Hoofdstuk 6 Discrete distributies

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 6 Discrete distributies"

Transcriptie

1 Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33

2 Discrete distributies binomiale verdeling Poisson verdeling hypergeometrische verdeling uniforme discrete verdeling Discrete distributies p 2/33

3 De binomiale verdeling De binomiaal verdeelde toevalsveranderlijke I is het aantal keer dat een verschijnsel A optreedt in een reeks van n enkelvoudige waarnemingen Hierbij moet de kans op het optreden van een verschijnsel A bij een enkelvoudige waarneming de constante waarde θ bedragen : P(A) =θ Voorbeeld : zij I is het aantal keer dat 5 gegooid wordt bij 7 onafhankelijke worpen met een dobbelsteen n =7 I is binomiaal verdeeld met θ I = 1 6 Discrete distributies p 3/33

4 Distributie P( A A A }{{} i = } θ θ {{ θ} i A} A {{ A} ) n i (1 θ)(1 θ) (1 θ) }{{} n i = θ i (1 θ) n i P(A A A }{{} A A A }{{} ) n i i = (1 θ)(1 θ) (1 θ) }{{}} θ θ {{ θ} = θ i (1 θ) n i n i i ( ) aantal mogelijke sequenties : Cn i n! n = i!(n i)! = i elke sequentie ( ) heeft kans θ i (1 θ) n i n Besluit : ϕ I (i) = θ i (1 θ) n i i =0, 1,, n i Discrete distributies p 4/33

5 Distributie ϕ I (i) = ( n i ) θ i (1 θ) n i Φ I (w) =P(I w) = i w i =0, 1,, n ( ) n θ i (1 θ) n i i binomium van Newton : (a + b) n = n i=0 ( ) n a i b n i i Φ I (n) = n i=0 ( ) n θ i (1 θ) n i =[θ +(1 θ)] n =1 i Discrete distributies p 5/33

6 Karakteristieken µ I = n i=0 iϕ I (i) =nθ σ 2 I = n i=0 i 2 ϕ I (i) µ 2 = nθ(1 θ) σ I = nθ(1 θ) θ : parameter van de binomiale distributie Discrete distributies p 6/33

7 Kansverdeling ϕ I (i) n =10,θ=01 ϕ I (i) n =10,θ=05 ϕ I (i) n =10,θ=09 Discrete distributies p 7/33

8 Voorbeeld Een familie heeft 6 zes kinderen De kansen bij een geboorte bedroegen 049 voor een jongen en 051 voor een meisje (i) Wat is de kans dat er tenminste 1 meisje is? (ii) Wat is de kans dat er hoogstens 2 jongens zijn? Oplossing : Zij I het aantal meisjes onder de zes kinderen ( ) 6 ϕ I (i) = θ i (1 θ) 6 i θ =051 i (i) P(I 1)= 1 P(I <1)= 1 P(I =0)=1 ϕ I (0) =1 (1 θ) 6 =09826 (ii) P(I 4) = ϕ I (4) + ϕ I (5) + ϕ I (6) ( ) ( ) 6 6 = θ 4 (1 θ) θ 5 (1 θ)+θ 6 =03627 Discrete distributies p 8/33

9 Toepassing Zij x 1, x 2,,x onafhankelijke waarden van de toevalsveranderlijke X met cumulatieve distributiefunctie Φ X (x) Bepaal de kans dat alle meetwaarden vallen in [α, β] Oplossing : P(α X β) =Φ X (β) Φ X (α) Zij I het aantal x-en in [α, β] n =10 Dan is I binomiaal verdeeld met θ I =Φ X (β) Φ X (α) P(I = 10) = θ 10 I =(Φ X (β) Φ X (α)) 10 Discrete distributies p 9/33

10 Teruglegging Voorbeeld : Een urne bevat n U = 100 (op kleur na identieke) ballen, waaronder k =20zwarte We voeren n =25 achtereenvolgende trekkingen van een bal uit Zij I het aantal getrokken zwarte ballen met teruglegging : de kans op een zwarte bal is voor elke trekking constant, nl k n U I : binomiaal verdeeld met θ I = k n U zonder teruglegging : de kans op een zwarte bal verschilt van trekking tot trekking I : hypergeometrisch verdeeld Discrete distributies p 10/33

11 Hypergeometrische distributie De hypergeometrisch verdeelde toevalsveranderlijke I is het aantal keer dat een eigenschap A wordt waargenomen in een reeks van n enkelvoudige waarnemingen van telkens verschillende elementen uit een verzameling van n U elementen waarvan k elementen deze eigenschap A bezitten Discrete distributies p 11/33

12 Distributie - n U : populatiegrootte - n : steekproefgrootte - k : aantal elementen in populatiemet gezochte eigenschap max(0, n+ k n U ) I min(n, k) want I k en als n n U k, dan is I n (n U k) ( )( ) k nu k ϕ I (i) = Ci k C n i n U k i n i Cn n = ( ) nu U n Discrete distributies p 12/33

13 Karakteristieken - n U : populatiegrootte - n : steekproefgrootte - k : aantal elementen in populatiemet gezochte eigenschap σ 2 I = n k n U n U k n U µ I = n k n U = nθ θ = k n U n = nθ(1 θ) n U 1 n U ( 1 n 1 n U 1 Als n 1 n U 1 n zeer klein is (dzw ongeveer 0), kan de n U hypergeometrische verdeling benaderd worden door een binomiale verdeling met parameter θ = k n U ) Discrete distributies p 13/33

14 Kansverdeling ϕ I (i) n U = 100, k=10,n=10 ϕ I (i) n U =20,k=10,n=10 Discrete distributies p 14/33

15 Vergelijking Hypergeometrisch Binomiaal ϕ I (i) n U = 200, k=10,n= ϕ I (i) n =10,θ= Discrete distributies p 15/33

16 Voorbeeld In een loterij worden, benevens heel wat troostprijzen, 10 hoofdprijzen uitgedeeld Als er 5000 deelnemende nummers zijn, wat is dan de kans dat een deelnemer met 10 loten minstens 1 hoofdprijs heeft gewonnen Oplossing : I : aantal gewonnen hoofdprijzen met de 10 loten I : hypergeom verdeeld met k =10, n =10en n U = 5000 P(I 1) = 1 P(I =0) ( 10 )( 4990 ) 0 10 = 1 ) = (4990!)2 4980! 5000! = ( n =0002 = binomiale benadering met θ = k =0002 n U n U P(I 1) = 1 P(I =0) 1 (1 θ) 10 = Discrete distributies p 16/33

17 De verdeling van Poisson De Poisson verdeelde veranderlijke I is het aantal keer dat een verschijnsel A optreedt in een totale tijdsduur t Hierbij moet de kans dat het verschijnsel optreedt in een klein tijdsinterval t evenredig zijn met de duur van dit interval : λ t Daarenboven moet het ene optreden van A onafhankelijk zijn van vorige optredens van A, hetgeen betekent dat λ een constante is die niet afhangt van wat voordien voorgevallen is klein betekent : het verschijnsel kan hoogstens 1 keer optreden Discrete distributies p 17/33

18 Distributie i =0 P i (t) =P(A treedt i keer op in tijdsduur t) P 0 ( t) =1 P 1 ( t) =1 λ t P 0 (t + t) =P 0 (t) P 0 ( t) =P 0 (t)(1 λ t) P 0 (t + t) P 0 (t)+λp 0 (t) t =0 P 0 (t + t) P 0 (t) lim + λp 0 (t) =0 t 0 t = dp 0(t) + λp 0 (t) =0 dt P 0 (0) = 1 P 0 (t) =e λt Discrete distributies p 18/33

19 Distributie i>0 P i (t) =P(A treedt i keer op in tijdsduur t) P 0 ( t) =1 P 1 ( t) =1 λ t P i (t + t) = P i (t) P 0 ( t)+p i 1 (t) P 1 ( t) i =1, 2, = P i (t)(1 λ t)+p i 1 (t) λ t P i (t + t) P i (t)+λp i (t) t = λp i 1 (t) t P i (t + t) P i (t) lim + λp i (t) =λp i 1 (t) t 0 t = dp i(t) + λp i (t) =λp i 1 (t) dt P i (0) = 0 P i (t) =e λt (λt)i i! Discrete distributies p 19/33

20 Distributie λt (λt)i ϕ I (i) =P i (t) =e i! i =0, 1, 2, Φ I (w) =P(I w) =e λt j w (λt) j j! e x = + j=0 x j j! Φ I (+ ) =e λt + j=0 (λt) j j! =1 Discrete distributies p 20/33

21 Karakteristieken µ I = i=0 iϕ I (i) =λt σ 2 I = i=0 i 2 ϕ I (i) µ 2 I = λt µ µi ϕ I (i) =e i! i =0, 1, 2, µ : parameter van de Poisson-distributie Discrete distributies p 21/33

22 Kansverdeling ϕ I (i) µ = µ =1 ϕ I (i) µ =5 Discrete distributies p 22/33

23 Momentenfunctie M I (t) = = e it ϕ I (i) i=0 i=0 = e µ e it µ µi e i! i=0 = e µ e µet = e µ (et 1) (e t µ) i i! Discrete distributies p 23/33

24 Momentenfunctie Som van onafhankelijke Poisson verdeelde toevalsveranderlijken De som K van n onafhankelijke Poisson verdeelde toevalsveranderlijken I j met parameter µ j is Poisson verdeeld n met parameter µ j j=1 M K (t) = n M j (t) = n e µ j (e t 1) = e (e t 1) n j=1 µ j j=1 j=1 Discrete distributies p 24/33

25 Vergelijking Binomiaal Poisson ϕ I (i) n = 100, θ= ϕ I (i) µ = De Poisson-verdeling levert goede benaderingen voor de binomiale verdeling als n groot is en µ = nθklein Discrete distributies p 25/33

26 Voorbeeld Een radioactieve bron wordt geobserveerd gedurende vier verschillende tijdsintervallen van 6 seconden elk Per seconde wordt er gemiddeld 05 deeltjes uitgezonden Men neemt aan dat het aantal deeltjes dat uitgezonden wordt in het tijdsinterval [0, t] verdeeld is volgens de Poisson-distributie (i) P(in de vier intervallen 3 deeltjes uitgezonden) (ii) P(in minstens 1 interval 3 deeltjes uitgezonden) Oplossing : I : het aantal uitgezonden deeltjes in [0, t] λt (λt)i ϕ I (i) =e i! i =0, 1, t=6seconden = λt=3 P(I 3) = 1 P(I <3) = 1 e µ ( 1+µ + µ2 2! ) =0577 Discrete distributies p 26/33

27 Voorbeeld Een radioactieve bron wordt geobserveerd gedurende vier verschillende tijdsintervallen van 6 seconden elk Per seconde wordt er gemiddeld 05 deeltjes uitgezonden Men neemt aan dat het aantal deeltjes dat uitgezonden wordt in het tijdsinterval [0, t] verdeeld is volgens de Poisson-distributie (i) P(in de vier intervallen 3 deeltjes uitgezonden) (ii) P(in minstens 1 interval 3 deeltjes uitgezonden) Oplossing : I : het aantal uitgezonden deeltjes in 6 seconden P(I 3) = 0577 J : aantal intervallen met 3 uitgezonden deeltjes J : binomiaal met θ J =0577 (i) P(J =4)=θ 4 =0111 (ii) P(J 1)= 1 P(J =0)= 1 (1 θ) 4 =0968 Discrete distributies p 27/33

28 Veralgemeningen De distributie van Poisson kan veralgemeend worden door het constant zijn van λ te laten varen Als voorbeeld kunnen we het aantal slachtoffers van een besmettelijke ziekte gedurende een tijd t beschouwen De besmettingsparameter neemt toe als het aantal nieuwe zieken in eenzelfde tijdsduur toeneemt Daarentegen neemt af als de tijdsduur voor evenveel nieuwe zieken toeneemt Een van de veralgemeningen is de distributie van Polya Discrete distributies p 28/33

29 Poisson en binomiaal Bepaal ϕ J (j) als J telt hoeveel verschijnselen uit een Poisson proces (met parameter µ) ook voldoen aan een zekere eigenschap (met constante kans θ) µ µi een Poisson proces I : ϕ I (i) =e i =0, 1, i! binomiaal proces met parameter θ ϕ J (j) = P(J = j) =P((J = j) ( (I = i))) j =0, 1, i=0 = P((J = j) (I = i)) = P(I = i)p(j = j I = i) i=0 i=0 = P(I = i)p(j = j I = i) want P (J >I)=0 = i=j i=j µ µi e i! ( ) i θ j (1 θ) i j j Discrete distributies p 29/33

30 Poisson en binomiaal Bepaal ϕ J (j) als J telt hoeveel verschijnselen uit een Poisson proces (met parameter µ) ook voldoen aan een zekere eigenschap (met constante kans θ) ( ) µ µi i ϕ J (j) = e θ j (1 θ) i j i! j i=j = e µ i=j = e µ (θµ) j j! = e µ (θµ) j j! = e µ (θµ) j j! µ j+(i j) i! i j=0 k=0 1 k! i! (i j)! j! θj (1 θ) i j 1 (i j)! (µ (1 θ))k e µ (1 θ) = e µθ(θµ)j j! (µ (1 θ))i j J : Poisson µ J = µθ Discrete distributies p 30/33

31 De discrete uniforme verdeling Een uniform verdeelde discrete veranderlijke X is een veranderlijke waarbij de kans op het voorkomen van een enkelvoudige gebeurtenis uit de populatie voor elke enkelvoudige gebeurtenis dezelfde is Discrete distributies p 31/33

32 Distributie karakteristieken waarden X : x 1 <x 2 <<x m ϕ X (x i )=P(X = x i )= 1 m i =1, 2,, m Φ X (w) =P(X w) = x i w 1 m Φ X (x i )=P(X x i )= i m i =1, 2,, m m µ X = 1 m m i=1 x i σ 2 X = 1 m i=1 x 2 i µ 2 X Discrete distributies p 32/33

33 Bijzonder geval waarden I : 1 < 2 <<m µ I = m +1 2 σ 2 I = m Discrete distributies p 33/33

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 7 : Continue distributies als stochastische modellen. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 7 : Continue distributies als stochastische modellen Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Continue distributies als stochastische

Nadere informatie

Hoofdstuk 5. Toevalsveranderlijken en waarschijnlijkheidsdistributies. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 5. Toevalsveranderlijken en waarschijnlijkheidsdistributies. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 5 Toevalsveranderlijken en waarschijnlijkheidsdistributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Toevalsveranderlijken en waarschijnlijkheidsdistributies

Nadere informatie

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt.

5.0 Voorkennis. Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. 5.0 Voorkennis Voorbeeld 1: In een vaas zitten 10 rode, 5 witte en 6 blauwe knikkers. Er worden 9 knikkers uit de vaas gepakt. a) Bereken de kans op minstens 7 rode knikkers: P(minstens 7 rood) = P(7 rood)

Nadere informatie

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties

Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Opgaves Hoofdstuk 3: Toevalsveranderlijken en Distributiefuncties Discrete Distributiefuncties 3. Er zijn 3 studenten aan het begin van de dag aanwezig bij een symposium. De kans dat een student volhoudt

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

36, P (5) = 4 36, P (12) = 1

36, P (5) = 4 36, P (12) = 1 Les 2 Kansverdelingen We hebben in het begin gesteld dat we de kans voor een zekere gunstige uitkomst berekenen als het aantal gunstige uitkomsten gedeelt door het totale aantal mogelijke uitkomsten. Maar

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Kern 1 Rekenen met binomiale kansen

Kern 1 Rekenen met binomiale kansen Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions cursus 4 mei 2012 werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions Huiswerk P&D, opgaven Chapter 6: 9, 19, 25, 33 P&D, opgaven Appendix A: 1, 9 doen

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/23 Voor een verzameling stochastische variabelen X 1,..., X n, de verwachting van W n = X 1 + + X n is

Nadere informatie

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 3 : Numerieke beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 3 : Numerieke beschrijving van data Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Numerieke beschrijving van data p 1/31 Beschrijvende

Nadere informatie

De verstrooide professor

De verstrooide professor Inleiding De verstrooide professor Edward Omey HU - Stormstraat 2 000 russel edward.omey@hubrussel.be In hun nota bestuderen Guido Herweyers en Ronald Rouseau (G. Herweyers en R. Rousseau, Een onverwacht

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling 12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken

Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken Verwachtingswaarde en Variantie 4.1 Een muntstuk wordt 3 maal opgegooid. Zij X de toevalsveranderlijke die met elke uitkomst het grootste aantal

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

uitwerkingen OefenTentamen kansrekening 2007

uitwerkingen OefenTentamen kansrekening 2007 Universiteit Utrecht *Universiteit-Utrecht Boedaestlaan Mathematisch Instituut 3584 CD Utrecht uitweringen OefenTentamen ansreening 2007 Uitwering van Ogave Ogave Veronderstel dat α de ans is dat van een

Nadere informatie

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur

Kansrekening en statistiek wi2105in deel I 29 januari 2010, uur Kansrekening en statistiek wi20in deel I 29 januari 200, 400 700 uur Bij dit examen is het gebruik van een (evt grafische rekenmachine toegestaan Tevens krijgt u een formuleblad uitgereikt na afloop inleveren

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar

b. de aantallen aankomsten in disjuncte tijdsintervallen zijn onafhankelijk van elkaar APPENDIX: HET POISSON PROCES Een stochastisch proces dat onlosmakelijk verbonden is met de Poisson verdeling is het Poisson proces. Dit is een telproces dat het aantal optredens van een bepaalde gebeurtenis

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k)

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) 11.0 Voorkennis Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kanseperiment

Nadere informatie

WenS eerste kans Permutatiecode 0

WenS eerste kans Permutatiecode 0 WenS eerste kans 2012 2013 Aantekeningen op de vragenbladen zijn NIET TOEGELATEN. Je mag gebruik maken van schrijfgerief en een eenvoudige rekenmachine; alle andere materiaal blijft achterin. Leg je studentenkaart

Nadere informatie

Uitwerking Tentamen Inleiding Kansrekening 11 juni 2015, uur Docent: Prof. dr. F. den Hollander

Uitwerking Tentamen Inleiding Kansrekening 11 juni 2015, uur Docent: Prof. dr. F. den Hollander Uitwerking Tentamen Inleiding Kansrekening juni 25,. 3. uur Docent: Prof. dr. F. den Hollander () [6] Zij F een gebeurtenissenruimte. Laat zien dat voor elke B F de verzameling G {A B : A F} opnieuw een

Nadere informatie

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte

introductie populatie- steekproef- steekproevenverdeling pauze parameters aannames ten slotte toetsende statistiek week 1: kansen en random variabelen week 2: de steekproevenverdeling Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 5: Sampling Distributions 5.1: The

Nadere informatie

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN. Continue Verdelingen 1 A. De uniforme (of rechthoekige) verdeling Kansdichtheid en cumulatieve frequentiefunctie Voor x < a f(x) = 0 F(x) = 0 Voor a x

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen

Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen Opgeloste Oefeningen Hoofdstuk 8: Het Toetsen van Hypothesen 8.1. Stel dat medisch onderzoek heeft uitgewezen dat als het gemiddelde nicotinegehalte van een sigaret 25 mg of meer bedraagt, de kans op longkanker

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 15 September 1 / 42 1 Kansrekening Vandaag: Vragen Eigenschappen van kansen Oneindige discrete uitkomstenruimtes Continue uitkomstenruimtes Continue stochasten

Nadere informatie

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti.

Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 M/M/1/N Afsluiti. 11 juni 2013 Maartje van de Vrugt, CHOIR Wat is het belang van wachtrijtheorie? Inleiding Modelmatige beschrijving Kansverdelingen Het overgangsdiagram De stellingen van Little M/M/1 Evenwichtskansen Wachtrij

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

Zeldzame en extreme gebeurtenissen

Zeldzame en extreme gebeurtenissen 24 March 215 Outline 1 Inleiding 2 Extreme gebeurtenissen 3 4 Staarten 5 Het maximum 6 Kwantielen 23 maart 215 Het Financieele Dagblad Vijf grootste rampen (verzekerd kapitaal) 1 Orkaan Katrina (25, MU$

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Set 2 Inleveropgaven Kansrekening (2WS20)

Set 2 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wisunde en Informatica Set Inleveropgaven Kansreening (WS) 14-15 1. (Functies van normale verdelingen) Stel dat X een standaard normale verdeling heeft. (a)

Nadere informatie

Tentamen Kansrekening (NB004B)

Tentamen Kansrekening (NB004B) NB4B: Kansrekening Dinsdag november 2 Tentamen Kansrekening (NB4B) Het is een open boek tentamen. Gebruik van een rekenmachine of andere hulpmiddelen is niet toegestaan. Vermeld op ieder blad je naam en

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Hoofdstuk 20 Wachtrijentheorie

Hoofdstuk 20 Wachtrijentheorie Hoofdstuk 20 Wachtrijentheorie Beschrijving Iedereen van ons heeft al tijd gespendeerd in een wachtrij: b.v. aanschuiven in de Alma restaurants. In dit hoofdstuk onwikkelen we mathematische modellen voor

Nadere informatie

Eindexamen wiskunde A vwo I

Eindexamen wiskunde A vwo I Eindexamen wiskunde A vwo 000 - I Opgave Bierbrouwen bij vat verdwijnt 00% (0% + 0% + 65%) = 5% bij het overpompen bij vat verdwijnt 00% (0% + 5% + 50%) = 5% bij het overpompen bij vat 3 verdwijnt 00%

Nadere informatie

Voorbeelden van gebruik van 5 VUSTAT-apps

Voorbeelden van gebruik van 5 VUSTAT-apps Voorbeelden van gebruik van 5 VUSTAT-apps Piet van Blokland Begrijpen van statistiek door simulaties en visualisaties Hoe kun je deze apps gebruiken bij het statistiek onderwijs? De apps van VUSTAT zijn

Nadere informatie

Biofysische Scheikunde: Statistische Mechanica

Biofysische Scheikunde: Statistische Mechanica Biofysische Scheikunde: Statistische Mechanica Vrije Universiteit Brussel 27 november Outline 1 Statistische Definitie van 2 Statistische Definitie van Outline 1 Statistische Definitie van 2 Statistische

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling

Nadere informatie

module SC 12 Inleiding Risicotheorie donderdag 7 november uur

module SC 12 Inleiding Risicotheorie donderdag 7 november uur module SC 1 Inleiding Risicotheorie donderdag 7 november 013 13.30-16.30 uur Examen module SC 1 Inleiding Risicotheorie donderdag 7 november 013 Voordat u met de beantwoording van de vragen van dit examen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 15 Dinsdag 2 November 1 / 16 2 Statistiek Indeling: Filosofie Schatten Centraal Bureau voor Statistiek 2 / 16 Schatten Vb. Het aantal tenen plus vingers in jullie huishoudens:

Nadere informatie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie

Deze week: Schatten. Statistiek voor Informatica Hoofdstuk 6: Schatten. Voorbeeld Medicijnentest. Statistische inferentie Deze week: Schatten Statistiek voor Informatica Hoofdstuk 6: Schatten Cursusjaar 2009 Peter de Waal Departement Informatica Statistische inferentie A Priori en posteriori verdelingen Geconjugeerde a priori

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Schatten en simuleren

Schatten en simuleren Les 5 Schatten en simuleren 5.1 Maximum likelihood schatting Tot nu toe hebben we meestal naar voorbeelden gekeken waar we van een kansverdeling zijn uitgegaan en dan voorspellingen hebben gemaakt. In

Nadere informatie

5,1. Samenvatting door een scholier 1647 woorden 18 oktober keer beoordeeld. Wiskunde A

5,1. Samenvatting door een scholier 1647 woorden 18 oktober keer beoordeeld. Wiskunde A Samenvatting door een scholier 1647 woorden 18 oktober 2010 5,1 4 keer beoordeeld Vak Wiskunde A Samenvatting A2 Recht evenredig Bij een stapgrootte van y hoort een constante eerste augmentatie van x Omgekeerd

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen

Nadere informatie

Statistiek voor A.I. College 3. Dinsdag 18 September 2012

Statistiek voor A.I. College 3. Dinsdag 18 September 2012 Statistiek voor A.I. College 3 Dinsdag 18 September 2012 1 / 45 2 Deductieve statistiek Kansrekening 2 / 45 Uitkomstenruimte 3 / 45 Vragen: voorspellen Een charlatan zegt te kunnen voorspellen of een ongeboren

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Antwoordmodel VWO wa I. Vogels die voedsel zoeken

Antwoordmodel VWO wa I. Vogels die voedsel zoeken Antwoordmodel VWO wa 00-I Vogels die voedsel zoeken Stilstaan duurt telkens 5 seconden Tussen twee stops wordt 5 cm afgelegd De tijd tussen twee stops is 5 seconde De snelheid is 6 cm per seconde Maximumscore

Nadere informatie

Hoofdstuk 5: Steekproevendistributies

Hoofdstuk 5: Steekproevendistributies Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Eindexamen vwo wiskunde A 04-II Wikipedia maximumscore 4 De absolute toenames zijn 46,, 30 en 56 Een passende conclusie De groeifactoren zijn,00;,00;,00; en,00 (of nauwkeuriger) Een passende conclusie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5: Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )

Nadere informatie

Hoofdstuk 4 Kansrekening

Hoofdstuk 4 Kansrekening Hoofdstuk 4 Kansrekening Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Kansrekening p 1/29 Gebeurtenissen experiment : gooien met een dobbelsteen

Nadere informatie

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u

Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Technische Universiteit Delft Mekelweg 4 Faculteit Elektrotechniek, Wiskunde en Informatica 2628 CD Delft Tentamen Inleiding Statistiek (WI2615) 10 april 2013, 9:00-12:00u Formulebladen, rekenmachines,

Nadere informatie

WenS tweede kans Permutatiecode 0

WenS tweede kans Permutatiecode 0 Aantekeningen op de vragenbladen zijn NIET TOEGELATEN. Je mag gebruik maken van schrijfgerief en een eenvoudige rekenmachine; alle andere materiaal blijft achterin. Geen GSM s toegelaten: voor wie tijdens

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Kansverdelingen Inductieve statistiek met Geogebra 4.2

Kansverdelingen Inductieve statistiek met Geogebra 4.2 Kansverdelingen Inductieve statistiek met Geogebra 4.2 Brecht Dekeyser Pedic 20 november 2013 Gent 1 Inhoud Nieuw in Geogebra 4.2 Kansverdelingen: Berekeningen en grafische voorstellingen Manueel in rekenblad

Nadere informatie

Kansrekening en Statistiek. Overzicht Kansrekening

Kansrekening en Statistiek. Overzicht Kansrekening Kansrekening en Statistiek Overzicht Kansrekening 1 / 30 Overzicht: stochasten Discrete stochasten X - distributiefuncties f P(X A) = i A f (x) = i A P(X = i). 2 / 30 Overzicht: stochasten Discrete stochasten

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 14 Oktober 1 / 71 1 Kansrekening Indeling: Bayesiaans leren 2 / 71 Bayesiaans leren 3 / 71 Bayesiaans leren: spelletje Vb. Twee enveloppen met kralen, waarvan

Nadere informatie

Gezamenlijke kansverdeling van twee stochasten

Gezamenlijke kansverdeling van twee stochasten Gezamenlijke kansverdeling van twee stochasten Voorbeeld: V = de windsnelheid H = hoogte van het waterniveau in een rivier/zee De combinatie (V, H) is van belang voor een overstroming en niet zozeer V

Nadere informatie

E(A 1 ) = 1/λ. De functie G(s) wordt gedefiniëerd als. G(s) = E(e sa 1

E(A 1 ) = 1/λ. De functie G(s) wordt gedefiniëerd als. G(s) = E(e sa 1 Het G/M/1 model We gaan nu kijken naar het model waarbij niet de bedieningstijden maar de tussenaankomsttijden willekeurig verdeeld zijn, het G/M/1 model. Model: Het aankomstproces is een proces waarbij

Nadere informatie

Statistiek voor A.I.

Statistiek voor A.I. Statistiek voor A.I. College 13 Donderdag 25 Oktober 1 / 28 2 Deductieve statistiek Orthodoxe statistiek 2 / 28 3 / 28 Jullie - onderzoek Tobias, Lody, Swen en Sander Links: Aantal broers/zussen van het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent.

Hoofdstuk 12 : Regressie en correlatie. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent. Hoofdstuk 12 : Regressie en correlatie Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Regressie en correlatie p 1/26 Regressielijn Vraag : vind het

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2 INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i).

P (X n+1 = j X n = i, X n 1,..., X 0 ) = P (X n+1 = j X n = i). MARKOV PROCESSEN Continue-tijd Markov ketens (CTMCs) In de voorafgaande colleges hebben we uitgebreid gekeken naar discrete-tijd Markov ketens (DTMCs). Definitie van discrete-tijd Markov keten: Een stochastisch

Nadere informatie

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur

Kansrekening en statistiek wi2105in deel 2 16 april 2010, uur Kansrekening en statistiek wi205in deel 2 6 april 200, 4.00 6.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

Stochastiek voor Informatici Sara van de Geer 1993

Stochastiek voor Informatici Sara van de Geer 1993 Stochastiek voor Informatici Sara van de Geer 1993 1 Inhoud 0. Introductie 1. Waarschijnlijkheidsrekening 1.1. Empirische wet van de grote aantallen 1.2. Gebeurtenissen 1.3. Axiomatische opzet 1.4. Combinatoriek

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie