Binomiale verdelingen

Maat: px
Weergave met pagina beginnen:

Download "Binomiale verdelingen"

Transcriptie

1 Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode,

2 Kans (herhaling) U is de verzameling van uitkomsten. # U is het aantal elementen van U. Een gebeurtenis V is een deelverzameling van U. P V = #V #U is de kans op gebeurtenis V. Gevolg: 0 P(V) 1

3 Kans Voorbeeld 1 Werpen met twee zuivere munten. U = {(K,K), (K,M), (M,K), (M,M)} V is de gebeurtenis: dubbel K of dubbel M V = {(K,K), (M,M)}

4 Voorbeeld 1 Werpen met twee zuivere munten. U = {(K,K), (K,M), (M,K), (M,M)} Kans V is de gebeurtenis: dubbel K of dubbel M V = {(K,K), (M,M)} P V = #V #U = 2 4 = 1 2

5 Kans Voorbeeld 2 Voor een loket staan 8 mensen waaronder Anneke en Egon. Wat is de kans dat Egon vóór Anneke staat.

6 Kans Voorbeeld 2 Voor een loket staan 8 mensen waaronder Anneke en Egon. Wat is de kans dat Egon vóór Anneke staat. U is de verzameling van alle mogelijke volgordes in de rij. V is de verzameling van volgordes waarbij E vóór A staat. W is de verzameling van volgordes waarbij A vóór E staat.

7 Kans Voorbeeld 2 Voor een loket staan 8 mensen waaronder Anneke en Egon. Wat is de kans dat Egon vóór Anneke staat. U is de verzameling van alle mogelijke volgordes in de rij. V is de verzameling van volgordes waarbij E vóór A staat. W is de verzameling van volgordes waarbij A vóór E staat. #V = #W dus P V = P W. V W = U en V W = dus P V + P W = 1. Dan is P V = P W = 1 2.

8 Kans Voorbeeld 2 Voor een loket staan 8 mensen waaronder Anneke en Egon. Wat is de kans dat Egon vóór Anneke staat. In gewone taal: De kans dat Egon vóór Anneke staat is even groot als de kans dat Anneke vóór Egon staat. Eén van beide situaties treedt op. Dus de kans voor elke situatie is 1. 2

9 Kans Maak nu opgave 4 van bladzijde 2.

10 Combinatoriek en kans (herhaling) De uitkomsten van geordende grepen van k uit n met herhaling (permutaties) hebben gelijke kans 1 n k. De uitkomsten van geordende grepen van k uit n zonder herhaling (permutaties) hebben gelijke kans 1 npk. De uitkomsten van ongeordende grepen van k uit n zonder herhaling (combinaties) hebben gelijke kans 1 nck. De uitkomsten van ongeordende grepen van k uit n met herhaling (combinaties) hebben ongelijke kans.

11 Combinatoriek en kans Voorbeeld: Vaas met 10 nummers 1 tot en met 10. Je pakt 4 nummers met terugleggen en let op de volgorde. De kans op uitkomst 3437 is Je pakt 4 nummers zonder terugleggen en let op de volgorde. 1 De kans op uitkomst 3475 is = npr Je pakt 4 nummers zonder terugleggen en let niet op de volgorde. 1 De kans op uitkomst 3,4,7,5 is = ncr Je pakt 4 nummers met terugleggen en let niet op de volgorde. De kans op uitkomst 3,4,3,7 is ongelijk aan de kans op 3,4,7,5.

12 Combinatoriek en kans Voorbeeld 1 7 wielrenners in de kopgroep, 3 daarvan zullen het podium bestijgen. Hoeveel mogelijke opstellingen zijn er?

13 Combinatoriek en kans Voorbeeld 1 7 wielrenners in de kopgroep, 3 daarvan zullen het podium bestijgen. Hoeveel mogelijke opstellingen zijn er? Oplossing Een greep van 3 uit 7 zonder herhaling. Volgorde is van belang. Aantal mogelijkheden: 7 npr 3 = 210.

14 Combinatoriek en kans Voorbeeld 1 7 wielrenners in de kopgroep, 3 daarvan zullen het podium bestijgen. Hoeveel mogelijke opstellingen zijn er? Met redeneren: Voor plaats 1 zijn er 7 mogelijkheden, voor plaats 2 zijn er 6 mogelijkheden en 5 mogelijkheden voor plaats 3. Totaal: = 7 30 = 210.

15 Combinatoriek en kans Voorbeeld 2 7 hardlopers in de kopgroep, 3 daarvan gaan naar de halve finale. Hoeveel mogelijke combinaties zijn er voor de halve finale?

16 Combinatoriek en kans Voorbeeld 2 7 hardlopers in de kopgroep, 3 daarvan gaan naar de halve finale. Hoeveel mogelijke combinaties zijn er voor de halve finale? Oplossing Een greep van 3 uit 7 zonder herhaling. Volgorde is niet van belang. Aantal mogelijkheden: 7 ncr 3 = 35.

17 Combinatoriek en kans Voorbeeld 2 7 hardlopers in de kopgroep, 3 daarvan gaan naar de halve finale. Hoeveel mogelijke combinaties zijn er voor de halve finale? Met redeneren: Voor plaats 1 zijn er 7 mogelijkheden, voor plaats 2 zijn er 6 mogelijkheden en 5 mogelijkheden voor plaats 3. Totaal: = 7 30 = 210. Maar de volgorde is niet van belang. Er is dubbel geteld. Je kunt de drie plaatsen op 3 2 = 6 manieren verwisselen. Dus totaal aantal mogelijkheden: 210 : 6 = 35.

18 Combinatoriek en kans Permutaties npr = n n 1 n 2 n r 1 = n! n r! Combinaties ncr = n r = n! r! n r! Gevolg ncr = npr r! (je deelt de dubbele tellingen eruit, want de volgorde doet er niet toe.)

19 Combinatoriek en kans Maak opgave 9 van bladzijde 10.

20 De product- en de somregel U is de uitkomstenruimte. V en W zijn onafhankelijke gebeurtenissen in U. Dan geldt: P V W = P(V) P(W). (zie blok 1, les 4)

21 De product- en de somregel U is de uitkomstenruimte. V en W zijn onafhankelijke gebeurtenissen in U. Dan geldt: P V W = P(V) P(W). (zie blok 1, les 4) Sluiten V en W elkaar uit, dus V W = dan geldt: P V W = P V + P(W). Deze eigenschappen kun je gebruiken om rechtstreeks kansen uit te rekenen als je de kansen van V en W kent.

22 De productregel Voorbeeld In een vaas zitten 6 ballen, 2 witte en 4 rode. Je trekt drie keer zonder terugleggen een bal. Wat is de kans op twee witte ballen?

23 De productregel Voorbeeld In een vaas zitten 6 ballen, 2 witte en 4 rode. Je trekt drie keer zonder terugleggen een bal. Wat is de kans op twee witte ballen? Er zijn drie mogelijkheden, je trekt WWR, WRW of RWW. Bij WWR is de kans: = Bij WRW is de kans: = Bij RWW is de kans: = Totaal: 3 15 = 1 5.

24 Kansverdelingen Je werpt met een zuivere dobbelsteen. Het aantal mogelijke ogen is 1, 2, 3, 4, 5 of 6. X = het aantal ogen dat is gegooid. X wordt een toevalsgrootheid of stochast genoemd. De waarden van X zijn elementen van een gebeurtenis.

25 Kansverdelingen Je werpt met een zuivere dobbelsteen. Het aantal mogelijke ogen is 1, 2, 3, 4, 5 of 6. X = het aantal ogen dat is gegooid. X wordt een toevalsgrootheid of stochast genoemd. In de tabel staan de kansen bij de mogelijke waarden van X.

26 Kansverdelingen Je werpt met een zuivere dobbelsteen. Het aantal mogelijke ogen is 1, 2, 3, 4, 5 of 6. X = het aantal ogen dat is gegooid. X wordt een toevalsgrootheid of stochast genoemd. In de tabel staan de kansen bij de mogelijke waarden van X. Een tabel met de kansen bij een stochast, heet een kansverdeling.

27 Kansverdelingen Voorbeeld Je werpt met twee zuivere dobbelstenen. X = de som van het aantal ogen.

28 Kansverdelingen Voorbeeld Je werpt met twee zuivere dobbelstenen. X = de som van het aantal ogen dat is gegooid. In de tabel staan de mogelijke waarden van X.

29 Kansverdelingen Voorbeeld Je werpt met twee zuivere dobbelstenen. X = de som van het aantal ogen dat is gegooid. In de tabel staan de mogelijke waarden van X. De kansverdeling is:

30 Kansverdelingen Stel dat de geboorte van een meisje even waarschijnlijk is als de geboorte van een jongen. X = het aantal meisjes in dit gezin van drie kinderen. Wat is de kansverdeling van X?

31 Kansverdelingen Stel dat de geboorte van een meisje even waarschijnlijk is als de geboorte van een jongen. X = het aantal meisjes in dit gezin van drie kinderen. Wat is de kansverdeling van X?

32 Kansverdelingen In een doos zitten 10 ballen, vier witte en zes zwarte. Je trekt vijf ballen zonder terugleggen. X is het aantal witte ballen in die greep. Bereken P(X = 2)

33 Kansverdelingen In een doos zitten 10 ballen, vier witte en zes zwarte. Je trekt vijf ballen zonder terugleggen. X = het aantal witte ballen in die greep. Bereken P(X = 2) Een ongeordende greep zonder herhaling. Voor 2 witte ballen heb je 4 2 mogelijkheden. Voor de resterende drie zwarte ballen heb je 6 3 mogelijkheden. Totaal voor deze greep: mogelijkheden.

34 Kansverdelingen In een doos zitten 10 ballen, vier witte en zes zwarte. Je trekt vijf ballen zonder terugleggen. X = het aantal witte ballen in die greep. Bereken P(X = 2). Een ongeordende greep zonder herhaling. Voor 2 witte ballen heb je 4 2 mogelijkheden. Voor de resterende 3 zwarte ballen heb je 6 3 mogelijkheden. Totaal voor deze greep: mogelijkheden. Om 5 ballen uit 10 te kiezen heb je 10 5 mogelijkheden. De kans op deze greep van 2 witte ballen is = 0,47

35 Kansverdelingen In een doos zitten 10 ballen, vier witte en zes zwarte. Je trekt vijf ballen zonder terugleggen. X = het aantal witte ballen in die greep. Bereken de kansverdeling bij X.

36 Kansverdelingen In een doos zitten 10 ballen, vier witte en zes zwarte. Je trekt vijf ballen zonder terugleggen. X = het aantal witte ballen in die greep. Bereken de kansverdeling bij X. P(X=0) = P(X=2) = P(X=4) = = 0,024 P(X=1) = = 0,476 P(X=3) = = 0, = 0,238 = 0,238

37 De hypergeometrische verdeling In een doos zitten n ballen, w witte en z zwarte ballen, w + z = n. Je trekt r ballen zonder terugleggen. X = het aantal witte ballen in die greep. De kansverdeling bij X heet de hypergeometrische verdeling. P(X=k) = w k n r z r k.

38 Oefenen Maak de opgaven van Hoofdstuk 2, paragraaf 1 en 2 en in ieder geval: Van paragraaf 1: Opgave 6, 8, 9, 10 en 11. Van paragraaf 2: Opgave 6, 9, 10, 13, 15.

39 Huiswerk Inleveren: Van paragraaf 1: Overzichtsvraag 3 (blz 6) Van paragraaf 2: Overzichtsvraag 2 (blz 13)

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 1: Wegendiagrammen, bomen en geordende grepen (deze les sluit aan bij de paragrafen 1 en 2 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1 Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

wiskundeleraar.nl

wiskundeleraar.nl 2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2.

Bovenstaand schema kan je helpen bij het bepalen van het soort telprobleem en de berekening van het aantal mogelijkheden 2. Telproblemen voor 4 HAVO wiskunde A In het schoolexamen 2 van 4 HAVO wiskunde A zijn de opgaven over de telproblemen (hoofdstuk 4) erg slecht gemaakt. Dat moet beter kunnen, zou ik denken Ik bespreek hier

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het werpen

Nadere informatie

VWO Wiskunde D Combinatoriek en Rekenregels

VWO Wiskunde D Combinatoriek en Rekenregels VWO Wiskunde D Combinatoriek en Rekenregels Combinatoriek en rekenregels Inhoudsopgave Wegendiagrammen en bomen Geordende grepen 7 3 Roosters 4 Ongeordende grepen 6 5 Het vaasmodel 6 Combinatorische vraagstukken

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 5 Dinsdag 28 September 1 / 25 1 Kansrekening Indeling: Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen Voor software R: van http://sourceforge.net

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Inhoudsopgave Binomiale verdelingen 1 De kansdefinitie 1 2 Combinatoriek en kans 7 3 Het binomium van Newton 14 4 Verwachting 17 5 Binomiale verdeling 25 6 Cumulatieve binomiale kansen

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Inleiding Kansrekening

Inleiding Kansrekening Inleiding Kansrekening voor het 1e jaar wiskunde, 2e jaar natuurkunde en informatica docent: Hans Maassen November 2007 Onderwijsinstituut voor Wiskunde, Natuurkunde en Sterrenkunde Radboud Universiteit

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

2 Kansen optellen en aftrekken

2 Kansen optellen en aftrekken 2 Kansen optellen en aftrekken Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/ VWO wi-a Kansrekening Optellen/aftrekken Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel B Kansrekening Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Murray R. Spiegel, John J. Schiller, R. A. Srinivasan: (Schaum s Outline of Theory and Problems of) Probability and

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

1 Beginselen kansrekening

1 Beginselen kansrekening 1 Beginselen kansrekening Drs. J.M. Buhrman Inhoudsopgave 1.1 Experimenten en uitkomstenruimtes 1.2 Gebeurtenissen als verzamelingen 1.3 Kansregels 1.4 Voorwaardelijke kansen, onafhankelijkheid, nog meer

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: kansrekening 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

In het vervolg gaan we steeds uit van een verzameling A bestaande uit n verschillende objecten. We geven de elementen van A een naam door ze te

In het vervolg gaan we steeds uit van een verzameling A bestaande uit n verschillende objecten. We geven de elementen van A een naam door ze te Tellen 1. Telproblemen Tussen sommige objecten maken we onderscheid (die beschouwen we dus allemaal als verschillend), bijvoorbeeld tussen de 26 letters van het alfabet, tussen een peer, een appel en een

Nadere informatie

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Rik Lopuhaä TU Delft 30 januari, 2015 Rik Lopuhaä (TU Delft) Schatten van de Duitse oorlogsproductie 30 januari,

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 1 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 1 les 1 Paragraaf 1 Wegendiagrammen en bomen Opgave 1 a) Een mogelijkheid is om 6 stukjes papier te nemen en daar de cijfers 1 tot en met 6 op te zetten. Schudt de papiertjes door elkaar. Pak één voor één de papiertjes

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

Keuze onderwerp: Kansrekening 5VWO-wiskunde B

Keuze onderwerp: Kansrekening 5VWO-wiskunde B Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...

Nadere informatie

Alex van den Brandhof. Kansrekening. een introductie. Epsilon Uitgaven Utrecht

Alex van den Brandhof. Kansrekening. een introductie. Epsilon Uitgaven Utrecht Alex van den Brandhof Kansrekening een introductie Epsilon Uitgaven Utrecht Voorwoord In moderne wetenschappen is kansrekening een onmisbaar vak. Het verdient daarom een vaste plaats in het wiskundeonderwijs.

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

Havo 4, Handig tellen en Kansrekenen.

Havo 4, Handig tellen en Kansrekenen. Havo, Handig tellen en Kansrekenen. Getal en ruimte boek, hoofdstuk. Handig tellen. Paragraaf, de vermenigvuldig regel: Als je EN hoort, doe je en de plusregel: Als je OF hoort, doe je + a. Er zijn mogelijkheden,

Nadere informatie

Forensische Statistiek

Forensische Statistiek Voorbereidend materiaal Wiskundetoernooi 200: Forensische Statistiek Dit jaar is forensische statistiek het thema van de middagwedstrijd Sum of Us van het Wiskundetoernooi. In dit boekje vind je het voorbereidend

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

Kansrekening en Statistiek voor informatici

Kansrekening en Statistiek voor informatici Leidraad bij het college Kansrekening en Statistiek voor informatici Esdert Edens februari 2006 Edens 060214-1610 i Kansrekening en statistiek (Inf.) 1. Inleiding......................................................................

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 14 Oktober 1 / 71 1 Kansrekening Indeling: Bayesiaans leren 2 / 71 Bayesiaans leren 3 / 71 Bayesiaans leren: spelletje Vb. Twee enveloppen met kralen, waarvan

Nadere informatie

Overzicht Theorie Kansrekening

Overzicht Theorie Kansrekening Overzicht Theorie Kansrekening 7N5p 2013 GGHM Inhoud 1 Kansrekening... 3 1.1 Uitkomst en uitkomstenruimte... 3 1.1.1 Complement... 3 1.1.2 Doorsnede... 4 1.1.3 Vereniging... 4 1.2 Kans en kansexperiment...

Nadere informatie

3 Discrete kansverdelingen

3 Discrete kansverdelingen 3 Discrete kansverdelingen 1 Inhoudsopgave 3.0 Verschillende mogelijkheden 3 3.1 Kansverdelingen 4 3. Verwachtingswaarde en standaardafwijking 6 3.3 Zonder terugleggen 3.4 Wel/Niet 4 3.5 De variantie 31

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 13 September 1 / 47 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Deze tekst sluit aan op de tekst: Kansrekening voor de tweede

Nadere informatie

Combinatoriek en kansrekening

Combinatoriek en kansrekening Combinatoriek en kansrekening (SV 2.1) P.J. den Brok MA 26 september 2013 Inhoudsopgave 1 De kansrekening 4 1.1 Belangrijke combinatorische functies.................... 4 1.2 Rangschikkingen..............................

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

V6 Programma tijdens de laatste weken

V6 Programma tijdens de laatste weken V6 Programma tijdens de laatste weken Datum ma. 18-4-11 di. 19-4-11 ma. 5-4-11 di. 6-4-11 ma. -5-11 di. 3-5-11 ma. 9-5-11 di. 10-5-11 Activiteit 1. Differentiëren. Vergelijkingen oplossen e Paasdag 3.

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Telproblemen Oefening 1 Een beveiligingscode bestaat uit 3 karakters, die elk een cijfer of een letter kunnen zijn. Bijvoorbeeld C13 of 2D9. Hoeveel zulke codes zijn er (A) 17 576

Nadere informatie

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Mathematisch Instituut 333 CA Leiden Tentamen Inleiding Kansrekening augustus,. 3. uur Docent: F. den Hollander Bij dit tentamen is het gebruik van een (grafische) rekenmachine

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Nieuwe wiskunde tweede fase Profiel N&G en N&T Freudenthal instituut. Wachttijden

Nieuwe wiskunde tweede fase Profiel N&G en N&T Freudenthal instituut. Wachttijden Nieuwe wiskunde tweede fase Profiel N&G en N&T Freudenthal instituut Wachttijden Bij de foto op de voorkaft: Lange wachtrij van Zuidafrikaanse kiezers op de historische dag van de vrije verkiezingen (

Nadere informatie

Inhoud leereenheid 13. Combinatoriek. Introductie 23. Leerkern 24. Samenvatting 45. Zelftoets 46

Inhoud leereenheid 13. Combinatoriek. Introductie 23. Leerkern 24. Samenvatting 45. Zelftoets 46 Inhoud leereenheid 13 Combinatoriek Introductie 23 Leerkern 24 13.1 Tellen, maar wat? 24 13.2 De ene verzameling is de andere niet, of toch wel? 27 13.3 Waar alle tellen mee begint 28 13.4 Herhalingsrangschikkingen

Nadere informatie

4 20 maar dan speelt 4v1 thuis tegen 4v2 maar 4v1 speelt ook uit tegen 4v2 want deze wedstrijd tel je bij 4v2. wedstrijden, dus totaal 1 n ( n 1)

4 20 maar dan speelt 4v1 thuis tegen 4v2 maar 4v1 speelt ook uit tegen 4v2 want deze wedstrijd tel je bij 4v2. wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Combinatoriek.. Telproblemen visualiseren Opgave : 3 voordeel: een wegendiagram is compacter nadeel: bij een wegendiagram moet je weten dat je moet vermenigvuldigen terwijl je bij een boomdiagram

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Combinatoriek. Wisnet-hbo. update aug. 2007

Combinatoriek. Wisnet-hbo. update aug. 2007 Combinatoriek 1 Permutaties Wisnet-hbo update aug. 2007 Op hoeveel manieren kun je de volgorde van de vier verschillende letters van het woord BOEK op een rijtje zetten? De verschillende volgorden (permutaties)

Nadere informatie

PYTHAGORAS. Wiskundetijdschrift voor jongeren. tsi Os

PYTHAGORAS. Wiskundetijdschrift voor jongeren. tsi Os PYTHAGORAS Wiskundetijdschrift voor jongeren 5 bc ON tsi Os ,ah^^.. De commissie ter bevordering der bestudering der Kansrekening Pythagoras Jaargang 7 no 5 Drie van de vijf Een kamer. Aan tafel Joop,

Nadere informatie

Statistiek voor A.I. College 7. Dinsdag 2 Oktober

Statistiek voor A.I. College 7. Dinsdag 2 Oktober Statistiek voor A.I. College 7 Dinsdag 2 Oktober 1 / 30 2 Deductieve statistiek Kansrekening 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft is de kans op een positieve

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

Eindexamen wiskunde A1 vwo 2001-II

Eindexamen wiskunde A1 vwo 2001-II Eindexamen wiskunde A vwo 00-II 4 Antwoordmodel Opgave Vakkenkeuze Maximumscore 47,9% van 49 = 6 meisjes doen economie 60,% van 44 = 07 jongens doen economie Het totaal van de percentages in de kolom meisjes

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

De uitkomstenverzameling of het universum is de verzameling van alle mogelijke uitkomsten van het experiment : { }

De uitkomstenverzameling of het universum is de verzameling van alle mogelijke uitkomsten van het experiment : { } Hoofdstuk 3 Kansrekening en simulatie 3.1 Basisbegrippen We introduceren de basisbegrippen uit de kansrekening met het experiment het gooien van een dobbelsteen. Dit experiment is vaak herhaalbaar en de

Nadere informatie

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Wiskunde voor kunstmatige intelligentie, 2006 Les 9 Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Sommige vragen uit de kanstheorie hebben een antwoord dat niet met de intuïtie van iedereen

Nadere informatie

COMBINATORIEK. Vb2. Hoeveel verschillende natuurlijke getallen van drie cijfers kan je vormen? Gebruik een boomdiagram.

COMBINATORIEK. Vb2. Hoeveel verschillende natuurlijke getallen van drie cijfers kan je vormen? Gebruik een boomdiagram. 1. Eenvoudige telproblemen COMBINATORIEK In het 4 de jaar hebben we kennis gemaakt met eenvoudige telproblemen. Om deze telproblemen op te lossen leerden we het aantal tellen met behulp van o.a. boomdiagrammen.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a c d e Hoofdstuk - De inomiale verdeling. Succes en mislukking ladzijde 9 zoon dochter DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters Het aantal mogelijkheden

Nadere informatie

5 Totaalbeeld. Samenvatten. Achtergronden. Testen

5 Totaalbeeld. Samenvatten. Achtergronden. Testen 5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat

Nadere informatie

som 1 2 3 4 5 6 4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set.

som 1 2 3 4 5 6 4. Het uiteindelijke wedstrijdverloop bij de damesfinale uit de vorige opgave was als volgt: Novotna won de eerste set. 1. Op een grote scholengemeenschap volgen 500 leerlingen één of meer van de vakken biologie, scheikunde en natuurkunde gedurende het eerste semester. Het afdelingshoofd heeft de de gegevens in een diagram

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Kansrekening en Statistiek p.1 Overzicht Kansrekening en Statistiek - Geschiedenis - Loterij - Toetsen

Nadere informatie

9.1 Gemiddelde, modus en mediaan [1]

9.1 Gemiddelde, modus en mediaan [1] 9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Meerkeuzevragen wiskunde psychologie, voorbeeldopgaven juli 2005, blz. 1

Meerkeuzevragen wiskunde psychologie, voorbeeldopgaven juli 2005, blz. 1 Meerkeuzevragen wiskunde psychologie, voorbeeldopgaven juli 005, blz. 1 Eerst even een overzicht van de hieraan verbonden leerstof : - Getallenverzamelingen en bewerkingen, opbouw, volgorde, - Machtsverheffen,

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c Hoofdstuk : Het kansbegrip.. Kansen Opgave : De kans dat ze gooit is groter, want ze kan op zes manieren gooien: -, 2-, -, -, -2, -. Ze kan op manieren 9 gooien: -, -, -, -. Opgave 2: e. Opgave : 9 0 2

Nadere informatie