1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "1 Vlaamse Wiskunde Olympiade : Eerste Ronde."

Transcriptie

1 Vlmse Wiskunde Olympide : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord krijgt hij of zij 4 punten bij, een blnco ntwoord bezorgt hem of hr 0 punten en een foutief ntwoord wordt ls ngerekend De voorziene ntwoordduur bedrgt 3 uur De problemen 6 3, met > 0, is gelijk n (A) (B) 9 (C) (D) 9 8 Hoeveel vn de volgende vier uitsprken zijn wr? = 0 0 = = 0 0 : 0 = 0 0 (A) 0 (B) (C) (D) is gelijk n + (A) (B) (C) (D) 4 Voor hoeveel gehele getllen n is (n + ) een reëel getl? (A) 0 (B) (C) (D) 3 oneindig veel 5 Welk getl is het kleinst? (A) 0,4 (B) 0,5 (C) 0,5 (D) 5 0,5 c Vlmse Wiskunde Olympide vzw, overnme enkel toegelten mits bronvermelding

2 6 Een stomphoekig trpezium (zie figuur) heeft grote bsis gelijk n 9 en kleine bsis gelijk n 5 De hoogte is gelijk n Bovendien gt de loodlijn uit een hoekpunt vn de kleine bsis door het tegenovergestelde hoekpunt vn de grote bsis Verbindt men de middens vn de kleine bsis en de grote bsis, dn ontstt een lijnstuk [b] wrvn de lengte voldoet n b 9 5 (A) 3,5 (B) 3,5 < < 4 (C) = 4 (D) 4 < < 4,5 4,5 7 Hoeveel ntuurlijke getllen n met < n < 000 zijn een mcht met gehele eponent m (m > ) vn een oneven getl dt niet priem is? (A) (B) 3 (C) 4 (D) Gegeven is een prllellogrm bcd (zie figuur) De zijde [dc] wordt ingekort met 5%, de zijde [b] wordt verlengd met 50% Er ontstt een trpezium b c d Hoeveel procent is de oppervlkte vn dit trpezium groter dn de oppervlkte vn het prllellogrm bcd? d b c b c (A) 0% (B),5% (C) 0% (D) 5% 40% eindigt op (A) 0 (B) (C) 4 (D) Het produkt ( )( ) is een veelterm in De coëfficiënt vn 50 is (A) (B) 5 (C) 6 (D) 50 5

3 Hoe ziet de figuur eruit gevormd door de eindpunten vn lle vectoren ov + ow ls v het linkse cijfer doorloopt en w het rechtse cijfer doorloopt in de figuur hiernst? o (A) (B) (C) (D) Een vliegtuig op weg vn Bomby nr New York mkt een tussenlnding in Londen Tijdens deze stop moeten de volgende tken uitgevoerd worden () bgge uitlden (duur : 0 minuten), () pssgiers lten uitstppen (duur : 0 minuten), (3) bgge inlden (duur : 0 minuten, uit te voeren n ()), (4) vliegtuig schoonmken (duur : 5 minuten, uit te voeren n ()), (5) bijtnken (duur : 0 minuten), (6) technische controle (duur : 30 minuten), (7) mltijden n boord brengen (duur : 0 minuten, uit te voeren n ()), (8) pssgiers lten instppen (duur : 5 minuten, uit te voeren n (4) en (5)) Hoe lng moet het vliegtuig minstens n de grond blijven tijdens deze stop? (A) 30 min (B) 50 min (C) u (D) u 0 min u 30 min 3 Het ppierformt A4 is zodnig dt de verhouding v vn de lnge zijde tot de korte zijde dezelfde blijft ls men het ppier in twee snijdt volgens de lijn die de middens vn de lnge zijden verbindt Wrn voldoet v? (A) v = 4 (B) v = 4 (C) v 3 = 4 (D) v 4 = 4 v 5 = 4 3

4 4 Op een goniometrische cirkel is het beeldpunt vn 0 b het beeldpunt vn 0 c het beeldpunt vn 80 d het beeldpunt vn 330 De oppervlkte vn koordenvierhoek bcd is dn gelijk n c b y d (A) 3 + (B) 3 (C) 3 + (D) Tijdens de zomervkntie gingen vijf leerlingen (An, Brt, Crl, Doris, en Erik) regelmtig zwemmen Het toevl wilde dt telkens één vn de vijf ontbrk An ging het minst vk (5 keer), Erik het meest (8 keer) Wt kun je zeggen over het ntl zwembeurten vn Brt, Crl en Doris? (A) elk zes (B) elk zeven (C) twee zes en de ndere zeven (D) één zes en de nderen zeven geen idee wnt de informtie is onvoldoende 6 De rechte met vergelijking y = en deze met vergelijking y = + b snijden elkr in een punt wrvn de twee coördinten strikt negtief zijn Hieruit volgt : (A) > 0 en b > 0 (B) > 0 en b < 0 (C) < 0 en b > 0 (D) < 0 en b < 0 b = 0 7 Zij, b, c N 0 Welke uitsprk is fout? (A) deelt b = deelt bc (B) deelt 0 (C) deelt b en c = deelt b + 5c (D) deelt b en c = deelt bc deelt bc = deelt b of deelt c 8 Twee congruente kegels met een hoogte die het dubbel is vn de strl R vn hun grondvlk hebben een gemeenschppelijke s en zijn zodnig gepltst dt elk vn hen zijn top heeft in het grondvlk vn de ndere Het deel vn de ruimte ingenomen door deze twee kegels heeft volume (A) 7 πr3 (B) 3 πr3 (C) 7 6 πr3 (D) 5 4 πr3 4 3 πr3 9 We beschikken over een rode, een bluwe en een groene stift en willen de zijden vn een gelijkzijdige driehoek kleuren Op hoeveel verschillende mnieren kn dit? (Twee kleuringen vn de driehoek worden ls gelijk beschouwd ls de ene in de ndere overgt door de driehoek in het vlk te verpltsen) (A) 6 (B) 0 (C) (D) 7 4

5 0 Als je in ( b ) c voor, b en c telkens drie verschillende getllen neemt uit de verzmeling {0,,, 3}, hoeveel verschillende wrden verkrijg je dn? (A) (B) 3 (C) 4 (D) 5 6 In driehoek bc stn de zwrtelijnen uit b en c loodrecht op elkr Hieruit volgt dt B + C gelijk is n B C c A b (A) A (B) A (C) 3A (D) 4A 5A Een plindroom is een ntuurlijk getl dt onvernderd blijft ls het vn links nr rechts wordt gelezen of vn rechts nr links; voorbeelden zijn, 0, 00 en 4 Het ntl plindromen kleiner dn is (A) 900 (B) 99 (C) 993 (D) De grfiek hiernst geeft een volledige periode vn een sinusfunctie Het voorschrift vn de functie is y 0 (A) y = sin (B) y = sin π π (C) y = sin (D) y = sin π y = sin π 4 Het domein D vn de functie f : is R \ { } De beeldverzmeling f(d) is (A) R\], 0[ (B) R\]0, [ (C) R\], 0[ (D) R\]0, [ R 5 In een rechthoekige driehoek bc is b = 4 en â = α Verder is cd b, de c en ef b De lengte vn [ef] is gelijk n α f d e b c (A) 4 sin 4 α (B) 4 sin 3 α cos α (C) 4 sin α cos α (D) 4 sin α cos 3 α 4 cos 4 α 5

6 6 Als de hoeken α, β en γ vn een driehoek opeenvolgende termen zijn vn een rekenkundige rij, dn is sin α + sin β + sin γ cos α + cos β + cos γ = (A) 3 3 (B) 3 (C) 3 3 (D) Een geslcht bestt uit een stmouderpr dt drie kinderen heeft wrvn er twee huwen en één niet Bij elk gehuwd pr doet zich dezelfde situtie voor (drie kinderen wrvn er twee huwen en één niet) Hoeveel personen komen er dn miml voor in de stmboom tot en met de tiende genertie volgend op de stmouders (lle echtgenoten worden meegerekend)? (A) 4095 (B) 40 (C) 404 (D) We stellen door het grootste geheel getl voor dt kleiner is dn of gelijk n Zij, y R Welke vn de volgende uitsprken is juist? (A) + y = + y (B) + y = + y + (C) + y > + y (D) + y + y + y + y + 9 De ruimtefiguur hiernst is een blk wrvn in een hoekpunt een pirmide is weggenomen Welke vn de volgende ontwikkelingen (op schl getekend) is deze vn de ruimtefiguur? (A) (B) (C) (D) 6

7 30 Voor hoeveel ntuurlijke getllen n, met 00 n 00, is de breuk n 3 n vereenvoudigbr? (A) 0 (B) 5 (C) 50 (D)

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008

UNIFORM HEREXAMEN MULO tevens TOELATINGSEXAMEN VWO/HAVO/NATIN 2008 MINISTERIE VN ONERWIJS EN VOLKSONTWIKKELING EXMENUREU UNIFORM HEREXMEN MULO tevens TOELTINGSEXMEN VWO/HVO/NTIN 008 VK : WISKUNE TUM : TIJ : ------------------------------------------------------------------------------------------------------------------------

Nadere informatie

Toetsopgaven vwo B deel 3 hoofdstuk 10

Toetsopgaven vwo B deel 3 hoofdstuk 10 Toetsopgven vwo deel 3 hoofdstuk 10 Opgve 1 In de figuur hiernst zie je 15 kubusjes met ribbe. e punten,, en zijn hoekpunten vn een kubusje, punt is het midden vn een ribbe en de punten en delen een ribbe

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde

1 Vlaamse Wiskunde Olympiade : Tweede ronde 1 Vlmse Wiskunde Olympide 000-001: Tweede ronde De eerste ronde estt uit 0 meerkeuzevrgen Het quoteringssysteem werkt ls volgt: per goed ntwoord krijgt de deelnemer 5 punten, een lnco ntwoord ezorgt hem

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 16 mei 13.30-16.30 uur Emen VW 0 tijdvk woensdg 6 mei 3.30-6.30 uur wiskunde B (pilot) Dit emen bestt uit 5 vrgen. Voor dit emen zijn miml 83 punten te behlen. Voor elk vrgnummer stt hoeveel punten met een goed ntwoord behld

Nadere informatie

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c.

2. Gegeven is de driehoek van figuur 10.10a. Gevraagd worden hoek β en de zijden a en c. Wiskunde voor bchelor en mster Deel Bsiskennis en bsisvrdigheden c 05, Syntx Medi, Utrecht www.syntxmedi.nl Uitwerkingen hoofdstuk 0 0... Voor scherpe hoek α geldt:. sin α = 0,8 α = sin 0,8 = 5, d. cos

Nadere informatie

Formularium Wiskunde 1 ste graad

Formularium Wiskunde 1 ste graad Kls: Nm: Formulrium Wiskunde 1 ste grd Vkwerkgroep Wiskunde T. I. SINT-LAURENS MARIA MIDDELARES Ptrongestrt 51 9060 Zelzte Tel. (09)45 7 1 Fx (09)45 40 65 Internet: http://tislmm.pndor.be E-mil: so.tislmm.zelzte@frcrit.org

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: de tweede ronde

Junior Wiskunde Olympiade 2012-2013: de tweede ronde Junior Wiskunde Olympide 0-03: de tweede ronde Volgende enderingen kunnen nuttig zijn ij het oplossen vn sommige vrgen.,44 3,73 5,36 π 3,46.ls + =en =3,dnis gelijkn () 5 () 6 () 3 () 9 (E) 3.Hetgetl (

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 989-990: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten, per

Nadere informatie

Eindexamen wiskunde B vwo 2011 - I

Eindexamen wiskunde B vwo 2011 - I Tussen twee grfieken De functie f is gegeven door f ( ) =. In figuur zijn op het intervl [0, ] de grfiek vn f en de lijn = getekend. De grfiek vn f en de lijn = snijden elkr in het punt T. p de lijn =

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Vlaamse Wiskunde Olympiade : de tweede ronde

Vlaamse Wiskunde Olympiade : de tweede ronde Vlmse Wiskunde Olympide 0-0: de tweede ronde.alsx 0enx= y 4 x,dnis x =y (B) x =y 4 x 4 =y x 5 =y (E) x 7 =y 4.Hetgetl ( ) isgelijkn (B) 0 (E).Wtisdeomtrekvndezeveelhoek,omgeschrevenneencirkelmetstrl? 6π

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei uur wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

13 Vlaamse Wiskunde Olympiade: tweede ronde

13 Vlaamse Wiskunde Olympiade: tweede ronde 3 Vlaamse Wiskunde Olympiade: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

Eindexamen vwo wiskunde B I

Eindexamen vwo wiskunde B I Formules Vlkke meetkunde Verwijzingen nr definities en stellingen die bij een bewijs mogen worden gebruikt zonder ndere toelichting. Hoeken, lijnen en fstnden: gestrekte hoek, rechte hoek, overstnde hoeken,

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 99 99 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symbool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Algerïshe ewerkingen ldzijde 9 V- d e 9 V- 9 V- + + + V- + + 9 d + + + + e + + + + f + g Hoofdstuk - Funties en lger + + + + + + + ldzijde 9 V- + ( + ) + ( )( ) of + of of of ( ) d p p ( p

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme

CIRKELS EN BOLLEN. Klas 7N Wiskunde 5 perioden K. Temme CIRKELS EN BOLLEN Kls 7N Wiskunde 5 perioden K. Temme INHOUDSOPGAVE. DE VERGELIJKING VAN EEN BOL.... DE SNIJCIRKEL VAN EEN BOL EN EEN VLAK... 5. DE CIRKEL DOOR PUNTEN... 7. DE BOL DOOR GEGEVEN PUNTEN...

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

3 Snijpunten. Verkennen. Uitleg

3 Snijpunten. Verkennen. Uitleg 3 Snijpunten Verkennen Meetkunde Snijpunten Inleiding Verkennen Bentwoord de vrgen bij Verkennen. Mk ook de constructie in GeoGebr. Gebruik eventueel het progrmm om de snijpunten voor je te berekenen ls

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

12 Vlaamse Wiskunde Olympiade : Eerste ronde.

12 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1999-000: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1995-1996 : Tweede Ronde. Vlaamse Wiskunde Olympiade 995-996 : Tweede Ronde De tweede ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel

De cirkel M22. het middelpunt een koorde de straal de diameter een middelpuntshoek een middellijn. 2 cm 4 cm. Cirkel en elementen van een cirkel M De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde de strl de dimeter een middelpuntshoek een middellijn O:... [XY]:... OS

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Resultatenoverzicht wiskunde B

Resultatenoverzicht wiskunde B Resulttenoverzicht wiskunde B In dit document zijn door dpt Wiskunde lle resultten vn het VWO-eindexmenprogrmm beknopt smengevt m.u.v. het domein Voortgezette Meetkunde. Kijk voor meer informtie op: www.dptwiskunde.nl.

Nadere informatie

Over de tritangent stralen van een driehoek

Over de tritangent stralen van een driehoek Over de tritngent strlen vn een driehoek Dick Klingens mrt 004 Inleiding. Het bijvoeglijk nmwoord 'tritngent' gebruiken we ls we spreken over de incirkel (ingeschreven cirkel) en de uitcirkels (ngeschreven

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

OP GETAL EN RUIMTE KUN JE REKENEN

OP GETAL EN RUIMTE KUN JE REKENEN OP GETAL EN RUIMTE KUN JE REKENEN Welke wiskunde moet ik kiezen? Dit jr moet je gn kiezen welke wiskunde je wilt gn volgen in de bovenbouw. Hieronder kun je lezen wt wiskunde A, en D inhouden. Wiskunde

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 00-0: eerste ronde. e uitdrukking a b 4 is gelijk aan () ab () ab () ab 6 () ab 8 (E) ab 6. e uitdrukking (a b) is gelijk aan () a b () (b a) () a + b ab () a + b + ab (E) (a

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 00-005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

MEETKUNDE 5 Cirkels en cilinders

MEETKUNDE 5 Cirkels en cilinders MEETKUNDE 5 Cirkels en ilinders M22 De irkel 254 M23 De ilinder 262 253 M22 De irkel Cirkel en elementen vn een irkel 781 E Geef de nm vn de ngeduide delen in de irkel. Y X O T S het middelpunt een koorde

Nadere informatie

Toepassingen op Integraalrekening

Toepassingen op Integraalrekening Toepssingen op Integrlrekening ) Oppervlktes vn vlkke figuren erekenen De meest voor de hnd liggende toepssing vn integrlrekening is uiterrd de reden wrom ze is ingevoerd, nmelijk het erekenen vn oppervlktes

Nadere informatie

a = 1 b = 0 k = 1 ax + b = lim f(x) lim

a = 1 b = 0 k = 1 ax + b = lim f(x) lim BURGERLIJK INGENIEUR ARCHTECT - JULI 2 BLZ /8. De functie fx) = e kx + x + met, en k R en k < heeft een schuine symptoot y = x voor x + en voldoet n de vergelijking Bepl, en k. D fx))) 2 + D fx)) 2) +

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 1,71 5,61 π,116 1 ls a a 17 a m = a 006, met a R + \{0, 1}, dan is m gelijk

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Tweede ronde De tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede ronde.

1 Vlaamse Wiskunde Olympiade : Tweede ronde. 1 Vlaamse Wiskunde Olympiade 1997-1998: Tweede ronde De tweede ronde bestaat eveneens uit 30 meerkeuzevragen Het quoteringssysteem is hetzelfde als dat voor de eerste ronde, dwz per goed antwoord krijgt

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1994-1995 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10

H. 10 Goniometrie Basisbegrippen. a c. Gemeenschappelijke Propedeuse Engineering WISKUNDE H.10 H. 10 Goniometrie 10.1 Bsisegrippen Regelmtig voeren we erekeningen uit, wrin één of meerdere hoeken voorkomen. Voor een sherpe hoek kunnen we 3 goniometrishe verhoudingen definiëren. Deze lten zih het

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv I- I- 38 lok 3 IT - eetkundige pltsen met Geoger ldzijde 8 H Het spoor vn lijkt een irkel te zijn. De irkel is de meetkundige plts vn een onstnte hoek. Het ewijs komt voor ij de stelling vn Thles. Gegeven:

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6

INHOUDSTABEL. 1. TRANSFORMATIES (fiche 1) SYMMETRIE (fiche 2) MERKWAARDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 INHOUDSTBEL 1. TRNSFORMTIES (fiche 1)...3 2. SYMMETRIE (fiche 2)...4 3. MERKWRDIGE LIJNEN IN EEN DRIEHOEK (fiche 3)...6 4. VLKKE FIGUREN: DRIEHOEKEN (fiche 4)...7 5. VLKKE FIGUREN: BIJZONDERE VIERHOEKEN

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B (pilot) Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

5.1 Rekenen met differentialen

5.1 Rekenen met differentialen Wiskunde voor kunstmtige intelligentie, 2003 Hoofdstuk II. Clculus Les 5 Substitutie We hebben gezien dt de productregel voor de fgeleide een mnier geeft, om voor zeker functies een primitieve te vinden,

Nadere informatie

Analyse. Lieve Houwaer Dany Vanbeveren

Analyse. Lieve Houwaer Dany Vanbeveren Anlyse Lieve Houwer Dny Vnbeveren . Relties, functies, fbeeldingen, bijecties Voor niet-ledige verzmelingen A en B noemen we elke deelverzmeling vn de productverzmeling A x B een reltie vn A nr B. We noemen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 009-010: tweede ronde 1 Wat is de straal van een cirkel met oppervlakte? () π π (C) π (D) π (E) π an de diagonaal [] van een vierkant met zijde 1, bouwt men links en rechts

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Vraag Antwoord Scores. (en dit is gelijk aan fa. is een primitieve functie van f a ) 1

Vraag Antwoord Scores. (en dit is gelijk aan fa. is een primitieve functie van f a ) 1 Beoordelingsmodel Vrg Antwoord Scores Onfhnkelijk vn mximumscore x x F'x ( ) = e + x e Dit geeft F ( ) ( ) e x ' x = x (en dit is gelijk n f ( x ), dus F is een primitieve functie vn f ) mximumscore 5

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde

1 Vlaamse Wiskunde Olympiade 2009-2010: tweede ronde Vlaamse Wiskunde Olympiade 009-00: tweede ronde Welke van de volgende vergelijkingen heeft als oplossing precies alle gehele veelvouden van π? () sinx = 0 (B) cos x = 0 (C) sinx = 0 (D) cosx = 0 (E) sinx

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

1 Junior Wiskunde Olympiade: eerste ronde

1 Junior Wiskunde Olympiade: eerste ronde Junior Wiskunde Olympiade: eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord bezorgt

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Hoofdstuk 1 Introductie Analytische Meetkunde

Hoofdstuk 1 Introductie Analytische Meetkunde Hoofdstuk 1 Introductie Anlytische Meetkunde 1.1 Wr ligt de scht? Op een zolder heb je een oude krt gevonden. Op een onbewoond Crïbisch eilnd is een scht begrven. De beschrijving is heel duidelijk: Loop

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 25 mei uur Wiskunde B Profi Eamen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Donderdag 25 mei 3.30 6.30 uur 20 00 Dit eamen bestaat uit 7 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot

WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK. A.F. Bloemsma M.A. Litjens C. Ultzen M.D. Poot WISKUNDE VOOR DE PROPEDEUSE ENIGINEERING MARITIEME TECHNIEK A.F. Bloemsm M.A. Litjens C. Ultzen M.D. Poot INHOUD: H. : Hkjes wegwerken, ontbinden in fctoren H. : Mchten 0 H. : Het rekenen met breuken (deel

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1993-1994 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

4.1 Rekenen met wortels [1]

4.1 Rekenen met wortels [1] 4.1 Rekenen met wortels [1] Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B 3) A 2 A Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.1 Rekenen met wortels [1] Voorbeeld 3:

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Prte kennis wiskunde (bij nvng vn het vierde middelbr) Sven Mettepenningen Dit document is bedoeld ls smenvtting vn wt ls prte kennis wordt ngenomen bij nvng vn het tweede jr vn de tweede grd ASO voor

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Tweede Ronde e tweede ronde bestaat eveneens uit 0 meerkeuzevragen Het quoteringssysteem werkt (opnieuw) als volgt : een deelnemer start met 0 punten Per goed antwoord

Nadere informatie