Hoofdstuk 4 - Machtsfuncties
|
|
|
- Karolien Leona van den Pol
- 10 jaren geleden
- Aantal bezoeken:
Transcriptie
1 Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0 of 0 0 of 0 of of De oördinaten van de snijpunten zijn: ( ) (0 0) en ( ). Uit de tekening kun je aflezen: of 0 Va De grafiek van k heeft twee asymptoten en is dalend. Domein: 0. Bereik: y 0. De grafiek heeft geen asymptoot en stijgt langzaam. d Domein:[ 0. Bereik:[ 0. ladzijde 9 Va of De oördinaten van de snijpunten zijn: ( ) en ( ). Uit een plot kun je aflezen: ] of 0 ] + 8 Va f () Hr () r r 7 Rq ( ) q q mits q 0 d Y () Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
2 Hoofdstuk Mahtsfunties 7 e At () t t t 8 t t t + f Kp ( ) p + p p + p p g Wt () t t h g Pg () g g g mits g Va m () + + ft () t + t t t + t wq ( ) qq + qq qq q + q q d Qy () y + y y y + y y+ y e Rt () t t+ t t + t t + t + t t t + t 7 9 f kp ( ) p pp 8p 0p 0p 8 g st () t mits t 0 8 t ladzijde 9 a y De grafieken van funties met even mahten zijn positief en heen als top het punt (0 0). Die met oneven mahten kunnen zowel negatief als positief zijn en gaan door het punt (0 0). Even mahten zijn altijd positief; oneven mahten niet. d Funties met even mahten heen als ereik:[ 0. Die met oneven mahten: R. a De grafieken van de funties met een even maht heen de yas als symmetrieas. De grafieken van de funties met een oneven maht heen symmetriepunt (0 0). Twee één en nul oplossingen. d De funties g en k: in alle gevallen één oplossing. De funtie h: twee één en nul oplossingen. ladzijde 9 a Bij de funties g en h. Ze gaan allen door ( ). De grafieken van f en k gaan ook door ( ). Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
3 l Hoofdstuk Mahtsfunties De grafieken met een symmetrieas heen met de lijn y 0 twee snijpunten en met de lijn y 8 geen. Dit zijn de grafieken van g en h. De andere twee grafieken heen met eide lijnen één snijpunt. a A t Beide grafieken heen als top (0 0). De grafiek van A is minder steil. In eide gevallen twee oplossingen. a Elk lokje heeft een inhoud van m³. De figuur estaat uit 8 lokjes dus de totale inhoud is m³. I 8 r r > 0 en niet te groot. d r e Met de rekenmahine vind je r 0 77 a Elk zijvlak van de kuus heeft een oppervlakte van m². Er worden vlakken eplakt. Totaal is daarvoor 80 m² papier nodig. O r Omdat de lengte van een rie positief is. 7a I A m³. I B m³. I B I 0 0 A d I A en I B Type B heeft de grootste inhoud. Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
4 Hoofdstuk Mahtsfunties e Los op: ( 0 ) 0 0 of of 0 De inhoud is gelijk ij een reedte van 0 m. f Beide dozen heen dan een inhoud die gelijk is aan 0. Geen zinvol antwoord. ladzijde 9 8a Voor 0 estaat de funtie niet. De as en de yas zijn asymptoten. 0 f() d e f () één 9a De grafieken heen daar een vertiale asymptoot. a en a en d De grafieken naderen de as. e a en a ladzijde 97 0a één één Met de rekenmahine vind je: 0 d 0 of a De gemiddelde snelheid ereken je door de afgelegde afstand te delen door de tijd die je er over doet. Dus v 00 00t t Voor t > 0 daalt de grafiek. Zijn gemiddelde snelheid is heel laag. De grafiek nadert ij grote waarden van t tot de tas. Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v 7
5 Hoofdstuk Mahtsfunties a De fator v wordt steeds kleiner als v toeneemt. v De term 9 v > 0 voor elke waarde van v. e d Los op: v Met de rekenmahine vind je: v 0 km/u a V π m³. Los op: 000 π 8 h h 9 m. h d h wordt dan heel groot. Dit klopt met de grafiek. e h wordt heel klein. f De straal heeft een positieve lengte. ladzijde 98 a f en g heen dezelfde grafiek. De grafiek is vertiaal in (0 0). a 0 of > ; ; a Als A groter wordt dan neemt S ook toe weliswaar op den duur steeds langzamer. S A Los op: 00 8 A Met de rekenmahine vind je: A vierkante mijl. ladzijde 99 7a : h; : f; : g; : k (0 0) en ( ) De grafieken van f en h zijn afnemend stijgend; de grafieken van g en k zijn toenemend stijgend. d a > 09 8a M 87 Zijn gewiht was ongeveer 8 kg. 09 M Zijn gewiht was ongeveer 8 ton. De eponent is kleiner dan dus de grafiek van M is afnemend stijgend. 8 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
6 Hoofdstuk Mahtsfunties 07 9a HG kg. Dit is gram hersengewiht. 07 Los op: LG Met de rekenmahine vind je: LG 79 Het gewiht is ongeveer 79 kg. De grafiek is afnemend stijgend dus het vershil is het grootst ij lagere gewihten. Bij de ree en de vos is het vershil dus groter dan ij de eer en de leeuw. 07 d Het hersengewiht wordt dan 00 keer zo groot. 0 0a LV De olifant wordt naar verwahting ongeveer jaar oud. LV LG Volgens de formule zou iemand met een gewiht van 80 kg ongeveer 8 jaar oud worden. De mens leeft gezonder. ladzijde 00 a h 0 00 meter; h 0 00 meter. Los op: 0000 t Met de rekenmahine vind je: t seonden. a of 0 0 De eponent van is even. 0 0 a 000 of 000 f p dus geen oplossing. p 0 g p ( ) h t ( ) d p i t 8 t ( ) p 0 09 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v 9
7 Hoofdstuk Mahtsfunties 09 0 e q j 0 T 0 09 T ( ) a Q Het vleugeloppervlak is ongeveer 8 m² G 0 Q 08 Q a 08 en 9 9 Een vliegtuig met vleugeloppervlak van 0 m² heeft in totaal kg gewiht. Het kan dan ongeveer kg vraht vervoeren. a Q ( P) ( ) P 00 P 09 Q ( 8 P) ( 8 8 ) P P Q ( 07 P) ( 07 ) P 07 7 d Q ( P) ( ) P P P 0 a H Het hart van een rustende olifant maakt ongeveer 0 slagen per minuut. 0 H haas 0 H vos 0 G H ( ) ( ) H H d 9 G Het rustende zoogdier weegt ongeveer 0 kg. e H ( 000 g) 000 g g 0 ladzijde 0 7a Paraool en hyperool Ja want h () Nee want k () + kun je niet korter shrijven. d Evenmin lukt dat met l (). q () is een mahtsfuntie. 8a Het domein is [ g () 0 dus g is een mahtsfuntie. h () 0 dus a 0 0 ladzijde a f () gp ( ) p p p p + Ht () t t t t t Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
8 Hoofdstuk Mahtsfunties + + d At () t t t t t e Ra () a a a a f Wq ( ) q q q q g Na () a a a a a a f () + + Nee 7 7 () h () () Wp ( ) p p p p+ p p p + p p 0 0 a TK euro. 0 Bij 00 stuks is TK Gemiddeld kost een toetsenord euro GTK TK 0 + q q 0 + q q q q 0 q p 0 + q a p p p Wp ( ) p + p+ + p p p p p 8 Nt t t t () t + t t +t t t t t 8 q 0q Pq ( ) + 8 q + q 0 q q q q 0 7 a TK( ) euro. 0 0 De gemiddelde kosten zijn 8 euro. GTK TK 90q 0 q 0 00q q q q q q q 90 0 q+ 0 00q q+ 0 00q 0 q 00q ( q80)( q 0) 0 q 0 of q 80 ladzijde m 08 m 08 ( ) q q ( ) 0 87 d 8 ( ) 08 0 a t ( ) a Van N tot N neemt T toe met 7 km/uur. Indien het verand lineair zou zijn dan zou de snelheid ij roeiers gelijk zijn aan km/uur. In de tael staat ehter 07. Het verand is dus niet lineair. Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v 7
9 Hoofdstuk Mahtsfunties TK v 0 0 v 0 0v v ( ) km/uur. 0 0 d 0 00 L v 0 v L 0 00 L v L ( 0000 ) L e TK kilonewton. Per roeier kilonewton. TK kilonewton. Per roeier 70 kilonewton. 8 Een roeier van de aht moet meer kraht leveren. ladzijde 0 0 a Z ml/kg. De totale hoeveelheid zuurstof om km af te leggen is dan: ml. Bij km is dat 7 0 ml. 0 Z ml/kg. Totaal voor km: 0 0 ml. Voor km: ml. ( ) ( ) L Z 0 Z Z 0 L kg. 0 d De geit verruikt 8 0 keer zoveel zuurstof als de haas per kg lihaamsgewiht om km af te leggen e TZ Z L 0 L L 0 L 07 f TZ muis ml per kilometer. Per 00 meter dus 000 ml. 7a V V V Het model voldoet goed. Het totale personenvervoer wordt 97 keer zo groot. V miljard km. d Groeifator per 0 jaar van 900 tot 90 is 8 Van 90 tot 90: 88 ` 9 8 Van 90 tot 90: 0 88 Van 90 tot 980: 80 Groeifator per jaar van 900 tot 980 is ( ) 08 e 0 00 B ( ) ( 08) 9 Met de rekenmahine vind je t 9 Dus in 99 was V. f t V 0 00 ( ( 08)) 0 00 ( 08) t 70 ( 08) a 70 en t 7 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
10 Hoofdstuk Mahtsfunties ladzijde 0 Ia Alle grafieken gaan door (0 0) en ( ). De grafieken van funties met even mahten zijn positief en heen als top het punt (0 0). Die met oneven mahten kunnen zowel negatief als positief zijn en gaan door het punt (0 0). Even mahten zijn altijd positief; oneven mahten niet. d Funties met even mahten heen als ereik:[ 0. Die met oneven mahten: R. e De grafieken van de funties met een even maht heen de yas als symmetrieas. f De grafieken van de funties met een oneven maht heen symmetriepunt (0 0). Ia De funties estaan niet voor 0. Alle grafieken heen de as en de yas als asymptoot en gaan door ( ). Voor de grafieken van de funties met n en n geldt: y > 0 en de yas is symmetrieas. Voor die met n en n geldt: y 0 en (00) is symmetriepunt. Ia De as en de yas zijn asymptoten. 0 f() f () e Voor 0 ij n en n Voor > 0 ij n en n f f () f () en f () ladzijde 07 8 Ia f () en f() Alle grafieken gaan door ( ). 7 De grafieken van f () en f() gaan ook door ( ). y 0 : even mahten: twee snijpunten oneven mahten: één snijpunt y 8 : even mahten: geen snijpunten oneven mahten: één snijpunt Ia Door het punt (0 0). a 0 0voor elke a. Beide vergelijkingen heen één oplossing. d De grafieken heen geen gemeenshappelijk punt. heeft geen oplossing want is altijd positief. Uit volgt >. Er zijn dan twee oplossingen. 0 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v 7
11 Hoofdstuk Mahtsfunties Ia ): twee ): twee ): één ): één ): geen ): geen I7a De vergelijking heeft één oplossing. y De vergelijking heeft één oplossing. ( ) 0 d 0 of I8a Voor 0 is er één oplossing. a 07 en n ladzijde 0 Ta De yas is symmetrieas van de grafieken van f en h. (0 0) symmetriepunt van de grafiek van g. De grafiek van g. De grafieken van f en h zijn symmetrish en liggen oven de as. Er zijn dan twee oplossingen. De grafiek van g is niet symmetrish. Er is dan één oplossing. Ta + of of 0 0 voor elke waarde van 7 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
12 Hoofdstuk Mahtsfunties Ta S soorten. S 0 00 soorten. 0 A 0 A 0 ( ) 8 vierkante mijl. 0 0 keer zo veel. d Bij een klein geied van vierkante mijl wordt de oppervlakte 0 keer zo groot dus het aantal soorten wordt keer groter. Bij een geied van 00 vierkante mijl is wordt het aantal soorten 07 keer zo groot. Bij een klein geied zal het aantal soorten het meest toenemen. Ta ( ) 9 f 0 p 8 97 of p 8 97 t 7 t 7 ( ) d T T ( ) e of 08 g p S p ( ) S h q 0 Geen oplossing q Geen oplossing ladzijde 8 Ta f () g () + + st () t + 0 t Kp ( ) p p p p Rt () t + t t + t 7t t t t t p p p Np ( ) + + p + p + p p + p p p p + 7 t t + p p Ta De gemiddelde kosten nemen dan af want 00 n wordt kleiner naarmate n groter wordt. Op den duur nadert 00 n tot 0 en GK tot n 00 n n 00 n 00 Hij moet dan minimaal 00 tekensets produeren. d TK n( + 00 n ) n + 00 e 00 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v 7
13 Hoofdstuk Mahtsfunties T7a De inhoud van de doos is h dus h als dan is h 8 88 K + h + h + h + h + h Als en h 88 dan is K 7 8 K + h en h 8. Dus K In ieder geval geldt dat > 0. Wil je een gewone doos dan kan niet heel groot of heel klein zijn. d K ; K 8 ; K 7 8 ; K 8 De toename is het grootst van reedte 7 naar reedte 8. e Plot de grafiek van k. Met de rekenmahine vind je en h 8 9 T8 f () ; g () ; h () 7 Moderne wiskunde 9e editie vwo A/C deel Noordhoff Uitgevers v
Hoofdstuk 4 - Machtsfuncties
vwo AC deel Uitwerkingen Moderne wiskunde Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0
Hoofdstuk 1 - Functies en de rekenmachine
Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort
Hoofdstuk 1 - Functies en de rekenmachine
Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort
Hoofdstuk 1 - Functies en de rekenmachine
Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort
Zo n grafiek noem je een dalparabool.
V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d
Noordhoff Uitgevers bv
Hoofdstuk - Meer variaelen ladzijde V-a Omdat het water met onstante snelheid uit de ak stroomt en de ak ilindervormig is, is de afname van de hoogte van de waterstand per tijdseenheid onstant. De hoogte
Hoofdstuk 3 - Differentiëren
Hoofdstuk - Differentiëren Moderne wiskunde 9e editie vwo B deel Voorkennis: Mahten en differentiëren ladzijde 7 6 V-a ( ) ( ) 8 f d e ( ) g 5 ( ) 6 6 ( 9 ) 9 ( ) ( ) 6 6 5 5 6 5 6 6 5 5 9 h ( ) 8 ( )
Hoofdstuk 4 - Machtsfuncties
Hoofdstuk - Machtsfuncties Voorkennis: Functies en symmetrie ladzijde 9 V-a Kies als vensterinstelling voor je GR ijvooreeld X en Y en voer in Y = X X + Je krijgt: + = 0, dan D = ( ) = en = = = + = of
Hoofdstuk 1 - Functies en de rekenmachine
Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (
Hoofdstuk 9 - Rekenen met functies
5 Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0 = 0 : 6 9 = 5 : 0 = 0 5 = 00 : 0 = 0 e 8 + ( ) = 7 + + = 8 + ( 6) =
Noordhoff Uitgevers bv
Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.
H23 VERBANDEN vwo de Wageningse Methode 1
H23 VERBANDEN vwo f 23.0 INTRO 1 a - De oven- en ondergrens van de aeroe zone. 2 2 iggen en 44 hanen of 7 iggen en 15 hanen 23.1 VERBANDEN IN DE PRAKTIJK 3 a 4 km t 0 6 12 15 18 36 a 0 2 4 5 6 12 6 a 25
Noordhoff Uitgevers bv
Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y
Noordhoff Uitgevers bv
0 Hoofdstuk - Werken met algera. Oplossen door ontinden ladzijde a ( )( ) 0 0 of 0 of of of of. 0 ( )( ) 0 0 of 0 of. ( )( ). a 0( )( ) 0 of,, of 0 stel a a a a 0( a )( a ) 0 a of a a of a De oplossingen
29 Parabolen en hyperbolen
39 0 1 9 Paraolen en hyperolen 6 5 5 6 3 3 1 5 h = 0,065 0 = 100 meter + (5 ) = 5 6,5 ; 5 ; 56,5 ; 100 meter ( 3 9 ) + (3 ) = 8 16,96.. afstand PE < afstand P tot de x-as Nee! y (alleen als y > 0) 0,065
Hoofdstuk 4 Machtsverbanden
Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3
de Wageningse Methode Antwoorden H23 VERBANDEN VWO 1
H23 VERBANDEN VWO 23.0 INTRO d t + 00 h = 9 e 00t + h = 900 f a - De oven- en ondergrens van de aeroe zone: ij 5 jaar tussen 43 en 75. 2 2 iggen en 44 hanen of 7 iggen en 5 hanen 23. VERBANDEN IN DE PRAKTIJK
Keuzemenu - Wiskunde en economie
1a a Keuzemenu - Wiskunde en eonomie ladzijde 6 TK( 00) GTK( 00) = = 300 = 71 euro per ezoeker 00 00 TK( 600) 800 = = 71, 33 euro per ezoeker 600 600 TK( 800) 9 00 GTK( 800) = = = 7 euro per ezoeker 800
Noordhoff Uitgevers bv
Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9
Noordhoff Uitgevers bv
90 6 Differentiëren bladzijde a f ( ) b p ( q) q + 0q dk p, dp a gt () tt ( t ) t 6t, g () t 6t t b k ( u )( u + ) u + u u u, d k u 6 a f( ), f ( ) 0 0 6 b g ( ) +, g ( ) h ( ) ( ), h ( ) a A t + t ( )
Noordhoff Uitgevers bv
V-a 8 V-a Hoodstuk - Transormaties Voorkennis: Graieken en untievoorshriten ladzijde loninhoud in liter,,,,,,,,,, Van t tot t, dus seonden. loninhoud in liter O tijd in seonden 7 Moderne wiskunde 9e editie
Hoofdstuk 6 - Periodieke functies
Hoofdstuk - Periodieke funties Voorkennis: Sinusfunties ladzijde V-a De omtrek van de eenheidsirkel is. Hierij hoort een hoek van zowel radialen als 0. Dus 80 komt overeen met radialen. graden 0 0 4 0
Hoofdstuk 5 - Tabellen, grafieken, formules
Hoofdstuk 5 - Taellen, grafieken, formules ladzijde 130 V-1a d De grafieken van de grond en de luht vertonen veel grotere temperatuurshommelingen dan de grafiek van het water. De grafiek van de grond omdat
Hoofdstuk 6 - Werken met algebra
Hoofdstuk - Werken met algera Oplossen door ontinden ladzijde a ( )( ) 0 0 of 0 of of of of 0 ( )( ) 0 0 of 0 of ( )( ) a 0( )( ) 0 of,, of 0 stel a a a a 0( a )( a ) 0 a of a a of a De oplossingen zijn
Hoofdstuk 2 - De kettingregel
Hoofdstuk - De kettingregel ladzijde V-a P ( ) 0 ( 0+ ) 0 0 + 0 0 + 0 60 W + + + a + t voor a 0 a a T u ( r ) r r 8 d R log + V-a u t wordt t en s t u t wordt t en s t 7 V-a A: t ( ) A: t ( ) ( ) 8 8 V-a
9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos
9e editie Moderne wiskunde Uitwerkingen Op stap naar 4 havo Dik Bos Inhoud Hoofdstuk Getallen 000 - Rekenen met reuken 000 - Deimale getallen, proenten en fator 000-3 Kwadraten 000-4 Wortels 000-5 Mahten
Noordhoff Uitgevers bv
V-a c d V-a Hoofdstuk - Machtsfuncties Voorkennis: Grafieken en rekenregels ladzijde Een kwadraat heeft altijd een positiee waarde als uitkomst. Het kwadraat an nul is nul. f( x) 9 x 9 x 9 of x 9 x of
Hoofdstuk 7 Exponentiële formules
Opstap Mahten en proenten O-a 3 5 3 3 3 3 3 43 3 78 ( 5) 4 5 5 5 5 65 d 6 ( ) 5 6 9 O- Jak heeft het goede antwoord, want de 6 staat niet tussen haakjes. O-3a 7 4 4 g 7 3 5 7 ( ) 5 48 83 h 3 4 3 9 8 4
Hoofdstuk 8 - De afgeleide
Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a
Blok 1 - Vaardigheden
Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de
Extra oefening en Oefentoets Helpdesk
Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein
Hoofdstuk 12B - Breuken en functies
Hoofstuk B - Breuken en funties Voorkennis V-a g V-a h 0 0 i 9 j 0 0 0 9 0 9 e k 0 f l 9 9 Elk stukje wort : 0 0, meter. a 0 0 0 00 L 0, 0, 0,0 0,0 0,0 De lengte van elk stukje wort an twee keer zo klein.
Noordhoff Uitgevers bv
4 Voorkennis V-a k = 8t+ 4 Het edrijf rekent 4 euro voorrijkosten. De shoorsteenveger werkt 4 minuten en dat zijn kwartieren. Als de shoorsteenveger 4 minuten ezig is geweest, kost het 8 + 4= 99 euro.
Noordhoff Uitgevers bv
Blok - Vaardigheden Extra oefening - Basis B-a De formules a = en s= t 8 zijn lineaire formules. Bij tael A hoort een lineair verand omdat de toename in de onderste rij steeds + is. Bij tael B hoort geen
Blok 3 - Vaardigheden
B-a Extra oefening - Basis Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 70 of y = 70 of x = 70. x y Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 8
Hoofdstuk 2 - Formules en de rekenmachine
Havo A deel Uitwerkingen Moderne wiskunde Hoofdstuk - Formules en de rekenmahine ladzijde 8 V-a Een snijpunt met de x-as heeft y-oördinaat gelijk nul. = x + = x x = klopt! Begingetal (startgetal) = en
Blok 1 - Vaardigheden
Blok 1 - Vaardigheden ladzijde 6 1a + 8 3 e + 6 i 6 10 3 3 3 1 3 3 10 f + 6 j 10 + 3 0 + 3 8 1 3 6 6 6 6 1 18 10 1 g ( 3) 3 6 k 9 6 d ( 3+ ) 10 + 6 3 h 3 8 l 1 3 1 3 a Antwoord: 6 invoer: goed Antwoord:
Hoofdstuk 11B - Rekenen met formules
Hoofdstuk B - Rekenen met formules Hoofdstuk B - Rekenen met formules Voorkennis V-a 6 5 9 = 5 + 5 + 5 = 6 5 = 9 5 + 5 + 5 = 55 800 : 5 + 5 7 = d + 78 9 = + 05 = 7 + 9 = V-a (8 ) : 0 = d 0 : 6 = 5 : 0
Noordhoff Uitgevers bv
8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,
de Wageningse Methode Antwoorden H23 VERBANDEN HAVO 1
H23 VERBANDEN HAVO 230 INTRO f a - De oven- en ondergrens van de aeroe zone 2 Op plaats 503 23 VERBANDEN IN DE PRAKTIJK 3 a km d k = 30 t + 0 e k = 30 t + 20 g Het uurtarief epaalt de helling van de grafiek
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-1a De oppervlakte van ABC is 12 5 : 2 = 0 m 2. zijde kwadraat AB = 12 144 AC = 5 BC = 25 169 d BC = 169 = 1 m De omtrek van ABC is 5 12 1 = 0 m. BD = 12 4 = 8 m De oppervlakte van BCD is 8
Hoofdstuk 1 - Rekenen
ladzijde 2 a 7 Marel vindt 32,7 326 werknemers en Cas vindt 329 werknemers. Het antwoord van Cas is het nauwkeurigst. deel van 987 =, dus er komen werknemers lopend of met de fiets. Met de auto komen 987
Noordhoff Uitgevers bv
0 Voorkennis: Differentiëren en rekenregels lazije 0 V-a h ( ) 0 f () t 6 t + t 0 t + t n () t t t 7 t 6t e k ( p) p p + 0 0p 7 p g ( ) + 08 V-a f( ) ( + ) 6 f ( ) 6 h ( ) ( + 9) 8 gt () tt ( + t ) t +
5. Lineaire verbanden.
Uitwerkingen opgaven hoofdstuk 5 versie 15 5. Lineaire veranden. Opgave 5.1 Recht evenredig lineair verand F (N) 1 9 8 Uitrekking van een veer a = F 9 k = 37,5 x 4 = 7 6 5 4 F 9 N N k = = = 37,5 x 4 cm
Noordhoff Uitgevers bv
Hoofstuk 6 - Nieuwe grafieken Hoofstuk 6 - Nieuwe grafieken Voorkennis V-a Van lijn k is het hellingsgetal en het startgetal en e formule is = +. Van lijn l is het hellingsgetal en het startgetal en e
Extra oefening bij hoofdstuk 1
Havo B deel Uitwerkingen Moderne wiskunde Extra oefening ij hoofdstuk a y y f(x) g(x) Plot van f Invoer: Y.X^ X Venster: Xmin en Xmax Ymin en Ymax x x y y f(x) g(x) x Plot van g Invoer: Y (X+6X+99) Venster:
Noordhoff Uitgevers bv
Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000
Noordhoff Uitgevers bv
V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één
Blok 3. 3-1 Afronden. 175 : 15 11 rest 10 Ze moet minimaal 12 maanden sparen. b 175 : 6 29 rest 1. Ze moet dan 30,- per maand gaan sparen.
3-1 Afronden 1a 3 (7,6 8,2) 6,6 9,2 3 15,8 6,6 9,2 47,4 6,6 9,2 63,2 63,2 : 8 7,9 Isa staat gemiddeld 7,9 voor wiskunde. Ze krijgt een 8 op haar rapport. 2a 6,139 wordt 6,14 d 8,4311 wordt 8,43 4,097 wordt
Blok 2 - Vaardigheden
Blok - Vaardigheden Extra oefening - Basis B-a Ja, Afwasplus heeft de laagste prijs, namelijk e,9. B-a De prijs per liter is ij Washing e,89 : 0,7 = e,, ij Afwasplus e,9 : 0, = e,8 en ij Greenlean e,9
Hoofdstuk 4 - Periodieke functies
Hoofdstuk - Periodieke functies ladzijde 98 V-a Na seconden. Het hart klopt c, millivolt = slagen per minuut. V-a Ja, met periode ; nee; misschien met periode. Evenwichtsstand y = ; -; y =. Amplitude is
Noordhoff Uitgevers bv
Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je
Blok 3 - Vaardigheden
Havo B deel Uitwerkingen Moderne wiskunde Blok - Vaardigheden ladzijde a AB + AB AB PQ + PQ PQ PQ is diagonaal van een vierkant met zijde en AB is diagonaal in een vierkant met zijde. Dus is PQ vier keer
vlieger rechthoek ruit parallellogram vierkant
4-1 Vlakke figuren 1a 6 5 4 3 2 A D C 1 B O 1 2 3 4 5 6 d Figuur ABCD is een vlieger. 2a B(5, 1) C(5, 6) D(2, 6) AD BC DC BC AD // BC AD AB 3a 4a d e A B C D E vlieger rehthoek ruit parallellogram vierkant
Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.
Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.
Hoofdstuk 8 - Ruimtefiguren
Voorkennis V-a De oppervlakte van ABC is 2 5 : 2 = 0 cm 2. c d AB = 2 AC = 5 BC = 44 25 + 69 BC = 69 = cm De omtrek van ABC is 5 + 2 + = 0 cm. BD = 2 4 = 8 cm De oppervlakte van BCD is 8 5 : 2 = 20 cm
H23 VERBANDEN havo de Wageningse Methode 1
H23 VERBANDEN havo 23.0 INTRO a - de oven- en ondergrens van de aeroe zone. 2 Op plaats 503 23. VERBANDEN IN DE PRAKTIJK 3 a km t 0 6 2 5 8 36 a 0 2 5 6 2 d k = 30 t + 0 e k = 30 t + 20 f Zie assenstelsel
Noordhoff Uitgevers bv
5 bladzijde 9 ab f g h i j functie nr 5 Domein [ 0, 0, Bereik [ 0, [ 0, 0, c D k B k, 0 0, d Spiegelen in de -as geeft het tegengestelde bereik, dus, 0]. e u ( ) en yu ( ) u f D q, 0 0, ; B q 0, a [, b
Noordhoff Uitgevers bv
Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(
wiskunde B pilot vwo 2016-I
Formules Goniometrie sin( t+ u) = sin( t)os( u) + os( t)sin( u) sin( t u) = sin( t)os( u) os( t)sin( u) os( t+ u) = os( t)os( u) sin( t)sin( u) os( t u) = os( t)os( u) + sin( t)sin( u) sin( t) = sin( t)os(
Noordhoff Uitgevers bv
4 Voorkennis V-1 a De oörinaten zijn A( 2, 1), B(2, 3) en C(5, 4 Qw ). V-2 a Per stap van 1 naar rehts gaat e lijn Qw omhoog. Vanuit C ga je 7 stappen naar rehts en us 7 Qw = 3 Qw omhoog. Omat 4 Qw + 3
Hoofdstuk 1 Grafieken en vergelijkingen
Hoofstuk 1 Grafieken en vergelijkingen Opstap Formule, grafiek en vergelijking O-1a Om uur staat het water 6 6 mm hoog in e regenmeter. aantal uren h... h 6 hoogte water aantal uren v :... v 6 hoogte water
Hoofdstuk 2 - Transformaties
Hoodstuk - Transormaties Moderne wiskunde 9e editie vwo B deel Voorkennis: Graieken en untievoorshriten ladzijde V-a, loninhoud in liter,,,,,,,,, tijd in seonden Van t tot t, dus seonden. loninhoud in
Noordhoff Uitgevers bv
Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 = e 5,00 e 3,70 e,58 = e,7 over. b e 5,00 3 (e,85 + e 3,9) = e 5,00 3 e 5, = e 5,00 e 0,8 = e,7 V-a 3 = 3 9 = 7 b 9 (5 ) = 9 (5 ) = 9 = c 0 3 = 000 3 =
Hoofdstuk 2 - Periodieke bewegingen
Hoofdstuk - Periodieke ewegingen Voorkennis: Sinusoïden ladzijde 6 ( ) en D (,) V-a A,, B,, C, Via Interset vind je de snijpunten van = sin x en = x, 6 x, 5 of x, 67 Bij een vershuiving van eenheden naar
Hoofdstuk 5 - Verbanden herkennen
V-a V-a Hoofstuk - Veranen herkennen Hoofstuk - Veranen herkennen Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in e tael met toeneemt neemt met toe. Het startgetal is en het
Hoofdstuk 9 - Ruimtemeetkunde
oderne wiskunde 9e editie vwo deel 2 Voorkennis: wee soorten tekeningen ladzijde 254 V-1a d wee lijnen zijn evenwijdig als ze elkaar nooit snijden, hoe ver je de lijnen ook doortrekt. In werkelijkheid
Vaardigheden. bladzijde 52. deel van 240 = 96 en 3 deel = 144. deel = ( 11 : 25 ) 2110 = 928, 40 euro en. deel = ( 14 : 25 ) 2110 = 1181,60 euro
Vaardigheden ladzijde 5 a 7 f 8 0 g 8 0,96 h 9 d 9 i 0 e 8 j a 7,5 e 8 5 6 f 6 g 5, 0, = 0, 3 3 9 d 9 h = = =, 5 3a 8, = 3, 88 euro a 6, 365 = 58 dagen 6 3, = 3568, gram Drie dagen is 7 uur, dus 0, 7 =
Blok 3 - Vaardigheden
Blok - Vaarigheen lazije 6 a Je moet e vergelijking ( )( ) oplossen. Je ziet nu meteen wat e oplossingen zijn. ( )( ) of of Je moet nu e vergelijking ( )( ) oplossen. e De methoe van onereel gelt alleen
Noordhoff Uitgevers bv
90 a Een goede vensterinstelling voor de funtie f is : X min en X ma en Y min eny ma 0. Voor de funtie g X min 0 en X ma 0 en Y min 0 eny ma 0. y 0 8 8 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 Vertiale asymptoot,
Blok 4 - Vaardigheden
lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9
Kern 1 Lineaire functies
Kern 1 Lineaire functies 1 a V = 10 kw b V = 0,07 100 + = 7 + = 10 c Alle lijnen beginnen bij V =, alleen het hellingsgetal is verschillend. Bij 15 C geldt V = 0,05 I + Bij 1 C geldt V = 0,06 I + Bij C
Hoofdstuk 3 - Transformaties
Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 V-a f () = g () = sin h () = k () = log m () = n () = p () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D
Formules en grafieken Hst. 15
Formules en grafieken Hst. 5. De totale kosten zijn dan : 0,5. 0000 = 0.000 dollar. Dan zijn de kosten per ton, dollar. De prijs is dan :,. 0.000 = 4.000 dollar. 0,50 dollar per ton en 4000 mijl. Aflezen
Hoofdstuk 2 Vlakke meetkunde
Opstap eellijn, hoogtelijn, samen 180 en samen 360 O-1a P 60º R d O-2a O-3a d P x x Q e drie deellijnen van de driehoek gaan inderdaad door één punt. M O Zie opdraht O-2a. U S V T UV is de hoogtelijn op
Noordhoff Uitgevers bv
ladzijde 54 a Uitvoeren van de matrixvermenigvuldiging voor de eerste rij geeft v = dus v =. Uitvoeren van de matrixvermenigvuldiging voor de tweede rij geeft s = dus s = 5, van j j 3j j v v v 3 j j 4
Blok 2 - Vaardigheden
Moderne wiskunde 9e editie Havo A deel Blok - Vaardigheden ladzijde 0 a 6 f g h d, p, p p 0 5 p i e 6q 6q q q q 5 0 5a a 0a a 6 5 5 5 t t t t t t a Per weken is de groeifator 7,, 9 Een kwartaal heeft 5
Blok 6A - Vaardigheden
Extra oefening - Basis B-a 7 + e 7 + 0 00 0 ( ) 0 f 8 ( + ) 0 0 0 8 0 80 c 7 + 9 7 g 9 0 7 40 0 40 47 d + h + 9 8 0 8 7 9 0 0 0 0 B-a 0,4 8 7, e 0,,, 0,7 8, 8,87 f 0,00 0 0,7 c 0,77 9,4 g 0,004 88,8 d
Noordhoff Uitgevers bv
70 Voorkennis V-a Driehoek is een rechthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 = 38,5 cm 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 = 30 cm
Vaardigheden - Blok 4
ladzijde 0 a Uit de stelling van Pythagoras volgt AB = + = AB = P = 4 + 4 = + + P = P is vier keer de afstand AB, dus = 4 = 4 = 4 = a 7 = = = 4 = 9 = 9 = 00 = 00 = 00 = 0 d 7 = = = e 9 = 49 = 49 = 7 f
Noordhoff Uitgevers bv
Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein
Hoofdstuk 8 - Periodieke functies
Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude
Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($).
C von Schwartzenberg 1/14 1a 0,5 $/ton (zie de verticale as bij punt A) 0 000 0,5 = 10 000 ($) 1b,1 $/ton (ga vanuit A verticaal omhoog naar de rood gestippelde grafiek) 0 000,1 = 4000 ($) us 4, keer zoveel
Noordhoff Uitgevers bv
V-1a / V-2a e Voorkennis Zie e figuur hieroner. Zie e figuur hieroner. De lijn n en het punt P kunnen ook aan e anere kant van lijn l liggen. Zie e figuur hieroner. P Zie e figuur hieroven. In vierhoek
Noordhoff Uitgevers bv
Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ
Noordhoff Uitgevers bv
Extra oefening - Basis B-a 5x + 6 7x + e 4x + 6 x + 6 x + 3x + 6 4 x 3x 5 x 4 : dus x x 5 : 3 dus x 5 b 9x + 0 34 + x f 8x + 5x + 38 8x + 0 34 3x + 38 8x 4 3x 6 x 4 : 8 dus x 3 x 6 : 3 dus x c 4x + 9 7x
Polynomen. De algemene vorm van een polynoom is: f(x) = a 0. + a 1. 0, n N. x +... + a n 1. x n 1 + a n. x n. met a n
Polnomen Polnomen Funties als 4 en + 1 zijn vooreelden van een grote klasse van veelvoorkomende funties: de polnomen of veeltermfunties. Wij zullen steeds de term polnomen geruiken. Een van de redenen
Hoofdstuk 6 - Cirkeleigenschappen
Hoofdstuk 6 - irkeleigenshappen oderne wiskunde 9e editie vwo deel Voorkennis: hoeken en irkels ladzijde 56 V-a 68 ; dus S 80 SE. us SE S 56 ES 80 56 0. us SE 78. V- 60. Ook geldt 60. us. V-a 80 Er geldt:
Hoofdstuk 5 - Hypothese toetsen
V-1a 98 ladzijde 114 Niet iedereen heeft dezelfde kans om in deze steekproef te komen. Het zijn klanten van de winkel. Het zijn alleen vrouwen. Het zijn klanten die allemaal op hetzelfde tijdstip oodshappen
Veranderingen Antwoorden
Veranderingen Antwoorden Paragraaf 4 Opg. 1 5 Opg. Relax 400 van 100 naar 400 is 6 maal 50 min. erbij. Dus ook 6 maal 5,- optellen bij 14,50 en dat wordt 44,50 Relax 1500 van 100 naar 1500 is 8 maal 50
Hoofdstuk 11 Verbanden
Opstap Remweg O- De rie remwegen zullen vershillen zijn. Algemeen gelt at ij e hoogste snelhei e langste remweg hoort. O- De remparahute geeft nog meer remkraht. O- De remweg wort langer op een sleht of
Extra oefening bij hoofdstuk 1
Etra oefening ij hoofdstuk Moderne wiskunde 9e editie vwo deel t a Van is de oplossing t log t Van 8 is de oplossing t log 8 t Van is de oplossing t log De vergelijking heeft als oplossing log De vergelijking
Noordhoff Uitgevers bv
Voorkennis V-a - Als je gedeelten van hokjes ij elkaar telt tot hele hokjes, dan passen op eiland A ongeveer roosterhokjes. Op eiland B passen ijna 4 roosterhokjes. Eiland A is dus ongeveer km groot. Eiland
Noordhoff Uitgevers bv
6 Etra oefening - Basis B-a 0 y 9 8 8 9 b y = + y 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a r = ( s+ )( s + ) e h= ( + i)( i +
Noordhoff Uitgevers bv
V-1a c d e 1 Voorkennis D C B N A K L Vierhoek ABCD is een vierkant. Vierhoek KLMN is een rechthoek en vierhoek PQRS is een parallellogram. De oppervlakte van vierhoek KLMN is 7 3 4 = 8 roostervierkantjes.
