VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

Maat: px
Weergave met pagina beginnen:

Download "VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert"

Transcriptie

1 VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

2 . Populatie: een intuïtieve definitie.... Een kansmodel voor een populatie..... Het populatiemodel..... De populatieparameters.... Een kansmodel voor een steekproef Een steekproef van grootte n=: experimenteel en benaderend Een steekproef van grootte n=: theoretisch en exact..... Kansmodel voor een steekproef van willekeurige grootte Schematisch overzicht...0 Centrum voor Statistiek

3 . Populatie: een intuïtieve definitie In de module over exploratieve statistiek heb je al kennis gemaakt met de begrippen populatie en steekproef. Bij het onderzoek naar de kleuren van M&M snoepjes werden de snoepjes in één zakje voorgesteld als een lukrake schep uit een reuzegrote container waarin alle gefabriceerde snoepjes zaten. De snoepjes in dat zakje bekeek je als een klein deel (een steekproef) van een veel groter geheel (de populatie). Ook bij de studie over het schatten van de duurtijd van een minuut heb je met een steekproef gewerkt (40 medeleerlingen) terwijl je wou weten hoe alle leerlingen van je hele school (de populatie) de minuut zouden schatten. In de praktijk kan je ervan uitgaan dat het bijna nooit mogelijk is om een volledige populatie te onderzoeken. Daarom zal je alleen maar over een deel van de populatie informatie verzamelen. In de afzonderlijke tekst over Steekproefmethoden staan voorbeelden waar je kan zien waarom het nodig is om met een steekproef te werken. Als je daar iets meer wil over weten, lees dan in die tekst de eerste paragraaf: Waarom met een steekproef werken?. Je vindt die tekst op de website: Er zijn heel veel manieren om uit een populatie een steekproef te trekken. In deze tekst beperken we ons tot de EAS, de enkelvoudige aselecte steekproef. Bij een vaasmodel betekent dat lukraak trekken met terugleggen.. Een kansmodel voor een populatie.. Het populatiemodel Als je iets wil weten over de geboortegewichten van de kinderen die in 00 in Vlaanderen geboren zijn, dan zou je uit de volledige namenlijst van die kinderen een steekproef van grootte 400 kunnen trekken. Je hebt dan 400 namen. Die namen verwijzen naar kinderen. Bij die kinderen horen geboortegewichten. Uiteindelijk heb je 400 getallen, en die bestudeer je dan. Op die manier kan je zeggen dat de populatie van geboortegewichten 400 getallen naar jou heeft gestuurd. De belangrijke vraag is nu: Op welke manier krijg je welke getallen als je uit een populatie trekt?. Een populatie kan zeer groot zijn en eigenlijk niet op te meten, zoals de lengte van alle volwassen Chinezen. Of zij kan bestaan uit alleen maar denkbare en, zoals alle mogelijke meetfouten van een precisieweegschaal. Dat zijn allemaal voorbeelden waar je de concrete getallen van de volledige populatie niet te pakken krijgt. Om dan toch nog met zo n populatie te kunnen werken moet je overstappen op een geïdealiseerd model voor die populatie. In de statistiek beschrijf je een populatie met behulp van een geïdealiseerd model. Zo n model vertelt je met welke kans je welke getallen zal vinden. Het is een kansmodel. Kansmodellen ken je al. Alles wat je daarover geleerd hebt kan je nu gebruiken om populaties te beschrijven. - Je kan spreken over een populatie X waar een kansverdeling bij hoort. Dan beschrijf je een populatie waarbij de mogelijke en discreet zijn. - Je kan ook spreken over een populatie X waar een kansdichtheid bij hoort. Dat doe je om populaties aan te duiden waarbij de en een continuüm (een interval) bestrijken. Centrum voor Statistiek

4 Opdracht Een populatie noteer je met een hoofdletter. Waarom? In principe kan elk kansmodel optreden als populatiemodel. Of dit zinvol is hangt af van de context van je onderzoek. Het kansmodel X van de rode dobbelsteen kan bij een bepaald onderzoek bijvoorbeeld een goed model zijn voor de populatie. Als kansmodel wordt de populatie X dan volledig vastgelegd door tabel. x P(X=x) Kansmodel van de populatie X Tabel.. De populatieparameters Kansmodellen hebben modeleigenschappen, zoals de verwachtingswaarde (het gemiddelde) en de standaardafwijking. De algemene notatie voor die modeleigenschappen ken je al. Het gemiddelde van het kansmodel X noteer je met EX ( ) en voor de standaardafwijking schrijf je sd( X ). Een populatie X wordt beschreven door een kansmodel en je kan dus de gekende formules voor kansmodellen gebruiken om het gemiddelde en de standaardafwijking van die populatie te berekenen. De getallen die je zo vindt worden populatieparameters genoemd. Zij krijgen een heel bijzondere notatie. Het gemiddelde E( X ) van de populatie X noteer je door (Griekse letter mu). De standaardafwijking sd( X ) van de populatie X noteer je door (Griekse letter sigma). Als je dus ergens ziet staan dan weet je dat het gaat over het gemiddelde van de populatie die in dat onderzoek wordt bestudeerd. Als je tegenkomt dan gaat het over de standaardafwijking van de bestudeerde populatie. Het gaat dus altijd over de bestudeerde populatie, of die nu de naam X of Y of Z gekregen heeft. Het gemiddelde van een populatie noem je altijd en de standaardafwijking altijd. Opdracht Hoeveel is en voor de populatie X uit tabel? Centrum voor Statistiek

5 . Een kansmodel voor een steekproef.. Een steekproef van grootte n=: experimenteel en benaderend Als populatie X neem je hier tabel. Dat is de rode dobbelsteen. Uit deze populatie ga je nu een steekproef trekken. Om de berekeningen eenvoudig te houden trek je een heel kleine steekproef, namelijk een steekproef van grootte n. Het resultaat van je eerste keer gooien noem je het resultaat van je eerste trekking. Noem dat x. Als jij met jouw dobbelsteen een één gevonden hebt dan is voor jou x. Het resultaat van je tweede trekking uit X krijg je door die dobbelsteen opnieuw te gooien. Het resultaat noem je x. Als jij de tweede keer een zes gegooid hebt dan heb jij dat x. Als je nu zegt: ik heb een steekproef van grootte n getrokken en één van mijn en was een één en de andere was een zes dan weet ik niet wat jij voor x gevonden hebt. Als je dus wil zeggen wat het resultaat van jouw steekproef was, dan moet je alle informatie geven. Daar hoort ook de volgorde bij. Een mogelijke van een steekproef van grootte n is dus, in volgorde, het getal dat je bij de eerste trekking vindt gevolgd door het getal bij de tweede trekking. In de wiskunde noteer je dat als ( x, x ). Je spreekt dan van een koppel of een geordend tweetal. De volgorde van de getallen is belangrijk. Opdracht Werk in een groepje van 5 leerlingen. Elke leerling voert eerst het experiment uit en daarna breng je de resultaten samen. Zoals eerder afgesproken experimenteer je hier met de rode dobbelsteen. Jij hebt als van je steekproef van grootte n bijvoorbeeld (,) gevonden. Wat zou er gebeuren als je nog eens een steekproef van grootte n uit diezelfde populatie zou trekken? En nog eens en nog eens? Probeer dat even uit. Zet het juiste vaasmodel in h in je GRM en gebruik RANDVAAS waarbij je zegt dat je een steekproef van grootte n wil trekken. Het resultaat vind je dan in lijst d waarbij het bovenste getal jouw x is en het tweede getal jouw x.trek 0 keer zo n steekproef van grootte n en noteer telkens welke je vindt. Gebruik tabel. Centrum voor Statistiek 4

6 steekproef steekproef steekproef steekproef 4 steekproef 5 steekproef steekproef 7 steekproef 8 steekproef 9 steekproef 0 e trekking de trekking steekproef Tabel Breng nu de resultaten van je groepje van 5 leerlingen samen zodat je ziet wat er gebeurt als je 50 keer een steekproef van grootte n trekt uit die populatie X. Gebruik de tabellen, 4, en 5. ste trekking Tabel relatieve de trekking steekproef (,) (,) (,) (,) (,) (,) (,) (,) (,) Tabel 4 Tabel 5 relatieve relatieve Centrum voor Statistiek 5

7 .. Een steekproef van grootte n=: theoretisch en exact Opdracht 4 Kijk nu eerst naar tabel. Daar staat een samenvatting van de resultaten bij de eerste trekking. Je merkt dat de enig mogelijke en, en zijn. Dit zijn resultaten voor deze 50 herhalingen. Heb jij enig idee welke relatieve s je in tabel zou vinden bij oneindig veel herhalingen? Waarom? Opdracht 5 Als je een gevonden resultaat bij de eerste trekking algemeen noteert door x dan is het logisch dat je het bijhorende kansmodel noteert als X. Daarbij is X de notatie voor het model dat zegt wat alle mogelijke en en hun kansen zijn bij een eerste trekking. Kan jij nu X voorstellen in tabelvorm? Opdracht Tabel Je kan op dezelfde manier redeneren voor tabel 4. Daar gaat het over en die je krijgt bij de tweede trekking. Wat je daar gevonden hebt stel je algemeen voor door x. Wat zijn hier alle mogelijke waarden die je kan hebben voor x en wat zijn hun bijhorende kansen? Als je dat weet, dan ken je X, het kansmodel voor en bij de tweede trekking. Stel nu ook X voor in tabelvorm. Tabel 7 Wat zouden bij oneindig veel herhalingen de relatieve s van tabel 5 worden? Hoe geraak je daar aan de echte kansen? Wat alle mogelijke en zijn heb je reeds ontdekt. Herinner je dat de volgorde belangrijk is en dat één van een steekproef van grootte n een koppel (x, x ) is. Centrum voor Statistiek

8 Als je de eerste keer een en de tweede keer een gooit dan is je (x, x ) = (, ). Wat is de kans dat zoiets gebeurt? Wat is de kans dat het model X je de oplevert en dat tegelijkertijd het model X je daarna een oplevert? Zoiets schrijf je als PX (, X ). De komma betekent en zodat PX (, X ) hetzelfde is als PX ( en X ) of voluit: de kans dat je de eerste keer een en de tweede keer een hebt. Welk getal je de tweede keer gooit hangt niet af van het getal dat je de eerste keer vond zodat je de rekenregels voor onafhankelijkheid mag gebruiken. Misschien heb je vroeger geleerd dat je dan de kansen mag vermenigvuldigen. Als je dat niet gezien hebt, neem dan nu gewoon aan dat dit inderdaad mag zodat PX (, X ) PX ( ) PX ( ). Uit de kansmodellen voor de afzonderlijke trekkingen (tabel en tabel 7) haal je dat PX ( ) en dat PX ( ) zodat PX (, X ). Opdracht 7 Nu je dit systeem kent kan je alle mogelijke en (x, x ) met hun bijhorende kansen uitrekenen. Vul tabel 8 aan en controleer dat de som van de kansen gelijk is aan. eerste trekking PX ( x) tweede PX ( x) kans van deze trekking (x, x ) PX ( x, X x) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) PX ( ) PX ( ) PX (, X ) Tabel 8 Bemerk dat je hier 9 verschillende mogelijke enkoppels hebt. Die hebben allemaal hun bijhorende kans. Centrum voor Statistiek 7

9 Je kan het kansmodel voor deze steekproef van grootte n ook voorstellen door een vaas met kaartjes. Op elk kaartje staat een getallenkoppel, met twee getallen in de juiste volgorde. Als je bij de eerste trekking een kan vinden en bij de tweede een dan moet er in het vaasmodel zeker een kaartje van de vorm zitten.?? Vaasmodel voor ( X, X ) In deze vaas zitten kaartjes. Twee van deze kaartjes zien eruit als wat betekent dat het koppel (,) met kans / voorkomt. Je hebt dus een kans van / d at je bij een steekproef van grootte n eerst een en dan een zal trekken. Opdracht 8 Het kansmodel voor ( X, X ) wordt soms in een tabel voorgesteld die er iets anders uitziet dan tabel 8. Begrijp je hoe tabel 9 gemaakt is? Wat staat er in de randen en wat staat er in het midden? Kan je hieruit het volledige kansmodel van ( X, X ) aflezen? Uitkomsten van X Uitkomsten van X 9 4 Kansmodel voor ( X, X ) Tabel 9 Centrum voor Statistiek 8

10 Nota. Ook uit een continue populatie kan je steekproeven trekken en ook daarvoor kan je kansmodellen opstellen. Als de populatie X gedefinieerd is door een dichtheidsfunctie f ( x) en je trekt hieruit een steekproef van grootte n dan is het kansmodel voor ( X, X ) een dichtheidsfunctie in twee veranderlijken f X, X x, x die het gezamenlijk gedrag van het koppel ( X, X ) vastlegt. Kansmodellen voor steekproeven uit een continue populatie worden beschreven door functies in meerdere veranderlijken... Kansmodel voor een steekproef van willekeurige grootte Als voorbeeld kan je blijven denken aan de populatie X die zich gedraagt zoals de rode dobbelsteen. Uit die populatie X ga je nu een steekproef van grootte n trekken. Je gooit een eerste keer met die rode dobbelsteen. Daarna een tweede, een derde,.en tenslotte een n de keer. Je hebt nu eigenschappen: - Wat je bij elke afzonderlijke trekking zal vinden wordt beschreven door het kansmodel van de populatie waaruit je trekt. Dat betekent dat elke X i zich gedraagt zoals de populatie X. Het is telkens hetzelfde model, met dezelfde en en dezelfde bijhorende kansen. - Wat je zal vinden bij de vierde trekking (of bij om het even welke trekking) hangt niet af van wat je gevonden hebt bij de andere trekkingen. Dus heb je onafhankelijkheid. Als je dat nu allemaal samen bekijkt, dan kan je over een steekproef spreken in de voorwaardelijke wijs. Wat zou ik allemaal kunnen uitkomen en met welke kansen als ik uit deze populatie X een steekproef van grootte n zou gaan trekken? Het model dat je hierop een antwoord geeft noteer je met hoofdletters. X, X,... X,... X kansmodel voor een steekproef elke X gedraagt zich zoals de populatie X en de i X ' s zijn onafhankelijk van elkaar i i n Centrum voor Statistiek 9

11 Als je nu echt je steekproef trekt dan vind je bij de eerste trekking een getal. Dat getal is één van de mogelijke en van het model X en dat noteer je met een kleine letter x. De na de tweede trekking noteer je met x, enz. De notatie met kleine letters betekent: dit zijn mijn toevallige resultaten die ik na het trekken van mijn steekproef gevonden heb. x, x,... x,... x het resultaat dat ik in mijn steekproef gevonden heb i n 4. Schematisch overzicht In het algemeen Met een voorbeeld Een populatie X x ken je volledig als je het kansmodel kent P(X=x) Kansmodel van de populatie X Het kansmodel van Uitkomsten van X een steekproef ( X, X,... X ) kan je afleiden uit het kansmodel van de populatie X n Uitkomsten van X 9 4 Kansmodel voor ( X, X ) Centrum voor Statistiek 0

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 1. De wereld van de kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De realiteit en het model...2 2. Kansmodellen...2

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 1. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. De

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?..

van de verwachtingswaarde groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen te verkiezen boven rood?.. Verwacht winst altijd Prof. dr. Herman Callaert Een verrassende toepassing van de verwachtingswaarde bij kansmodellen. groen is te verkiezen boven blauw en blauw is te verkiezen boven rood is dan groen

Nadere informatie

Standaardisatie en z-scores

Standaardisatie en z-scores Prof. dr. Herman Callaert Inhoudstafel 1 Standaardisatie bij concreet cijfermateriaal... 1 1.1 Een eerste voorbeeld: de punten van Pol... 1 1.1.1 De ruwe score... 1 1.1.2 Vergelijken met het klasgemiddelde...

Nadere informatie

een typische component van statistiek

een typische component van statistiek Variabiliteit: een typische component van statistiek Prof. dr. Herman Callaert Statistiek = de wetenschap van het leren uit cijfermateriaal in aanwezigheid van variabiliteit en toeval en waarbij de context

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 3. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een voorbeeld...2 2. De normale familie...5

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Deze tekst sluit aan op de tekst: Kansrekening voor de tweede

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Exploratieve statistiek voor het secundair onderwijs Portfolio voor de leerling

Exploratieve statistiek voor het secundair onderwijs Portfolio voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Centrum voor statistiek D/2005/2451/45 2005, Universiteit Hasselt (België) Niets uit deze uitgave mag worden verveelvoudigd

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Kans als relatieve frequentie...1 1.1. Van realiteit naar

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Overzicht voor deze voormiddag. Inleiding Kansrekening en Statistiek: een eigen discipline. Lesmateriaal en ICT ondersteuning: korte info

Overzicht voor deze voormiddag. Inleiding Kansrekening en Statistiek: een eigen discipline. Lesmateriaal en ICT ondersteuning: korte info Kansrekening Nascholing voor leerkrachten Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg http://www.uhasselt.be/lesmateriaal-statistiek Overzicht voor deze voormiddag

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Studies naar samenhang. 1. Basisbegrippen. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Studies naar samenhang. 1. Basisbegrippen. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Studies naar samenhang 1. Basisbegrippen Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Statistische studies

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Exploratieve statistiek. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Inhoudstafel Een statistisch onderzoek naar de kleuren van

Nadere informatie

5 Totaalbeeld. Samenvatten. Achtergronden. Testen

5 Totaalbeeld. Samenvatten. Achtergronden. Testen 5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat

Nadere informatie

Standaardisatie en z-scores

Standaardisatie en z-scores Prof. dr. Herman Callaert Inhoudtafel 1 Standaardiatie bij concreet cijfermateriaal... 1 1.1 Een eerte voorbeeld: de punten van Pol... 1 1.1.1 De ruwe core... 1 1.1.2 Vergelijken met het klagemiddelde...

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodelle e ormaal verdeelde steekproefgroothede 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1.

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Telproblemen Oefening 1 Een beveiligingscode bestaat uit 3 karakters, die elk een cijfer of een letter kunnen zijn. Bijvoorbeeld C13 of 2D9. Hoeveel zulke codes zijn er (A) 17 576

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

Het belang van context: voorbeelden uit de peilingen wiskunde

Het belang van context: voorbeelden uit de peilingen wiskunde Het belang van context: voorbeelden uit de peilingen wiskunde Prof. dr. Herman Callaert Statistiek = de wetenschap van het leren uit cijfermateriaal in aanwezigheid van variabiliteit en toeval en waarbij

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen

METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen METACOGNITIEVE VRAGEN-kaart V4WA MW 10 H3: Telproblemen Beschrijf in eigen woorden: Waar gaat de opdracht over? Welke signaalwoorden staan in de tekst? Wijst een signaalwoord naar een strategie? Welke

Nadere informatie

variantie: achtergronden en berekening

variantie: achtergronden en berekening variantie: achtergronden en berekening Hugo Quené opleiding Taalwetenschap Universiteit Utrecht 8 sept 1995 aangepast 8 mei 007 1 berekening variantie Als je de variantie met de hand moet uitrekenen, is

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Verklarende statistiek. 6. Proporties. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Verklarede statistiek 6. Werktekst voor de leerlig Prof. dr. Herma Callaert Has Bekaert Cecile Goethals Lies Provoost Marc Vacaudeberg 1. Ee ieuwe aam voor ee gekede grootheid...2

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Bijlage 11 - Toetsenmateriaal

Bijlage 11 - Toetsenmateriaal Bijlage - Toetsenmateriaal Toets Module In de eerste module worden de getallen behandeld: - Natuurlijke getallen en talstelsels - Gemiddelde - mediaan - Getallenas en assenstelsel - Gehele getallen met

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Gokautomaten (voor iedereen)

Gokautomaten (voor iedereen) Gokautomaten (voor iedereen) In een fruitautomaat draaien de schijven I, II en III onafhankelijk van elkaar. Door een hendel kan elke schijf tot stilstand worden gebracht. In de tabel zie je wat op elke

Nadere informatie

Werkbladen 3 Terugzoeken

Werkbladen 3 Terugzoeken Werkbladen Terugzoeken We keren nu de vraag om. Bij een gegeven percentage (oppervlakte zoeken we de bijbehorende grenswaarde(n. Als voorbeeld zoeken we hoe groot een Nederlandse vrouw anno 97 moest zijn

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen.

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen. 1 Kansbomen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Kansbomen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het

Nadere informatie

Gifgebruik in de aardappelteelt

Gifgebruik in de aardappelteelt Gifgebruik in de aardappelteelt Opgave 1. jaar gifgebruik 1998 32 kg/ha 2007 24,5 kg/ha Van 2007 naar 2015 is een periode van 8 jaar. Maak eventueel een verhoudingstabel. In 9 jaar neemt het gifgebruik

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

Aanvullende tekst bij hoofdstuk 1

Aanvullende tekst bij hoofdstuk 1 Aanvullende tekst bij hoofdstuk 1 Wortels uit willekeurige getallen In paragraaf 1.3.5 hebben we het worteltrekalgoritme besproken. Dat deden we aan de hand van de relatie tussen de (van tevoren gegeven)

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

7.1 Toets voor het gemiddelde van een normale verdeling

7.1 Toets voor het gemiddelde van een normale verdeling Hoofdstuk 7 Toetsen van hypothesen Toetsen van hypothesen is, o.a. in de medische en chemische wereld, een veel gebruikte statistische techniek. Het wordt vaak gebruikt om een gevestigde norm eventueel

Nadere informatie

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE C VWO VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname van de

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

De verstrooide professor

De verstrooide professor Inleiding De verstrooide professor Edward Omey HU - Stormstraat 2 000 russel edward.omey@hubrussel.be In hun nota bestuderen Guido Herweyers en Ronald Rouseau (G. Herweyers en R. Rousseau, Een onverwacht

Nadere informatie

Beschrijvende statistiek

Beschrijvende statistiek Duur 45 minuten Overzicht Tijdens deze lesactiviteit leer je op welke manier centrum- en spreidingsmaten je helpen bij de interpretatie van statistische gegevens. Je leert ook dat grafische voorstellingen

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: kansrekening 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

getalkaartjes 20 spelsuggesties voor thuis!

getalkaartjes 20 spelsuggesties voor thuis! getalkaartjes 20 spelsuggesties voor thuis! Flitsen voor de allerkleintjes. (kind met ouder) de getalkaartjes 1 t/m 10 worden samen uit het doosje gezocht het kind legt de getalkaartjes zelf voor zich

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur Examen HAVO 2010 tijdvak 2 woensdag 23 juni 13.30-16.30 uur wiskunde A Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van juli 2016. Deze specificatie

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie

Examen VWO-Compex. wiskunde A1

Examen VWO-Compex. wiskunde A1 wiskunde A1 Examen VWO-Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 1 juni 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 87 punten te behalen; het examen bestaat uit 24 vragen.

Nadere informatie

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Economie en maatschappij(a/b)

Economie en maatschappij(a/b) Natuur en gezondheid(a/b) Economie en maatschappij(a/b) Cultuur en maatschappij(a/c) http://profielkeuze.qompas.nl/ Economische studies Talen Recht Gedrag en maatschappij http://www.connectcollege.nl/download/decanaat/vwo%20doorstroomeisen%20universiteit.pdf

Nadere informatie

Rekenen met verhoudingen

Rekenen met verhoudingen Rekenen met verhoudingen Groep 6, 7 Achtergrond Leerlingen moeten niet alleen met de verhoudingstabel kunnen werken wanneer die al klaar staat in het rekenboek, ze moeten ook zelf een verhoudingstabel

Nadere informatie