14.1 Kansberekeningen [1]

Maat: px
Weergave met pagina beginnen:

Download "14.1 Kansberekeningen [1]"

Transcriptie

1 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien met dobbelsteen) = P(3) + P(4) Complementregel: P(gebeurtenis) = 1 P(complement gebeurtenis) B.v. P(6 gooien met dobbelsteen) = 1 P(geen 6 gooien) Productregel: Bij twee onafhankelijke kansexperimenten geldt: P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) B.v. P(3 gooien met blauwe en 4 met rode dobbelsteen) = P(3B) P(4R) 1

2 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Gunstige uitkomsten tellen: Maak een rooster en schrijf de gunstige uitkomsten op. B.v. Doe dit bij een beperkt aantal uitkomsten zoals het gooien met 2 dobbelstenen. Vaasmodel gebruiken: Bij het trekken zonder teruglegging gebruik je combinaties om kansen te berekenen. B.v. Bij het pakken van knikkers uit een vaas zonder deze terug te leggen. Binomiale verdeling: Deze gebruik je wanneer je hetzelfde kansexperiment een aantal keer herhaalt en Maar twee uitkomsten hebt (succes of mislukking) B.v. Je pakt 10 keer twee knikkers uit een vaas en ligt deze elke keer terug. 2

3 14.1 Kansberekeningen [1] Voorbeeld 1: In een vaas zitten 8 rode, 6 witte en 3 zwarte knikkers. Iemand pakt 12 keer drie knikkers uit de vaas en legt deze telkens weer terug. Bereken de kans dat vier keer twee rode knikkers gepakt worden: Stap 1: Bereken de kans op het pakken van twee rode knikkers (X) P(2 rood) = 0, [Pakken zonder teruglegging = vaasmodel] 3 Stap 2: Bereken de kans dat vier keer twee rode knikkers gepakt worden. P(X = 4) = binompdf(12, 0.370, 4) 0,230 [Herhalen = binomiaal] 3

4 14.1 Kansberekeningen [1] Voorbeeld 2: In een vaas zitten 8 rode, 6 witte en 3 zwarte knikkers. Iemand pakt drie knikkers uit de vaas en legt deze telkens weer terug. Hij gaat ermee door totdat hij drie rode knikkers pakt. Bereken de kans dat hij vijf keer drie knikkers pakt. Dit betekent dat de eerste vier keer niet drie rode knikkers (M) gepakt worden en dat de vijfde keer drie rode knikkers (S) gepakt worden. P(vijf keer drie knikkers pakken) = P(MMMMS) Stap 1: Bereken P(S) en P(M) 8 3 P(S) = 0, 082 P(M) = 1 P(S) = 1 0,082 = 0, Stap 2: Bereken P(MMMMS) P(MMMMS) = (0,917) 4 0,082 = 0,058 4

5 14.3 De normale verdeling [1] Voorbeeld 1: Normale verdeling met μ = 20 en σ = 3.2. Bepaal de oppervlakte onder de normaalkromme rechts van 22. Op de GR: 2ND VARS DISTR 2:normalcdf( ENTER Invullen: 22, 10 99, 20, 3.2) ENTER Opp = normalcdf(22, 10 99, 20, 3.2) Dus: normalcdf(linkergrens, rechtergrens, gemiddelde, standaardafwijking) 5

6 14.3 De normale verdeling [1] Voorbeeld 2: Normale verdeling met μ = 1800 en σ = 40. De oppervlakte rechts van de grens a is 0,15. Bereken deze grens. Let op: InvNorm is de oppervlakte links van een bepaalde grens. In dit geval Is de oppervlakte links van grens a 1 0,15 = 0,85 Op de GR: 2ND VARS DISTR 3:invNorm( ENTER Invullen: 0.85, 1800, 40) ENTER Grens = invnorm(0.85, 1800, 40)

7 14.3 De normale verdeling [1] Voorbeeld: Normale verdeling met μ = 28 en σ = onbekend. De oppervlakte Rechts van 23 is 0,83. Bereken de standaardafwijking. Er moet gelden normalcdf(23, 10 99, 28, σ) = 0,83 Met de GR: Y1 = normalcdf(23, 10 99, 28, σ) Y2 = 0,83 en INTERSECT Het antwoord is nu 5,24 [Let op grenzen van assen!!] 7

8 14.3 De normale verdeling [2] Voorbeeld: In de tabel staat de verdeling van de gewichten in grammen van een hoeveelheid bonen. klasse 0,45 -< 0,65 1 0,65 -< 0,85 6 0,85 -< 1, ,05 -< 1, ,25 -< 1, ,45 -< 1, ,65 -< 1, ,85 -< 2,05 7 2,05 -< 2,25 6 Frequentie Toon aan dat deze verdeling bij benadering normaal is: 8

9 14.3 De normale verdeling [2] Stap 1: Bereken de cumulatieve en relatieve cumulatieve frequenties: klasse Frequentie Cum. Freq. Rel. Cum. Freq. 0,45 -< 0, ,6 (1/156) 0,65 -< 0, (1 + 6) 4,5 (7/156) 0,85 -< 1, (7 + 18) 16,0 (25/156) 1,05 -< 1, ,8 1,25 -< 1, ,2 1,45 -< 1, ,0 1,65 -< 1, ,7 1,85 -< 2, ,2 2,05 -< 2, ,0 9

10 14.3 De normale verdeling [2] Stap 2: Teken de rel. cum. frequenties op normaal waarschijnlijkheidspapier: 10

11 14.3 De normale verdeling [2] Stap 3: Trek een lijn door de punten: 11

12 14.3 De normale verdeling [2] Let op: Als de getekende punten op een rechte lijn liggen, is er sprake van een normale verdeling Het gemiddelde (μ) is te vinden door de waarde af te lezen die hoort bij een relatieve cumulatieve frequentie van 50 ( 1,43) De standaardafwijking (σ) is te vinden door: 1. de waarde af te lezen die hoort bij een relatieve cumulatieve frequentie van 84 ( 1,75); 2. het verschil tussen deze waarde en het gemiddelde is de standaardafwijking (1,75 1,43 = 0,32) 12

13 14.3 De normale verdeling [3] Voorbeeld 1: Een artikel wordt geproduceerd in twee fasen: De productietijd X van fase I is normaal verdeeld met μ x = 180 en σ x = 2 De productietijd Y van fase II is normaal verdeeld met μ x = 23 en σ y = 1 Hoeveel procent van de artikelen heeft een totale productietijd Z (X + Y) van minder dan 200 seconden? In dit voorbeeld zijn er twee onafhankelijke normaal verdeelde toevalsvariabelen waarvan je de som neemt. Deze som Z is ook een normaal verdeelde toevalsvariabele met: μ z = μ x + μ y en 2 2 Z x y Wanneer je van twee onafhankelijke normaal verdeelde toevalsvariabelen het verschil neemt geldt: μ z = μ x - μ y en 2 2 Z x y 13

14 14.3 De normale verdeling [3] Voorbeeld 1: Een artikel wordt geproduceerd in twee fasen: De productietijd X van fase I is normaal verdeeld met μ x = 180 en σ x = 2 De productietijd Y van fase II is normaal verdeeld met μ y = 23 en σ y = 1 Hoeveel procent van de artikelen heeft een totale productietijd Z (X + Y) van minder dan 200 seconden? Z is normaal verdeeld met gemiddelde μ z en standaardafwijking σ z : μ z = μ x + μ y = = 203 en Z x y

15 14.3 De normale verdeling [3] Voorbeeld 1: Hoeveel procent van de artikelen heeft een totale productietijd Z (X + Y) van minder dan 200 seconden? Opp = normalcdf(-10 99, 200, 203, 5 ) 0,090 Dus 0,09 x 100% = 9,0% heeft een productietijd van minder dan 200 seconden. 15

16 14.3 De normale verdeling [4] Voorbeeld 1: Een artikel wordt geproduceerd in drie fasen: De productietijd X van fase I is normaal verdeeld met μ x = 160 en σ x = 2 De productietijd Y van fase II is normaal verdeeld met μ y = 23 en σ y = 1 De productietijd Z van fase III is normaal verdeeld met μ z = 10 en σ z = 0,5 Hoeveel procent van de artikelen heeft een totale productietijd T (X + Y + Z) van minder dan 210 seconden? In dit voorbeeld zijn er drie onafhankelijke normaal verdeelde toevalsvariabelen waarvan je de som neemt. Deze som T is ook een normaal verdeelde toevalsvariabele met: μ t = μ x + μ y + μ z en T x y z Wanneer je van n onafhankelijke normaal verdeelde toevalsvariabelen (X 1, X 2, X 3,, X n ) de som neemt geldt: μ T = μ x1 + μ x2 + + μ xn en T x x xn 16

17 14.3 De normale verdeling [4] Voorbeeld 1: Een artikel wordt geproduceerd in drie fasen: De productietijd X van fase I is normaal verdeeld met μ x = 160 en σ x = 2 De productietijd Y van fase II is normaal verdeeld met μ y = 23 en σ y = 1 De productietijd Z van fase III is normaal verdeeld met μ z = 10 en σ z = 0,5 Hoeveel procent van de artikelen heeft een totale productietijd T (X + Y + Z) van minder dan 210 seconden? T is normaal verdeeld met gemiddelde μ t en standaardafwijking σ t : μ t = μ x + μ y + μ z = = 213 en 2 1 0, 5 5, t x y z 17

18 14.3 De normale verdeling [4] Voorbeeld 1: Hoeveel procent van de artikelen heeft een totale productietijd T (X + Y + Z) van minder dan 210 seconden? Opp = normalcdf(-10 99, 210, 213, ) 0,095 5, 25 Dus 0,095 x 100% = 9,5% heeft een productietijd van minder dan 210 seconden. 18

19 14.4 De n-wet [1] Voorbeeld 1: Van een blik erwten uit een pallet is het gewicht X normaal verdeeld met μ x = 500 en σ x = 2. Er wordt nu een steekproef van 10 blikken uit deze pallet genomen. Bereken de kans dat het gewicht van deze 10 blikken minder is dan 4985 gram. Het totale gewicht van deze 10 blikken (X som = X + X + + X) is nu normaal verdeeld met: μ Xsom = μ x + μ x + + μ x = 10 μ x = = Xsom x x x x Wanneer je een steekproef met een grootte van n neemt geldt: De som (X som = X + X + + X) van deze steekproef is normaal verdeeld met: μ Xsom = μ x + μ x + + μ x = n μ x en... n n Xsom x x x x x 19

20 14.4 De n-wet [1] Voorbeeld 1: Van een blik erwten uit een pallet is het gewicht X normaal verdeeld met μ x = 500 en σ x = 2. Er wordt nu een steekproef van 10 blikken uit deze pallet genomen. Bereken de kans dat het gewicht van deze 10 blikken minder is dan 4985 gram. μ Xsom = 5000 en 10 2 Xsom Opp = normalcdf(-10 99, 4985, 5000, 10 2) = 0,

21 14.4 De n-wet [2] Voorbeeld 1: Van een blik erwten uit een pallet is het gewicht X normaal verdeeld met μ x = 500 en σ x = 2. Er wordt nu een steekproef van 10 blikken uit deze pallet genomen. Het totale gewicht van deze 10 blikken (X som = X + X + + X) is nu normaal verdeeld met: μ Xsom = μ x + μ x + + μ x = 10 μ x = = Xsom x x x x Het gemiddelde gewicht van deze 10 blikken ( X is ook normaal verdeeld met: x som 10 x x x xsom 10 x x x Algemeen: Bij een steekproef van grootte n geldt: = steekproefgemiddelde) X normaal verdeeld met en x x x x n 21

22 14.4 De n-wet [2] Voorbeeld 1: Van een blik erwten uit een pallet is het gewicht X normaal verdeeld met μ x = 500 en σ x = 2. Er wordt nu een steekproef van 10 blikken uit deze pallet genomen. Bereken de kans dat het steekproefgemiddelde ( X ) minder dan 1.5 van μ x afwijkt X is normaal verdeeld met 500en x x x x n 2 10 P(498.5 < X < 501.5) = normalcdf(498.5, 501.5, 500, 2/ 10) 0,982 22

23 14.5 Discrete en continue verdelingen [1] Continue toevalsvariabele Y: Alle waarden zijn mogelijk Kansverdeling is een vloeiende kromme; Bv.: Lengte van mannen, Gewicht van vrouwen, alles wat normaal verdeeld is; P(Y < 5) = P(Y 5). Discrete toevalsvariabele X: Alleen een aantal losse waarden zijn mogelijk; Kansverdeling is een histogram; Bv.: Aantal auto s op een weg per minuut, De schoenmaat van volwassenen; P(X < 5) = P(X 4). 23

24 14.5 Discrete en continue verdelingen [1] Als we een discrete toevalsvariabele X benaderen door een continue toevalsvariabele Y geldt: P(X < 5) = P(X 4) = P(Y 4,5) Algemeen: P(X k) = P(Y k + 0,5) 24

25 14.5 Discrete en continue verdelingen [1] Voorbeeld: Het aantal auto s X per uur op een weg is te benaderen door een normaal verdeelde toevalsvariabele Y met μ Y = 53,8 en σ Y = 8,7. Gedurende een uur wordt het aantal auto s op de weg geteld. Bereken in hoeveel procent van de gevallen er minder dan 45 auto s per uur worden geteld. P(X < 45) = P(X 44) = P(Y 44,5) = normalcdf(-10 99, 44.5, 53.8, 8.7) 0,143 25

26 14.5 Discrete en continue verdelingen [2] Binomiale verdeling: Discrete verdeling; X = aantal keer succes als je een kansexperiment n keer uitvoert; p = kans op succes per keer. n p k ( p nk P(X = k) = 1 ) k ; De verwachtingswaarde E(X) = np; De standaardafwijking x np(1 p) Er geldt: Een binomiaal verdeelde toevalsvariabele X kan benaderd worden door een normaal verdeelde toevalsvariabele Y met μ Y = np en (1 ) als geldt: Y np p np > 5 en n(1-p) > 5 [Dus n moet voldoende groot zijn] 26

27 14.5 Discrete en continue verdelingen [2] Voorbeeld: Van een partij blanco DVD s blijkt één procent niet goed te werken. Bereken de kans dat bij een steekproef van 2000 DVD s tussen de 20 en 30 DVD s niet goed werken. Benadering door de normale verdeling: X = aantal kapotte DVD s X is binomiaal verdeeld met n = 2000, p = 0,01 Y is normaal verdeeld met μ Y = np = 20 en Y np(1 p) 19,8 P(20 < X < 30) = P(X 29) P(X 20) = P(Y 29,5) P(Y 20,5) = normalcdf(20.5, 29.5, 20, 19,8 ) = 0,439 27

28 14.5 Discrete en continue verdelingen [2] Voorbeeld: Van een partij blanco DVD s blijkt één procent niet goed te werken. Bereken de kans dat bij een steekproef van 2000 DVD s tussen de 20 en 30 DVD s niet goed werken. Benadering door de binomiale verdeling: X = aantal kapotte DVD s X is binomiaal verdeeld met n = 2000, p = 0,01 P(20 < X < 30) = P(X 29) P(X 20) = binomcdf(2000, 0.01, 29) binomcdf(2000, 0.01, 20) = 0,

29 14.5 Discrete en continue verdelingen [3] Voorbeeld: Van een binomiaal verdeelde toevalsvariabele X is E(X) = 150 en σ x = 10. E(X) = 150, dus np = 150 σ x = 10, dus np(1 p) 10 Invullen van np = 150 geeft: np(1 p) (1 p) p p 50 1 p 3 Hieruit volgt dan dat n gelijk is aan

30 13 Samenvatting Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) Complementregel: P(gebeurtenis) = 1 P(complement gebeurtenis) Productregel: Bij twee onafhankelijke kansexperimenten geldt: P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) Vaasmodel gebruiken: Bij het trekken zonder teruglegging gebruik je combinaties om kansen te berekenen. Binomiale verdeling: Deze gebruik je wanneer je hetzelfde kansexperiment een aantal keer herhaalt en maar twee uitkomsten hebt (succes of mislukking). Oppervlakte = normalcdf(linkergrens, rechtergrens, gemiddelde, standaardafwijking) Linkergrens = invnorm(opp., gemiddelde, standaardafwijking) 30

31 14 Samenvatting Toon aan dat een verdeling bij benadering normaal is: 1. Bereken de cumulatieve en relatieve cumulatieve frequenties; 2. Teken de rel. cum. frequenties op normaal waarschijnlijkheidspapier; 3. Kijk of je een rechte lijn door deze punten kunt tekenen. De som Z van twee onafhankelijke normaal verdeelde toevalsvariabele is ook een normaal verdeelde toevalsvariabele met: μ z = μ x + μ y en 2 2 Z x y Wanneer je van n onafhankelijke normaal verdeelde toevalsvariabelen (X 1, X 2, X 3,, X n ) de som neemt geldt: μ T = μ x1 + μ x2 + + μ xn en T x1 x2... xn De som (X som = X + X + + X) van een steekproef is normaal verdeeld met: μ Xsom = μ x + μ x + + μ x = n μ x en... n n Xsom x x x x x Bij een steekproef van grootte n geldt: X normaal verdeeld met en x x x x n 31

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k)

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) 11.0 Voorkennis Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kanseperiment

Nadere informatie

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen.

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen. Samenvatting Kansen Definitie van Laplace : P(G) = aantal _ gunstige _ uitkomsten aantal _ mogelijke _ uitkomsten Voorbeeld : Vb kans op 4 gooien met dobbelsteen: Aantal gunstige uitkomsten = 1 ( namelijk

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling 12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. 5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

34% 34% 2,5% 2,5% ,5% 13,5%

34% 34% 2,5% 2,5% ,5% 13,5% C. von Schwartzenberg 1/16 1a Er is uitgegaan van de klassen: 1 < 160; 160 < 16; 16 < 170;... 18 < 190. 1b De onderzochte groep bestaat uit 1000 personen. 1c x = 17,3 (cm) en σ, 7 (cm). 1de 680 is 68%

Nadere informatie

4 De normale verdeling

4 De normale verdeling bladzijde 217 35 a X = het aantal vrouwen met osteoporose. P(X = 30) = binompdf(100, 1, 30) 0,046 4 b X = het aantal mannen met osteoporose. Y = het aantal vrouwen met osteoporose. P(2 met osteoporose)

Nadere informatie

Werken met de grafische rekenmachine

Werken met de grafische rekenmachine Werken met de grafische rekenmachine Plot de grafiek blz. Schets de grafiek of teken een globale grafiek blz. 3 Teken de grafiek blz. 4 Het berekenen van snijpunten blz. 3 5 Het berekenen van maxima en

Nadere informatie

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten.

3.0 Voorkennis. Het complement van de verzameling V is de verzameling Dit zijn alle elementen van de uitkomstenverzameling U die niet in V zitten. 3.0 Voorkennis De vereniging van de verzamelingen V en is gelijk aan de uitkomstenverzameling U in het plaatje hiernaast. De doorsnede van de verzamelingen V en V is een lege verzameling. Het complement

Nadere informatie

Hoofdstuk 2 De normale verdeling. Kern 1 Normale verdelingen. 1 a

Hoofdstuk 2 De normale verdeling. Kern 1 Normale verdelingen. 1 a Hoofdstuk De normale verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b In totaal is 0, + 0,9 + 3,3 +,0 +,3 + 7,3= 50,5 procent van de

Nadere informatie

Kansberekeningen Hst

Kansberekeningen Hst 1 Kansberekeningen Hst. 1 1. P(,) + P(,) + P(,) = 1 1 1 1 1 1 5 + + = 16 b. P(10) = P(,,) + P(,,) = 1 1 1 1 1 1 1 6 + = 6 c. P(min stens keer een ) =1 P(max imaal keer een ) = 1 binomcdf (1, 1,) 0,981

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

Boek 2 hoofdstuk 8 De normale verdeling.

Boek 2 hoofdstuk 8 De normale verdeling. 52a. de groepen verschillen sterk in grootte b. 100 van de 5000 = 1 van de 50 dus 1 directielid, 90 winkelmedewerkers en 9 magazijnmedewerkers. Boek 2 hoofdstuk 8 De normale verdeling. 8.1 Vuistregels

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW])

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) vorige week: kansrekening de uitkomstvariabele was bijna altijd discreet aantal keer een vijf gooien

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5: Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )

Nadere informatie

Hoe verwerk je gegevens met de Grafische Rekenmachine?

Hoe verwerk je gegevens met de Grafische Rekenmachine? Hoe verwerk je gegevens met de Grafische Rekenmachine? Heb je een tabel met alleen gegevens? Kies STAT EDIT Vul L 1 met je gegevens (als de lijst niet leeg is, ga je met de pijltjes helemaal naar boven,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b)

Y = ax + b, hiervan is a de richtingscoëfficiënt (1 naar rechts en a omhoog), en b is het snijpunt met de y-as (0,b) Samenvatting door E. 1419 woorden 11 november 2013 6,1 14 keer beoordeeld Vak Methode Wiskunde A Getal en ruimte Lineaire formule A = 0.8t + 34 Er bestaat dan een lineair verband tussen A en t, de grafiek

Nadere informatie

Paragraaf 7.1 : Het Vaasmodel

Paragraaf 7.1 : Het Vaasmodel Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?

Nadere informatie

Keuze onderwerp: Kansrekening 5VWO-wiskunde B

Keuze onderwerp: Kansrekening 5VWO-wiskunde B Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...

Nadere informatie

7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE.

7,7. Samenvatting door Manon 1834 woorden 3 mei keer beoordeeld. Wiskunde C theorie CE. Samenvatting door Manon 1834 woorden 3 mei 2016 7,7 13 keer beoordeeld Vak Wiskunde Wiskunde C theorie CE. Permutaties: -Het aantal permutaties van drie dingen die je kiest uit acht dingen is: 8*7*6= 336.

Nadere informatie

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1: Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo

Nadere informatie

Antwoorden door K woorden 14 augustus keer beoordeeld. Wiskunde A. Supersize me. Opgave 1: leerstof: Formules met meer variabelen.

Antwoorden door K woorden 14 augustus keer beoordeeld. Wiskunde A. Supersize me. Opgave 1: leerstof: Formules met meer variabelen. Antwoorden door K. 1901 woorden 14 augustus 2015 1 1 keer beoordeeld Vak Wiskunde A Supersize me Opgave 1: leerstof: Formules met meer variabelen. Formule energiebehoefte = =33,6 G 5000(kcal) = dagelijkse

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Kern 1 Rekenen met binomiale kansen

Kern 1 Rekenen met binomiale kansen Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

1. De wereld van de kansmodellen.

1. De wereld van de kansmodellen. STATISTIEK 3 DE GRAAD.. De wereld van de kansmodellen... Kansmodellen X kansmodel Discreet model Continu model Kansverdeling Vaas Staafdiagram Dichtheidsfunctie f(x) GraJiek van f Definitie: Een kansmodel

Nadere informatie

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most Hoofdstuk 9 De Normale Verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b De gemiddelde lengte valt in de klasse 80 84 cm. Omdat 8 precies

Nadere informatie

Samenvatting Wiskunde A Rijen, sommen en kansberekeningen boek 2 a10 en boek 3

Samenvatting Wiskunde A Rijen, sommen en kansberekeningen boek 2 a10 en boek 3 Samenvatting Wiskunde A Rijen, sommen en kansberekeningen boek 2 a10 en boek 3 Samenvatting door een scholier 2946 woorden 10 januari 2011 7,3 13 keer beoordeeld Vak Wiskunde A Wiskunde Boek I A10 Rijen

Nadere informatie

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links.

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links. G&R havo A deel C. von Schwartzenberg /8 a Er is uitgegaan van de klassen: < 60; 60 < 6; 6 < 70;... 8 < 90. b c De onderzochte groep bestaat uit 000 personen. (neem nog eens GRpracticum uit hoofdstuk 4

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Samenvatting Wiskunde A kansen

Samenvatting Wiskunde A kansen Samenvatting Wiskunde A kansen Samenvatting door een scholier 857 woorden 19 juni 2016 1 1 keer beoordeeld Vak Methode Wiskunde A Moderne wiskunde H1 Machtsboom Mogelijkheden tellen Aantal takken is gelijk

Nadere informatie

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2 G&R vwo A/C deel 8 De normale verdeling C. von Schwartzenberg 1/14 1a Gemiddelde startgeld x = 1 100000 + 4 4000 + 3000 = 13100 dollar. 10 1b Het gemiddelde wordt sterk bepaald door de uitschieter van

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

5,1. Samenvatting door een scholier 1647 woorden 18 oktober keer beoordeeld. Wiskunde A

5,1. Samenvatting door een scholier 1647 woorden 18 oktober keer beoordeeld. Wiskunde A Samenvatting door een scholier 1647 woorden 18 oktober 2010 5,1 4 keer beoordeeld Vak Wiskunde A Samenvatting A2 Recht evenredig Bij een stapgrootte van y hoort een constante eerste augmentatie van x Omgekeerd

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De normale verdeling Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf In deze les ga je veel met

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Hoofdstuk 5: Steekproevendistributies

Hoofdstuk 5: Steekproevendistributies Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Beslissen op grond van een steekproef Hoofdstuk 15

Beslissen op grond van een steekproef Hoofdstuk 15 1 Beslissen op grond van een steekproef Hoofdstuk 15 1. a. Het gaat veel geld kosten voor de fabrikant als er te veel schuurmiddel gebruikt wordt. b. Bij een te laag gemiddelde zullen de klanten niet tevreden

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Paragraaf 4.1 : Kansen

Paragraaf 4.1 : Kansen Hoofdstuk 4 Het kansbegrip (V4 Wis A) Pagina 1 van 5 Paragraaf 4.1 : Kansen Les 1 Kansen met dobbelstenen Definitie GGGGGGGGGGGGGGGG uuuuuuuuuuuuuuuuuuuu KKKKKKKK = TTTTTTTTTTTT aaaaaaaaaaaa uuuuuuuuuuuuuuuuuuuu

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen.

Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M ) noemen. Hoofdstuk 6 Kansverdelingen 6.1 Discrete stochasten 6.1.1 De Bernoulli verdeling Een Bernoulli experiment is een experiment met slechts twee mogelijke uitkomsten, die we succes ( S ) en mislukking ( M

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 2

Wiskunde D Online uitwerking 4 VWO blok 6 les 2 Paragraaf 8 De klokvorm Opgave 1 a De top van de grafiek van de PvdA ligt bij 30 %. Dus voor de PvdA wordt 30% voorspeld. b De grafiek loopt van ongeveer 27 tot 33, dus het percentage ligt met grote waarschijnlijkheid

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1 Antwoordmodel VWO wa -II Antwoorden Startende ondernemingen % komt overeen met een kans van, (per 9 jaar) Per jaar is dat een kans van, 9 het antwoord,9 5 CV8 Lees verder De kans is,9 =,656(,66) Een overlevingskans

Nadere informatie

0,269 of binompdf(8, 7, 4) 0,269.

0,269 of binompdf(8, 7, 4) 0,269. G&R vwo A deel Mathematische statistiek C. von Schwartzenberg / a P (som = 6) = P () + P () = () () P P. + = + = + = 6 6 6 b P = = + = + (som 0) P () P () () () = + = + = 6 = P P 6 6 6 6 6 6 6 6 6 6. c

Nadere informatie

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten.

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten. G&R vwo C deel C von Schwartzenberg / Som kan met! (op = manieren) (op! manieren) (op manier)! =, = en Dus totaal + + = 0 gunstige uitkomsten Dubbel onderstreept betekent: "niet alleen" in de genoteerde

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

15.1 Beslissen op grond van een steekproef

15.1 Beslissen op grond van een steekproef 05 15 Exponenten Het toetsen van en logaritmen hypothesen 15.1 Beslissen op grond van een steekproef bladzijde 8 1 a Er wordt dan te veel schuurmiddel geleverd en dit kost geld. b Dan zit er te weinig

Nadere informatie

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Probeer zeker de opdrachten 1, 4 en 6 te maken. 1. In de tabel hieronder vind je gegevens over de borstomtrek van 5732

Nadere informatie

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2 INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Antwoorden Wiskunde Hoofdstuk 1 Rekenen met kansen

Antwoorden Wiskunde Hoofdstuk 1 Rekenen met kansen Antwoorden Wiskunde Hoofdstuk 1 Rekenen met kansen Antwoorden door een scholier 4244 woorden 1 juni 2005 4,7 42 keer beoordeeld Vak Wiskunde Hoofdstuk 1 Rekenen met kansen Het is niet toevallig n = 23

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Eindexamen wiskunde A 1-2 vwo I

Eindexamen wiskunde A 1-2 vwo I Beoordelingsmodel Marathonloopsters maximumscore uur, 4 minuten en seconden is 98 seconden De snelheid is 495 98 (m/s) Het antwoord: 4, (m/s) maximumscore Uit x = 5 volgt v 4,04 (m/s) De tijd die een 5-jarige

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1 Algemene vaardigheden Veel knopjes hebben drie functies. De functie die op een knop... staat krijg je door er op de drukken. De blauwe functie die er boven een knop... staat krijg je met 2nd.... Zo zet

Nadere informatie