Samenvatting Statistiek

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Samenvatting Statistiek"

Transcriptie

1 Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd is. De hoofdstukken 4 t/m 6 gaan over statistiek: op grond van waarnemingen uitspraken doen omtrent onbekende parameters in het model. Hierin is de mate waarin gebeurtenissen optreden bekend, en wordt gevraagd hier de juiste parameters bij te zoeken zodat een kansmodel ontstaat. Hoofdstuk 1: Basisbegrippen Uitkomstenruimte S: Verzameling van alle mogelijke uitkomsten van een experiment Gebeurtenis A: Eel deelverzameling van S, we schrijven Complement van A: Alle uitkomsten in S behalve de uitkomsten van A, we schrijven Bovenstaande begrippen kunnen gemakkelijk duidelijk gemaakt worden in een Venn diagram: De vereniging van gebeurtenissen A en B is het gebied waar A en/of B voorkomt, we schrijven De doorsnede is het gebied in S waarin zowel gebeurtenis A als B optreedt, we schrijven Indien A en B geen doorsnede hebben noemen we ze disjunct, we schrijven :

2 Indien alle gebeurtenissen A ook in B zitten, noemen we A een deelverzameling van B, : Aftelbaar oneindig: Een reeks die omgeschreven kan worden naar de reeks natuurlijke getallen, bijv. aantal keer gegooid met een munt is {1, 2, 3,...} Overaftelbaar: Een reeks die niet omgeschreven kan worden naar de reeks natuurlijke getallen, bijv. tijd tussen 2 klanten is {2 min, 3 min, 7 min, 4 min, } Frequentiequotiënt: Empirische wet van grote getallen: als, dus je kunt de kans op succes steeds beter bepalen naarmate je meer experimenten doet. Definities van kansen (Axioma s van Kolmogorov): 1. 0 voor alle Als,, disjunct, dan Eigensch appen van kansen: 0 Als, dan 1 1 Voorwaardelijke kans: Kans op B gegeven dat A al is gebeurd, we schrijven. In dit geval noemen we A de gereduceerde uitkomstenruimte. Twee gebeurtenissen heten onderling onafhankelijk als geldt da t Wet van de totale k ans :... ( disjuncte gebeurtenissen) Stelling van Bayes:... ( disjuncte gebeurtenissen)

3 Hoofdstuk 2: Discrete kansverdelingen Stochastische variabele: mogelijke uitkomst van een experiment. Stochastische variabelen kunnen aantallen (aantal keer kop) of hoeveelheden (lengte, temperatuur) aangeven. Waarde: Een getal dat voor de stochastische variabele ingevuld kan worden, bijv. als je 2 keer met een munt gooit en X is het aantal keer kop, dan kan X de waarden 0,1 of 2 aannemen. Kans: Kans dat de stochastisch e variabele X op een bepaalde waarde x uitkomt Verdelingsfunctie: de functie, meestal i.p.v. Kansverdeling: Alle mogelijke verzamelingen van de waarden en bijbehorende kansen vormen samen een kansverdeling van een stochastische variabele. Discrete kansverdeling: kansverdeling van een eindige of aftelbaar oneindige stochastische variabele. De volgende discrete kansverdelingen moet je kennen: Ontaarde verdeling: De stochastische variabele kan maar 1 waarde aannemen, dus eigenlijk is dit geen echte stochas tische verdeling. 1 voor een zekere Alternatieve verdeling (Bernoulli experiment): Een experiment met slechts 2 uitkomsten: succes of mislukking. Stel X = aantal keer succes en p is de kans op succes. 1, 0 1 Binomiale verdeling: Een reekst Bernoulli experimenten achter elkaar, waarbij de uitkomsten van eerdere experimenten de uitkomsten van de volgende experimenten niet beïnvloeden (trekking met teruglegging). Hierin is n het aantal trekkingen, p de kans op succes e n k het aantal keer succes. We schrijven ~,. 1 met!!! Hypergeometrische verdeling: Een steekproef zonder teruglegging. Hierin is N de totale grootte van de populatie waaruit getrokken wordt (bijv. het totaal aantal ballen in een vaas), r is het aantal elementen uit de steekproef met een bepaald kenmerk (bijv. het aantal rode ballen IN de vaas), x is het aantal getrokken elementen met dat kenmerk (bijv. aantal rode ballen die je UIT de vaas gehaald hebt), n is het totaal aantal trekkingen. Poisson verdeling: Een wet van zeldzame gebeurtenissen, bijv. aantal storingen per jaar. Hierin geeft de in tensiteit weer. We schrijven ~.! Geometrische verdeling: Verdeling die je vertelt hoe lang het duurt voordat je voor de eerste keer succes hebt bij experimenten met teruglegging. Hierbij is geheugenloosheid van belang, bijv. het feit dat je al 10 keer geen zes hebt gegooid maakt de kans op zes bij het 11 e experiment niet groter. We schrijven ~. 1 1 Bij deze verdeling kan ook een failure rate berekend worden:

4 Simultane kansverdeling: kansverdeling met 2 stochastische variabelen. De stochastische variabelen in een simultane kansverdeling zijn onderling onafhankelijk als voor elke x en y geldt dat,, waarbij je en uit de marginale verdelingen kunt halen. Anders heten X en Y afhankelijk. Marginale kansverdeling: Het berekenen van de kansverdeling van één stochastische variabele uit een simultane kansverdeling. Indien bij een hypergeometrische verdeling de populatie erg groot is en het aantal trekkingen laag, dan kan de teruglegging als het ware verwaarloosd worden, waardoor de verdeling overgaat in een binomiale verdeling. In veel gevallen rekent dit makkelijker. Indien bij een binomiale verdeling het aantal experimenten erg hoog is en de kans is laag, dan kan deze verdeling benaderd worden met een poisson verdeling. Dus als en 0, dan. Verwachting: de gemiddelde waarde die X zal aannemen. Je doet steeds (waarde * kans) en al deze uitkomsten sommeer je. Kansverdeling van functies van X en Y: max, 22,11,22,2 Verwachting van fucties van X en Y: max, 2 1 max, 12 max, 2... max, Eigenschappen van verwachtingen: met... Als X en Y onderling onafhankelijk zijn Steekproefgemiddelde:,,, Variantie: Een maat van spreiding rond de verwachting. Je berekent eerst het gemiddelde E(X). Vervolgens haal je van alle mogelijke waarden van X het gemiddelde af, waardoor je een verschilterm overhoudt. Deze kwadrateer je. Vervolgens vermenigvuldig je de gekwadrateerde verschilterm met de kans die bij de desbetreffende waarde hoort. Tenslotte tel je alle gevonden uitkomsten bij elkaar op en je hebt de variantie.

5 Eigenschappen van variantie: 2, LET OP: 2, ALS X en Y onderling onafhankelijk LET OP: ALS X en Y onderling onafhankelijk Algemeen:... 2, Standaardafwijking: Covariantie: een maat van afhankelijkheid tussen de stochastische variabelen X en Y.,, Eigenschappen van covariantie: Als X en Y onderling onafhankelijk, Dan, 0, maar andersom hoeft niet per se!,,,,,,,,,, Correlatiecoëfficiënt: Een schaalvrije covariantie., Voor een binomiale verdeling geldt: 1 Voor een poisson verdeling geldt: Voor een geometrische verdeling geldt: 1/ 1/,

6 Hoofdstuk 3: Continue kansverdelingen Continue stochastische variabelen zijn stochastische variabelen die alle reële getallen in een bepaald interval of in de hele reële rechte als waarden kunnen aannemen. De kans op één bepaalde waarde is nul, omdat het interval dan geen breedte heeft, waardoor het oppervlak onder de grafiek een oneindig dun strookje wordt, en dit strookje heeft geen oppervlakte. De functie die de kansverdeling beschrijft heet de kansdichtheid. Twee belangrijke eigenschappen van zijn: 0 1 Vergelijking tussen discrete en continue kansverdelingen:

7 Uniforme (of homogene) verdeling: Exponentiële verdeling: 1/ 1/ Een exponentiële functie wordt gekenmerkt door geheugenloosheid, bijv. als een telefoongesprek al 15 minuten heeft geduurd, is de kans dat het nog 5 minuten duurt even groot als de kans dat een net begonnen telefoongesprek nog 5 minuten duurt. Normale verdeling: als ~, (Standaardnormale verdeling als ~0,1) Φ

8 Centrale limietstelling: Laat,, onderling onafhankelijke stochastische variabelen zijn die alle dezelfde verdeling hebben met eindige verwachting en e indige variantie. Dan geldt: lim lim Φ / Hieruit volgt dat bij grote de som van,, bij benadering normaal verdeeld is met verwachting en variantie. Φ is de verdelingsfunctie van x voor een normale verdeling. Indien je te maken hebt met een oneindige variantie (bijv. het aantal inwoners in een stad, vergelijk Hengelo met Peking, daar zit een gigantische spreiding in en een gemiddelde is moeilijk aan te wijzen) dan zeggen we dat de verdeling een zware staart heeft. Normale benadering van binomiale verdeling: Bij grote kan de binomiale verdeling benaderd worden als een normale verdeling met en 1. Hierbij moet wel rekening gehouden worden met een zogenaamde continuïteitscorrectie: de ondergrens moet je 0,5 lager kiezen en de bovengrens 0,5 hoger.

9 Hoofdstuk 4: Schatten van parameters Schatter: een methode om p te bepalen (dus een functievoorschrift) Schatting: Resultaat van de schatter (dus een getal) Meest aannemelijke schatter: de schatter die het meest voor de hand ligt, dus alles optellen en delen door. Meest aannemellijke schatter voor het gemiddelde:,,, Meest aannemellijke schatter voor het gemiddelde: NIET ZUIVER WEL ZUIVER Zuivere schatter: (dus onafhankelijk van ) Zuivere schatter voor gemiddelde:,,, (steekproefgemiddelde) Zuivere schatter voor va riantie: (steekproefvariantie) Verwachte kwadratische fout: Verwachte kwadratische fout gemiddelde: Verwachte kwadratische fout variantie: Beste schatter: De schatter met de kleinste kwadratische fout. Dit hoeft niet altijd de meest aannemelijke schatter of zuivere schatter te zijn! LET OP: Bij deze berekeningen is het belangrijk om het verschil te maken tussen X en E(X). X is een uitkomst van een experiment, en kan in principe alle waarden aannemen. Deze is dus bijna altijd onbekend. Je kunt dus ook NIET stellen dan X 1 + X X n = n*x 1. E(X) daarentegen is de gemiddelde uitkomst van X die je verwacht, en deze is WEL voor alle X i experimenten hetzelfde, dus hier geldt: E(X 1 + X X n ) = n*e(x 1 ).

10 Om een kansmodel te kunnen maken moeten er eerst metingen gedaan worden. De uitkomsten van deze verschillende metingen kun je indelen in klassen. Bij iedere klasse noteer je vervolgens hoe vaak een meetresultaat binnen die klasse valt. Vervolgens kun je het frequentiequotiënt berekenen, zie hoofdstuk 1. Tenslotte kun je een histogram maken waarin de hoogte van de staven berekend wordt volgens ë/. De oppervlakte van een rechthoekige staaf stelt het frequentiequotiënt voor. Bijv. de levertijd in dagen van een bepaald product: < ,4833 0, < ,3833 0, < ,0500 0, < ,0167 0, < ,0333 0, < ,0167 0, < < ,0167 0,0004 0,014 0,012 0,01 0,008 0,006 0,004 0,002 0 Histogram Hoogte

11 Hoofdstu k 5: Betrouwbaarheidsintervallen De kans bij een betrouwbaarheidsinterval (afkorting: BI) geeft de kans dat daadwerkelijk in het interval ; zit: 1 Steekproef Betrouwbaarheidsinterval voor : ; Hierbij moet c bepaald worden aan de hand van de student verdeling, met behulp van het aantal vrijjheidsgraden 1 en de waarde 1 Voorspellingsinterval voor de : 1 ; 1 Hierbij moet c bepaald worden aan de hand van de student verdeling, met behulp van het aantal vrijjheidsgraden 1 en de waarde 1. Je gebruikt de student verdeling omdat je werkt met de steekproefvariantie S (de zuivere schatter voor ), in plaats van de e chte variantie. Betrouwbaarheidsinterval voor : ; Hierbij moeten en bepaald worden aan de hand van de chi kwadraat verdeling, met behulp van 1 en de waarden e n 1. LET OP: vergeet niet te wortertrekken bij een BI voor : ; Indien ersprake is van een test met een binomiale verdeling, dan kan het betrouwbaarheidsinterval benaderd worden met de normale verdeling: 1 (bijv. 1 α=0,95 > z=1,96) 2 Steekproeven Indien er gegevens van 2 steekproeven bekend zijn, moet je kijken of er sprake is van gepaarde waarnemingen. Dan horen er steeds twee waarnemingen bij elkaar, bijvoorbeeld: Fabriek Voor (x) 30,5 18,5 24,5 32,0 16,0 15,0 23,5 25,5 28,0 18,0 Na (y) 23,0 21,0 22,0 28,5 14,5 15,5 24,5 21,0 23,5 16,5 Als je het verschil in verwachte urenvermindering wilt weten, maak je een nieuwe variabele Z = X Y: Fabriek Verschil(z) 7,5 2,5 2,5 3,5 1,5 0,5 1 4,5 4,5 1,5

12 Van deze nieuwe z waarden bepaal je vervolgens het steekproefgemiddelde, steekproefvariantie, betrouwbaarheidsintervallen op dezelfde manier als hierboven beschreven staat voor 1 steekproef. Is dit niet het geval, dan heb je te maken met twee onafhankelijke steekproeven, bijvoorbeeld de tarweopbrengst per hectare van verschillende akkers. Hier is het dus NIET zo dat op dezelfde akker zowel A als B wordt verbouwd en daarna gekeken wat de opbrengst is, maar we pakken gewoon een paar akkers waarop tarwemerk A groeit en een paar andere akkers waarop tarwemerk B groeit: X = Tarwemerk A Y = Tarwemerk B Als je het verschil in verwachte opbrengst wilt weten, gebruik je het volgende betrouwbaarheidsinterval:,. = aantal metingen van X = aantal metingen van Y word t bepaald met de studentverdeling, bij 2 en 1 In sommige gevallen hebben de twee steekproeven allebei een andere variantie, bijvoorbeeld ~, en ~,. Er kan dan een betrouwbaarheidsinterval opgesteld worden voor het quotiënt : ;. Hierbij moet je en bepale n met behulp van de Fisher verdeling. o Voor het bepalen van geldt: 1, 1 o Voor het bepalen van geldt: 1, 1

13 Hoofdstuk 6: Toetsingstheorie Met behulp van toetsingstheorie kunnen we voorspellen of bepaalde hypothesen juist of onjuist zijn. Hiervoor stellen we twee hypothesen op: de nulhypothese H 0 en de alternatieve hypothese H 1. Dit kunnen zowel enkelvoudige hypothesen (één waarde voor de parameter mogelijk) als samengestelde hypothesen (de parameter komt uit een bepaald interval) zijn. Voordat je met rekenen begint stel je beide hypothesen op, evenals een kansmodel en een onbetrouwbaarheidsdrempel α. Als de kans op een bepaalde gebeurtenis volgens de nulhypothese erg onwaarschijnlijk is, dus kleiner dan de gestelde α, dan moet je de nulhypothese verwerpen. Om H 0 te kunnen verwerpen moet je een steekproeffunctie T=T(X 1,,X n ) opstellen, dit noemen we de toetstingsgrootheid. Als de uitkomst van T in het kritieke gebied K komt, verwerp je H 0. Hiervoor geldt:, voor alle Θ. De maximale kans onder H 0 om de nulhypothese te verwerpen heet de onbetrouwbaarheid van de toets. Deze vind je dus als volgt:, waarbij we c de kritieke waarde noemen. Heb je de kritieke waarde eenmaal gevonden, dan kun je gaan spelen met je onbekende parameter, bijvoorbeeld als de kans van een binomiaal experiment geschat is, dan wordt je onbekende parameter p (dus ). Stel dat H 0 zegt dat bij 70 trekkingen en 0,05, dan kun je berekenen dat H 0 verworpen wordt als de uitkomst van het experiment 4 of lager is (dus 4 is dan de kritieke waarde). Deze kritieke waarde zet je vast, en nu ga je met je kans spelen, stel 0,1. Hoe groot is dan de kans dat je H 0 (die stelt dat ) alsnog accepteert? Dan reken je uit: 4 70 en 0,1 0,16. Dus als H 0 zegt dat en in werkelijkheid geldat dat 0,1, dan heb je nog maar 16% kans dat H 0 verworpen wordt, ook al is H 0 hartstikke fout! Bovenstaande formule noemen we het onderscheidend vermogen van de toets. Omdat er een bepaalde onbetrouwbaarheid in de toets zit, is de kans aanwezig dat H 0 verworpen wordt terwijl hij in werkelijkheid wel juist is. Dit noemen we een fout van de eerste soort. De fout dat H 0 geaccepteerd wordt, terwijl hij in werkelijkheid verworpen zou moeten worden, noemen we een fout van de tweede soort. Hierbij vinden we de fout van de eerste soort het meest ernstig, daarom noemen we H 0 verwerpen de sterke uitspraak. De uitspraak H 0 niet verwerpen is de zwakke uitspraak, omdat je hiermee alleen ontkent dat H 1 juist is, maar niet bevestigt dat H 0 juist is. LET OP: Soms moet je α nog delen door 2, bijvoorbeeld als je bij een normale verdeling zowel de bovenste als onderste waarden wilt uitsluiten!

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Wiskunde B - Tentamen 2

Wiskunde B - Tentamen 2 Wiskunde B - Tentamen Tentamen van Wiskunde B voor CiT (57) Donderdag 4 april 005 van 900 tot 00 uur Dit tentamen bestaat uit 8 opgaven, 3 tabellen en formulebladen Vermeld ook je studentnummer op je werk

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Inhoud. 1 Inleiding tot de beschrijvende statistiek Maatstaven voor ligging en spreiding Kansrekening 99

Inhoud. 1 Inleiding tot de beschrijvende statistiek Maatstaven voor ligging en spreiding Kansrekening 99 Inhoud 1 Inleiding tot de beschrijvende statistiek 13 1.1 Een eerste verkenning 14 1.2 Frequentieverdelingen 22 1.3 Grafische voorstellingen 30 1.4 Diverse diagrammen 35 1.5 Stamdiagram, histogram en frequentiepolygoon

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur

Kansrekening en statistiek wi2105in deel 2 27 januari 2010, uur Kansrekening en statistiek wi2105in deel 2 27 januari 2010, 14.00 16.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen»

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Poortlandplein 6, 2628 BM Delft, The Netherlands

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Inleiding Statistiek

Inleiding Statistiek Inleiding Statistiek Practicum 1 Op dit practicum herhalen we wat Matlab. Vervolgens illustreren we het schatten van een parameter en het toetsen van een hypothese met een klein simulatie experiment. Het

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek Terugblik - Inductieve statistiek Afleiden van eigenschappen van een populatie op basis van een beperkt aantal metingen (steekproef) Kennis gemaakt met kans & kansverdelingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Algemeen overzicht inleiding kansrekening en statistiek

Algemeen overzicht inleiding kansrekening en statistiek Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

Statistiek voor A.I. College 3. Dinsdag 18 September 2012

Statistiek voor A.I. College 3. Dinsdag 18 September 2012 Statistiek voor A.I. College 3 Dinsdag 18 September 2012 1 / 45 2 Deductieve statistiek Kansrekening 2 / 45 Uitkomstenruimte 3 / 45 Vragen: voorspellen Een charlatan zegt te kunnen voorspellen of een ongeboren

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 5 oktober 007 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

SOCIALE STATISTIEK (deel 2)

SOCIALE STATISTIEK (deel 2) SOCIALE STATISTIEK (deel 2) D. Vanpaemel KU Leuven D. Vanpaemel (KU Leuven) SOCIALE STATISTIEK (deel 2) 1 / 57 Hoofdstuk 5: Schatters en hun verdeling 5.1 Steekproefgemiddelde als toevalsvariabele D. Vanpaemel

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18

Stochastiek 2. Inleiding in de Mathematische Statistiek 1 / 18 Stochastiek 2 Inleiding in de Mathematische Statistiek 1 / 18 t-toetsen 2 / 18 Steekproefgemiddelde en -variantie van normale observaties Stelling. Laat X 1,..., X n o.o. zijn en N(µ, σ 2 )-verdeeld. Dan:

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 6 oktober 009 Catherine De Clercq Statistische verwerking van gegevens Kursus statistiek voor fysici door Jorgen D Hondt

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Wiskunde B - Tentamen 1

Wiskunde B - Tentamen 1 Wiskunde B - Tentamen Tentamen 57 Wiskunde B voor CiT vrijdag januari 5 van 9. tot. uur Dit tentamen bestaat uit 6 opgaven, formulebladen en tabellen. Vermeld ook uw studentnummer op uw werk en tentamenbriefje.

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling.

6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Learning the Mechanics 6.1 Beschouw de populatie die wordt beschreven door onderstaande kansverdeling. De random variabele x wordt tweemaal waargenomen. Ga na dat, indien de waarnemingen

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie Deze week: Schatten Statistiek voor Informatica Hoofdstuk 6: Schatten Cursusjaar 2009 Peter de Waal Departement Informatica Statistische inferentie A Priori en posteriori verdelingen Geconjugeerde a priori

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Deel I : beschrijvende statistiek

Deel I : beschrijvende statistiek HOOFDSTUK 1 TYPISCHE FOUTEN BIJ STATISTIEK Foute gegevens Fouten in berekening kans Foute interpretatie resultaten Statistiek : de wetenschap van het leren uit data & van het meten, controleren en communiceren

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

Beschrijvend statistiek

Beschrijvend statistiek 1 Beschrijvend statistiek 1. In een school werd het intelligentiequotiënt gemeten van de leerlingen van het zesde jaar (zie tabel). De getallen werden afgerond tot op de eenheid. De berekeningen mogen

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Kanstheorie, -rekenen en bekende verdelingen

Kanstheorie, -rekenen en bekende verdelingen Kanstheorie, -rekenen en bekende verdelingen 1 Rekenregels kansrekenen Kans van de zekere gebeurtenis: P () = P (U) = 1 Kans van de onmogelijke gebeurtenis: P (;) = 0 Complementregel: P (A c ) = 1 P (A)

Nadere informatie

b. F (y) = 1 2 f. F (y) =

b. F (y) = 1 2 f. F (y) = Tentamen Statistische methoden MST-STM 27 juni 20, 9:00 2:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK

HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK HOOFDSTUK VI NIET-PARAMETRISCHE (VERDELINGSVRIJE) STATISTIEK 1 1. INLEIDING Parametrische statistiek: Normale Verdeling Niet-parametrische statistiek: Verdelingsvrij Keuze tussen de twee benaderingen I.

Nadere informatie

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16

Hiermee rekenen we de testwaarde van t uit: n. 10 ( x ) ,16 modulus strepen: uitkomst > 0 Hiermee rekenen we de testwaarde van t uit: n 10 ttest ( x ) 105 101 3,16 n-1 4 t test > t kritisch want 3,16 >,6, dus 105 valt buiten het BI. De cola bevat niet significant

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het

Nadere informatie

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede

Levende Statistiek. Een module voor Wiskunde D VWO. Jacob van Eeghen en Liesbeth de Wreede Levende Statistiek Een module voor Wiskunde D VWO Jacob van Eeghen en Liesbeth de Wreede Jacob van Eeghen en Liesbeth de Wreede, Leiden 2010 ctwo, Utrecht 2010 Dit lesmateriaal kan gebruikt worden voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 1 November 1 / 26 2 Statistiek Vandaag: Power Grootte steekproef Filosofie 2 / 26 Power 3 / 26 Power Def. De power (kracht) van een hypothese toets is (1 β),

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

DEZE PAGINA NIET vóór 8.30u OMSLAAN!

DEZE PAGINA NIET vóór 8.30u OMSLAAN! STTISTIEK 1 VERSIE MT15303 1308 1 WGENINGEN UNIVERSITEIT LEERSTOELGROEP MT Tentamen Statistiek 1 (MT-15303) 5 augustus 2013, 8.30-10.30 uur EZE PGIN NIET vóór 8.30u OMSLN! STRT MET INVULLEN VN NM, REGISTRTIENUMMER,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie