadere informatie

Rabatdelen. www.rockpanel.be

Rabatdelen. www.rockpanel.be Rbtdelen www.rockpnel.be ROCKPANEL Lines ROCKPANEL Lines zijn rbtdelen met veer en groef die geschikt zijn voor horizontle toepssing in geventileerde constructies. De innovtieve producten zijn een meer

Nadere informatie

Meet de lengte en de breedte van de rechthoek.

Meet de lengte en de breedte van de rechthoek. M15 Rechthoek en lk 692 E Je kunt hieronder eenvoudig de oppervlkte vn een rechthoek vinden door de ruitjes te tellen. Elk ruitje is 1 cm². Hoe groot is de oppervlkte vn deze rechthoek?... 693 B Bereken

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

Permanente kennis 3de trimester 4de jaar Grootheden en eenheden BASISGROOTHEDEN

Permanente kennis 3de trimester 4de jaar Grootheden en eenheden BASISGROOTHEDEN Permnente kennis 3de trimester 4de jr Grooteden en eeneden BASISGROOTHEDEN Bsisgrooteid Symool Eeneid lengte l meter m mss m kilogrm kg tijd t seonde s elektrise stroom I mpère A AFGELEIDE GROOTHEDEN EN

Nadere informatie

Spiegelen, verschuiven en draaien in het vlak

Spiegelen, verschuiven en draaien in het vlak 2 Spiegelen, vershuiven en drien in het vlk it kun je l 1 de iddelloodlijn vn een lijnstuk herkennen en tekenen 2 een hoek eten en tekenen 3 de issetrie vn een hoek herkennen en tekenen 4 de oördint vn

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

In samenwerking met. Selexyz.nl

In samenwerking met. Selexyz.nl In smenwerking met Seleyz.nl Frns vn Liempt Ntuurkundeboek B Studentensupport Studentensupport.nl 007 Frns vn Liempt & Studentensupport Downlod grtis op ISBN 978-87-768-5- Studentensupport Studentensupport.nl

Nadere informatie

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk

Vlakke meetkunde. Module 6. 6.1 Geijkte rechte. 6.1.1 Afstand tussen twee punten. 6.1.2 Midden van een lijnstuk Module 6 Vlakke meetkunde 6. Geijkte rechte Beschouw een rechte L en kies op deze rechte een punt o als oorsprong en een punt e als eenheidspunt. Indien men aan o en e respectievelijk de getallen 0 en

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Rabatdelen. www.rockpanel.nl

Rabatdelen. www.rockpanel.nl Rbtdelen www.rockpnel.nl ROCKPANEL Lines ROCKPANEL Lines zijn rbtdelen met veer en groef die geschikt zijn voor horizontle toepssing in geventileerde constructies. De innovtieve producten zijn een meer

Nadere informatie

5. Krachtenkoppels Moment van krachten

5. Krachtenkoppels Moment van krachten Fysica hoofdstuk 1 : Mechanica 1 e jaar 2 e graad (2uur) 5. Krachtenkoppels Moment van krachten 5.1 Definitie krachtenkoppel: Onder een koppel van krachten verstaat men twee even grote, evenwijdige en

Nadere informatie

V = gap E zdz ( 4.1B.1 ) f (z, ξ)dξ = g(z).

V = gap E zdz ( 4.1B.1 ) f (z, ξ)dξ = g(z). 4.1 Wire dipole Advnced theory In dit hoofdstuk introduceren we de lezer in de moment-methode erekening vn prmeters vn een wiredipole. We presenteren deze informtie in het Nederlnds in lg B zodt de lezer

Nadere informatie

Differentiatie van functies

Differentiatie van functies Deel II Clculus Wiskunde voor kunstmtige intelligentie, 004 Les 6 Differentitie vn functies Wrscijnlijk eeft iedereen wel een idee ervn wt een functie is, mr voor de duidelijkeid erlen we voor de meest

Nadere informatie

Wiskundige Analyse 1

Wiskundige Analyse 1 Wiskundige Anlyse 1 Belngrijkste stellingen 1 Getllen Driehoeksongelijkheid : b ± b + b Supremumprincipe : Elke nietlege verzmeling reële getllen die nr boven begrensd is, heeft een supremum Infimumprincipe

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Abnormale verdachte (niet accidentele, intentionele) letsels en afwijkingen

Abnormale verdachte (niet accidentele, intentionele) letsels en afwijkingen hoofdstuk 10 Anormle verdchte (niet ccidentele, intentionele) letsels en fwijkingen 10.1 Inleiding Eenderde vn de letsels evindt zich op een voor een letsel ongeruikelijke plek, zols de zijknt vn het gelt,

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Goniometrie, vlakke meetkunde en rekenen met vectoren in de fysica (versie 0 juli 008) Rekenen met vectoren is een basisvaardigheid voor vakken natuurkunde.

Nadere informatie

AFDELING DER ELEKTROTECHNIEK. Groep Opwekking en Distributie ENIGE ASPEKTEN OMTRENT DE KOPPELING VAN EEN INDUSTRIE-CENTRALE MET EEN LANDELIJK NET.

AFDELING DER ELEKTROTECHNIEK. Groep Opwekking en Distributie ENIGE ASPEKTEN OMTRENT DE KOPPELING VAN EEN INDUSTRIE-CENTRALE MET EEN LANDELIJK NET. AFDELING DER ELEKTROTECHNIEK Groep Opwekking en Distributie ENIGE ASPEKTEN OMTRENT DE KOPPELING VAN EEN INDUSTRIE-CENTRALE MET EEN LANDELIJK NET. J. de Rooij. EO-70-A8. Afstudeerverslg verricht o.l.v.:

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

a Het gewichtje gehangen. Alternatief; Fr.fr= F*. r* -> Mt'g'rt=MR g rr-+ M".fr= M*.r* -+ M^= M" r"f r*= o,o58 x o,tz f a,oz9 geen moment

a Het gewichtje gehangen. Alternatief; Fr.fr= F*. r* -> Mt'g'rt=MR g rr-+ M.fr= M*.r* -+ M^= M rf r*= o,o58 x o,tz f a,oz9 geen moment reffi.& tnleiding De spierkrcht veroorzkt geen driing omdt de krcht door het dripunt gt. Door de spierkrcht op een grote fstnd vn een dripunt uit te oefenen, kun je met een veel grotere krcht een voorwerp

Nadere informatie

Inproduct, projectie, terugblik

Inproduct, projectie, terugblik Met de vernieuwde wiskundecurricul vn HAVO en VWO verndert in 2015 ook het meetkundeprogrmm voor VWO-wiskunde B: nlytische meetkunde met coördinten krijgt een prominentere plts. Dit is nleiding om in de

Nadere informatie

3 Exponentiële functies en logaritmische functies

3 Exponentiële functies en logaritmische functies Eponentiële functies en logritmische functies Bij wiskunde B heb je l eerder te mken gehd met eponentiële en logritmische functies. In dit hoofdstuk gn we er wt dieper op in en lten we een ntl toepssingen

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

wto ^9-çe" "ì",,:+ 312 n, i. tdnrp. Twitter: @wmoraad

wto ^9-çe ì,,:+ 312 n, i. tdnrp. Twitter: @wmoraad I' wt raàd EñilIlElEl!illll Pstdres: Fiifhuzen 23,928L LH, Hrkem Telefn 0512-361676 E-mil dres : wmrd.chtkrspelen@xs4l l. nl Twitter: @wmrd 61.r ' -.. lnge licl;:::,-r i'..i ^9-çe" "ì",,:+ N.O I 312 n,

Nadere informatie

Tentamen CT3109 ConstructieMechanica 4 17 jan 2007 ANTWOORDEN

Tentamen CT3109 ConstructieMechanica 4 17 jan 2007 ANTWOORDEN Tentmen CT09 Constructieechnic 4 7 jn 007 OPGAVE ANTWOORDEN ) Hoofdsnningstensor is : 00 0 = 0 0 b) De cirkel vn ohr kn getekend worden o bsis vn de gegeven hoofdsnningen en hoofdrichtingen. De lts vn

Nadere informatie

2.1 Het differentiequotiënt

2.1 Het differentiequotiënt hoodsk : Diereniëren. He dierenieqoiën Me een ncie kn je de onwikkeling n een grooheid beschrijen. Neem bijoorbeeld een schoonspringer die n de ienmeerplnk spring. Als je de lchwrijing erwrloos, kn je

Nadere informatie

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11

Handig rekenen met eigenschappen G15 + + + + + ( 14 + 24) + (3 19) 10 16 = 6 (6 + 14) + (5 + 55) 20 + 60 = 80 (27 + 35) + ( 12 58 3) 62 73 = 11 84 V** Vul binnen de hkjes de juiste tekens in zodt de gelijkheden kloppen. De letters stellen gehele getllen voor. + + + + + + + + + b + + d + e f = (... b...... d... e... f ) b b + + d + e f = ( b) +

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Publicatiereeks Gevaarlijke Stoffen 1. Deel 2B: Effecten van explosie op constructies

Publicatiereeks Gevaarlijke Stoffen 1. Deel 2B: Effecten van explosie op constructies Pulictiereeks Gevrlijke Stoffen Deel B: Effecten vn eplosie op constructies decemer 003 pgin vn 3 PGS, Deel B: Effecten vn eplosie op constructies Inhoudsopgve pgin Smenvtting 4 Summry 4 Inleiding 5 Identifictieschem

Nadere informatie

ENERGIEPRINCIPES. Opgave 1 : Op extensie belaste staaf. Opgave 2 : Niet-prismatische doorsnede

ENERGIEPRINCIPES. Opgave 1 : Op extensie belaste staaf. Opgave 2 : Niet-prismatische doorsnede ENERGIEPRINCIPES Opgve : Op etensie beste stf -s Er is evenwicht s e virtuee rbeisvergeijking voor ek kinemtisch mogeijk verptsingsve get. Pst men het principe vn minime potentiëe EA, energie toe op een

Nadere informatie

Automatische ontluchters

Automatische ontluchters Automtische ontluchters OUR EUROPEAN PRESENCE 2 AUTOMATISCHE ONTLUCHTERS s r e t r u q d e H s e l d s n g n i r u t c f u n M g n i r u t c f u n M s e l S INHOUD MINIVENT MV 4 3 MINIVENT MV-R 4 DUOVENT

Nadere informatie

Tussen haakjes staan de namen van de programma's, in de groep GRVECTOR.

Tussen haakjes staan de namen van de programma's, in de groep GRVECTOR. MEETKUNDE Tussen hkjes stn de nmen vn de progrmm's, in de groep GRVECTOR. De oppervlkte vn een veelhoek (OPPVEELH)... Pnorm vn de driehoeksmeting (RDRIEHK)...3 3 Vectoren in R (HOEK)...6 4 Vectoren in

Nadere informatie

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30

RATIONALE GETALLEN BREUKSTREEP. Een breuk kunnen we beschouwen als een quotiënt. 3,00 4 4 0 0,75 30 Breuken en hun decimle schrijfwijze Benmingen in een breuk Teller Noemer 3 TELLER (dit geeft het ntl gekleurde delen n) BREUKSTREEP NOEMER (dit geeft het totl ntl delen n) Breuk omzetten in deciml getl

Nadere informatie

Bijlage agendapunt 7: Inhoudelijke planning overlegtafels 2015

Bijlage agendapunt 7: Inhoudelijke planning overlegtafels 2015 Bijlge gendpunt 7: Inhoudelijke plnning overlegtfels 2015 In de Ontwikkelgend (ijlge 5 ij de Deelovereenkomst mtwerkvoorziening egeleiding 18+) zijn 7 them s en 31 suthem s opgenomen die in 2015 tijdens

Nadere informatie

Platte en bolle meetkunde

Platte en bolle meetkunde Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie