Medische Statistiek Kansrekening

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Medische Statistiek Kansrekening"

Transcriptie

1 Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien met een munt: E={ 1,2,3,4..,n} Een oneindige uitkomstenreeks Gebeurtenissen zijn deelverzamelingen van uitkomstruimte. Gebeurtenis- A= oneven worp representeren we als een deelverzameling van de hele uitkomstenruimte. S={ 1,2,3,4,5,6}. We schrijven A= (1,3,5) Voor gebeurtenissen A en B kunnen gedefinieerd worden: AᴗB: de vereniging van A en B AᴖB: de doorsnede van A enb Ǡ of A c : het complement van A AᴗB: AᴖB: Ǡ Frequentiequotient (fractie) F(q) A= N(A)/ N Bij onafhankelijke herhalingen van eenzelfde sort

2 Pr (A): kansen zijn limieten voor gezondheidswetenschapper Kansrekening kent een aantal regels/ eigenschappen: 1. O< P(A) < 1 2. P(E) = 1. De hele E is een zekere gebeurtenis. 3. Als AᴖB = Ø 4. P(Ø)= 0. Kans op lege verzameling = 0 5. P(A c )= 1-P(A) 6. P (AᴗB)= P(A)+ P(B)- R(AᴗB) Als AᴖB =Ø spreekt men wel van disjuncte gebeurtenissen of van gebeurtenissen die elkaar uitsluiten. Symmetrische kansruimten 3.3 Men spreekt van een symmetrische kansruimte E bestaat uit elementaire gebeurtenissen/ uitkomsten die alle even waarschijnlijk zijn. Gooien dobbelsteen: allemaal 1/6 kans Voorwaardelijke kansen 3.5 N= 100 duizend mensen A= persoon heeft kanker B= persoon rookt Stel N(A)= 100 duizend mensen hebben longkanker in een populatie. P(A)=? P(A)= N(A)/N = 100/1000= 0.1 Voorwaardelijke kans: aselecte proef in doelgroep P(A/B)= N(AᴖB)/ N(B) = (N(AᴖB0/N )/ N(B)/N = P(AᴖB)/P(B) Algemene definitie voorwaardelijke kans: P(A/B)= P(AᴖB)/ P(B) Onafhankelijkheid Je kunt je afvragen of de gebeurtenissen A en B onafhankelijk zijn. Dan zou P(A/B) gelijk moeten zijn aan P(A) P(A/B)= P(A) P(AᴖB)= P(A) P(B) definitie onafhankelijkheid P(B/A)= P(B) geldt ook voor onafhankelijkheid Dus bovenstaande 3 mogelijkheden voor definitie, omdat ze te herleiden zijn op elkaar. Voorwaardelijke kansen omrekenen Vertaald naar een voorwaardelijke kans schrijven we: P(B/A)= 0,800 = 80% Verondersteld bovendien dat vastgesteld is dat 26,7% van de mensen zonder longkanker rookt: P (B/Ǡ)= 0,267= 26,7% Laten we verder uitgaan dat P(A)= 0,10= 10% nog steeds geldt B roken B C Totaal

3 A longkanker 0,08 1 0,10-0,08 0,10 A c 0, ,90-0,2403 0,90 Totaal 0, , = P(AᴖB)= P(B/A)/P(A)= 0,8 X0,10= 0,08= 8% 2= P(A C ᴖB)= P(B/A c )x P(A C )= 0,267 x0,90= 0,2403 Sensitiviteit: P (positief/ziek)= 0,90 Specificiteit:P (negatief/ gezond)= 0,95 P(ziek)=0,1 Wat je wilt weten: P (ziek/positief) P(ziek)=0,01 P (gezond)= = 0,99 Positief Negatief Totaal Ziek 0,0090 0,0010 0,01 Gezond 0,0495 0,9405 0,99 totaal 0,0585 0, Productregel toepassen: P(ziekᴖpositief)- p (ziek) xp (positief/ ziek)= 0,01 x0,9 Hoorcollege 2 Verwachting geeft een gemiddelde weer Variantie geeft een spreiding weer Telprobleem 3.6 Probleem 1: Vereniging van 40 leden. Ieder lid moet gesproken worden. Hoeveel volgordes zijn hiervoor mogelijk?--> 40! n faculteit Probleem 2: Bestuur samenstellen: voorzitter, secretaris, penningmeester. Hoeveel manieren zijn hiervoor mogelijk? 40x39x38= manieren Probleem 3: Corveeploeg kiezen van 3 personen Elk drietal komt in de mogelijkheden 6x voor. De verschillende volgordes eigenlijk als 1 mogelijkheid kiezen. Dus op / 6= manieren een corveeploeg van 3 personen kiezen. (40) = 40! 3 3! 37!

4 (n)= n! K k! x(n-k)! K objecten kiezen uit n totaal objecten Voorbeeld: 4x proef. Elke herhaling is onafhankelijk van voorgaande Elke proef is met ¾ succesvol (kans) Kans op (precies) 3 successen? (4) x 0,75^3 x 0,25^1 = 0, successen? (4)x 0,75^2 x0,25^2= 0, Binomiale verdeling Hierboven met n=4 en π= 0,75 Spreiding in kans door toeval Voorbeeld: In een vaas zitten 10 knikkers: 5 witte en 5 zwarte Men trekt zonder terugleggen 4 knikkers. P: 2 witte en 2 zwarte? (10)= 210 mogelijkheden 4 10 ncr 4 Hoeveel combinaties met 2 witte en 2 zwarte? (5)= 10 wit 2 (5)= 10 zwart 2 P 2 wit, 2 zwart = (5) x(5) 2 2 = 100 (10) Stochastische variabele 3.7 Stochastische variabele: waarneming waarvan de uitkomst afhangt van toeval P(X=x) tabel met kansverdeling Verwachting Bij stochastische variabele hoort een verwachting, μ(x) of E(x) Μ= ΣP(x)* x Elke uitkomst vermenigvuldigen met de bijbehorende kans

5 Μ(x) is de gemiddelde uitkomst X bij een langdurige herhaling Μ nadert de kans als de herhaling groot is, Ẋ zal, als N groot is, μ naderen. Μ(x) ook wel populatiegemiddelde Variantie Variantie van een stochastische variabele x=σ 2 = Σp(x)* (x-μ) 2 Variantie ook wel σ^2/x of var(x) Σ 2 is de gemiddelde kwadratische afwijking op den duur t.o.v. μ. Wortel van variantie is is standaardafwijking en wordt aangegeven met σ. Continue stochastische variabele 3.7 (kansdichtheden) Normaal verdeling (klokvorm) Uitkomsten van een stochastische variabele kunnen ook reële getallen zijn continue stochastische variabele P(a < X<b) Rekenregels voor verwachting, variantie en standaardafwijking Van stochastische variabele overgaan op andere stochastische variabele Y= 2x-5 Μy= aμy+b Σy 2 = a 2 * σ 2 x Σy= a *σx E=(ax+b)= a (ex)+b, var (ax+b)= a 2 var x Voorbeeld: 40 leden, waarvan 15 vrouw 5 kaarten

6 X= aantal vrouwen met kaartje P(X=3) Hoeveel manieren 5 uit 40? 40 boven 5= vrouw+kaartje en 2man +kaartje 15 boven 3 x 25 boven 2= P(X=3)= /658008= 20,7% Hoorcollege 3 Kansverdelingen 3.8 Volgorde noemen Volgordes aantal berekenen Aantal volgordes met eis Tenminste 4 goed 4,5,6 Per goed aantal volgorde: 6 goed=1 5 goed= x (is automatisch 6 goed) 4 goed- 6boven2 of 6boven4 Uitkomst = kans Totaal Binomiale verdeling Meestal een kansverdeling van X= aantal successen In binomiale situatie: 1) Er zijn n onafhankelijke (deel)experimenten 2) 2 uitkomsten per experiment 3) Kans op succes is gelijk aan π bij elk experiment Bin(n,π) Binomiale verdeling is toepasbaar bij trekken van steekproef met teruglegging. In praktijk zonder terugleggen: Als steekproefgrootte n klein is t.o.v. populatiegrootte kan men de binomiale verdeling gebruiken als goede benadering Vuistregel: populatiegrootte moet groter zijn dan 5n 2 Voor de binomiale verdeling zijn er 2 korte formules afgeleid voor verwachting en variantie E(x)= μ= n*π Var(X)= n*π*(1-π) Poisson verdeling Algemene structuur van de tellingen: een telling van een bepaald verschijnsel gebonden aan plaats en tijd P(X=x)= e -μ μ x / x! Verwachting en variantie van de Poisson verdeling zijn beide gelijk aan μ. Voor grote n en kleine π wordt de binomiale verdeling goed benaderd door de Poisson verdeling met μ=n*π Normale verdeling Een continue verdeling Klokvorm voor de kansdichtheid. Oppervlak onder de grafiek tussen de aangegeven grenzen. X~N(μ,σ 2 ) Alle normale verdelingen zijn afgeleid van de standaardnormale verdeling

7 Kans dat P(X>x) vertalen naar een kans in Z. Als X~N(μ,σ 2 ) dan Z= (x-μ)/σ ~ N(0,1) Binomiale verdeling kan benaderd worden door de normale verdeling. Alleen als nπ > 5 en n(1-π) > 5 N die groot is! Μ= nπ -- verwachting Σ= n π (1 π) -- standaardafwijking Strikt genomen zijn kansen op uitkomsten 29,28,27 etc. zijn allemaal 0 als we die berekenen met de normale verdeling, want de normale verdeling is een continue verdeling. Continuïteitscorrectie! 29 28,5-29,5 Hoorcollege 4 Standaardnormale verdeling Z= (x-μ)/σ Z-score: wat wijkt bijv. persoon (x) af van het gemiddelde? Er zijn meer dan 1 stochastische variabelen, wat is de kansverdeling van het steekproefgemiddelde? De stochastische variabelen X en Y zijn onafhankelijk als gebeurtenissen A die alleen betrekking hebben op X onafhankelijk zijn van gebeurtenissen b die alleen betrekking hebben op Y. Kansverdeling van X en Y in tabel P (X+Y=5) Beschouwen als gooien met 2 dobbelstenene. P (X=1, y=4).. P(X=2, Y=3) Kansen optellen Verwachting en varianties van X+Y en X-Y Zonder voorwaarden: E(X+Y)= E(X)+E(Y) E(X-Y)= E(X)-E(Y) Onafhankelijkheid: Var(x+y)= var(x)+ var(y) Var (x-y)= var(x)+ (var(y) altijd bij elkaar optellen!! Varianties van X+Y en X-Y zijn kennelijk gelijk Var(-y)= var(-1*y)= (-1) 2 x var(y)= var(y) Verdeling van X+Y en X-Y in geval van normale verdelingen Geval 1: Als X en y onafhankelijk zijn en beide normaal verdeeld, dan zijn zowel X+Y als X-Y ook normaal verdeeld. Geval 2: Poisson verdeling: Als X en Y beide onafhankelijk zijn en beide Poisson verdeeld, dan is X+Y ook weer Poisson verdeeld. Μx=4 en de telling μy=5 Dan geldt in gebal van onafhankelijkheid

8 X+Y poisson verdeeld μx+y= 4+5=9 Dan geldt P(X+Y=6) =e -μ * μ 6 6! Als je wilt dat eenzelfde telling blijft, gebruik je de Poisson verdeling. Centrale limietsteliing (CLS) Ongeacht de werkelijke verdeling van de stochastische variabelen X: zijn zowel S als Ẋ bij benadering normaal verdeeld als de steekproefgrootte n groot is. Μ=E(X I) en σ 2 = var(x i) Als we de algemene regels E(X+Y) = E(X)+ E(Y) en VAR(X+Y)= VAR(X) +VAR(Y) in geval van onafhankelijkheid herhaald toepassen op S= X 1+X 2. Dan vinden we E(S)=n*μ, var(s)= n*σ 2 en σs=σ* n Z=S-n*μ σ* n bij benadering standaardnormaal verdeeld wat houdt dit in voor Ẋ? Algemene regel: Als Y= ax+b dan μx=aμx+b en σy= a *σy Voor Ẋ= s/n geldt dus E(Ẋ)= 1/n * nμ=μ en σx= 1/n σ* n Het steekproefgemiddelde Ẋ is dus bij benadering normaal verdeeld met verwachting μ en standaardafwijking σ/ n Opmerking 1 n.a.v. CLS Als X i een normale verdeling hebben dan is de verdeling Ẋ exact een normale verdeling Als bijvoorbeeld X i een normale verdeling heeft met μ= 10 en σ=3 dan heeft Ẋ voor n=100 exact de normale verdeling met verwachting 10 en standaardafwijking σ/ 100 Aanpassing van σ is cruciaal P(X I> 13)= P(Z>1)= 1- (P <1)= 1-0,841= 0,159 Met Z= X i- 10/3 is standaardnormaal verdeeld P (Ẋ>13)= P(Z> 13-10/ 0.3)= P(Z>10)= Tabel geeft geen waarde voor is het hoogst mogelijke waarde in de tabel. Kans links van 3.59 is 1.00 dus is de kans rechts van (max. kans is immers 1) is wel altijd een benadering van 0 Opmerking 2 n.a.v. CLS Vorige college: de normale benadering van de binomiale verdeling. Deze normale benadering is eigenlijk het gevolg van de centrale Limiet Stelling. Binomiale verdeling successen als volgt coderen: X I=1 als 1 e deelexperiment succes oplevert, anders X i= 0. Dan is S= X 1 + X 2.. Voorbeeld: X is binomiaal verdeeld met n= 500 en succeskans π= 0,10. Willen benaderen: P(X<65)

9 Aan voorwaarde van goede benadering is voldaan. Normale benadering: doen alsof X normaal verdeeld is met μ= n*π = 500*0,1=50 en σ= n*π*(1-π)= 500*0,1*0,9= 45 σ 45= Continuïteitscorrectie P(x<65) P(X<64.5) Daarna standaardiseren: Z= x-μ/σ is standaardnormaal verdeeld Kans omschrijven naar Z en tabellen Standaardafwijking= variantie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Statistiek voor A.I. College 3. Dinsdag 18 September 2012

Statistiek voor A.I. College 3. Dinsdag 18 September 2012 Statistiek voor A.I. College 3 Dinsdag 18 September 2012 1 / 45 2 Deductieve statistiek Kansrekening 2 / 45 Uitkomstenruimte 3 / 45 Vragen: voorspellen Een charlatan zegt te kunnen voorspellen of een ongeboren

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Statistiek I Semester 2

Statistiek I Semester 2 Statistiek I Semester 2 Hoofdstuk 1 Axiomatische kansrekening Basisbegrippen Stochastisch proces = Proces met onzekere uitkomst Toevalsgebeuren = Uitkomst stochastisch proces o Elementair = slecht 1 uitkomst

Nadere informatie

college 4: Kansrekening

college 4: Kansrekening college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

Stochastiek voor Informatici Sara van de Geer voorjaar 2000

Stochastiek voor Informatici Sara van de Geer voorjaar 2000 Stochastiek voor Informatici Sara van de Geer voorjaar 2000 1 Inhoud hoofdstuk 1 t/m 3 1. Uniforme verdeling, transformaties, wet van de grote aantallen. 1.1. Discrete uniforme verdeling. 1.2. Realisaties.

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Kanstheorie, -rekenen en bekende verdelingen

Kanstheorie, -rekenen en bekende verdelingen Kanstheorie, -rekenen en bekende verdelingen 1 Rekenregels kansrekenen Kans van de zekere gebeurtenis: P () = P (U) = 1 Kans van de onmogelijke gebeurtenis: P (;) = 0 Complementregel: P (A c ) = 1 P (A)

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Algemeen overzicht inleiding kansrekening en statistiek

Algemeen overzicht inleiding kansrekening en statistiek Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.1 Waarschijnlijkheidsrekening 1 Beschouw een toevallig experiment (de resultaten zijn aan het toeval te danken) Noem V de verzameling van alle mogelijke uitkomsten

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 5 Dinsdag 28 September 1 / 25 1 Kansrekening Indeling: Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen Voor software R: van http://sourceforge.net

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Zin en onzin van normale benaderingen van binomiale verdelingen

Zin en onzin van normale benaderingen van binomiale verdelingen Zin en onzin van normale benaderingen van binomiale verdelingen Johan Walrave, docent EHSAL 0. Inleiding Voordat het grafisch rekentoestel in onze school ingevoerd werd, was er onder de statistiekdocenten

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Handout limietstellingen Kansrekening 2WS20

Handout limietstellingen Kansrekening 2WS20 Handout limietstellingen Kansrekening WS0 Remco van der Hofstad 13 januari 017 Samenvatting In deze hand out bespreken we een aantal limietstellingen en hun bewijzen. In meer detail, behandelen we de volgende

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW])

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) vorige week: kansrekening de uitkomstvariabele was bijna altijd discreet aantal keer een vijf gooien

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

introductie kansen pauze meer kansen random variabelen transformaties ten slotte

introductie kansen pauze meer kansen random variabelen transformaties ten slotte toetsende statistiek week 1: kansen en random variabelen Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 4: Probability: The Study of Randomness 4.1: Randomness 4.2: Probability

Nadere informatie

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen.

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen. Hoofdstuk 6 Kansverdelingen 6.1 Discrete stochasten 6.1.1 De Bernoulli verdeling Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede Levende Statistiek Een module voor Wiskunde D VWO Jacob van Eeghen en Liesbeth de Wreede Jacob van Eeghen en Liesbeth de Wreede, Leiden 2010 ctwo, Utrecht 2010 Dit lesmateriaal kan gebruikt worden voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Statistiek voor A.I. College 5. Dinsdag 25 September 2012

Statistiek voor A.I. College 5. Dinsdag 25 September 2012 Statistiek voor A.I. College 5 Dinsdag 25 September 2012 1 / 34 2 Deductieve statistiek Kansrekening 2 / 34 Percentages 3 / 34 Vragen: blikkie Kinderen worden slanker als ze anderhalf jaar lang limonade

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek UNIVERSITY OF GHENT Samenvatting Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek Auteur: Nicolas Vanden Bossche Lesgever: Prof. Hans De Meyer Hoofdstuk 1 Het kansbegrip en elementaire kansrekening

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse

Bedrijfskunde. Hoofdstuk 1. Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse Hoofdstuk 1 Bedrijfskunde Vraag 1.1 Welke naam hoort bij het concept Elementaire bewegingen voor arbeidsanalyse - McGregor - Elton Mayo - Frank Lilian Gilbreth - Alfred Sloan - Henri Fayol Vraag 1.2 Je

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Economie en maatschappij(a/b)

Economie en maatschappij(a/b) Natuur en gezondheid(a/b) Economie en maatschappij(a/b) Cultuur en maatschappij(a/c) http://profielkeuze.qompas.nl/ Economische studies Talen Recht Gedrag en maatschappij http://www.connectcollege.nl/download/decanaat/vwo%20doorstroomeisen%20universiteit.pdf

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Sterrenkunde Praktikum 1 Fouten en fitten

Sterrenkunde Praktikum 1 Fouten en fitten Sterrenkunde Praktikum 1 Fouten en fitten Paul van der Werf 12 februari 2008 1 Inleiding In de sterrenkunde werken we vaak met zwakke signalen, of met grote hoeveelheden metingen van verschillende nauwkeurigheid.

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Poortlandplein 6, 2628 BM Delft, The Netherlands

Nadere informatie

Deel I : beschrijvende statistiek

Deel I : beschrijvende statistiek HOOFDSTUK 1 TYPISCHE FOUTEN BIJ STATISTIEK Foute gegevens Fouten in berekening kans Foute interpretatie resultaten Statistiek : de wetenschap van het leren uit data & van het meten, controleren en communiceren

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Kansberekeningen Hst

Kansberekeningen Hst 1 Kansberekeningen Hst. 1 1. P(,) + P(,) + P(,) = 1 1 1 1 1 1 5 + + = 16 b. P(10) = P(,,) + P(,,) = 1 1 1 1 1 1 1 6 + = 6 c. P(min stens keer een ) =1 P(max imaal keer een ) = 1 binomcdf (1, 1,) 0,981

Nadere informatie