11.1 Kansberekeningen [1]

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "11.1 Kansberekeningen [1]"

Transcriptie

1 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen tegelijk gooit? Het aantal mogelijk uitkomsten = = 216 De volgende uitkomsten zijn gunstig: 18 -> > 566, 656, > 664, 646, > 655, 565, 556 Het aantal gunstige uitkomsten = 10 P(som ogen is minstens 16 bij 3 dobbelstenen) = 10/216 = 5/108 1

2 11.1 Kansberekeningen [1] Somregel: Voor elkaar uitsluitende gebeurtenissen G 1 en G 2 geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) Voorbeeld 2: Wat is de kans dat als je met 2 dobbelstenen gooit, de som van de ogen 2 of 3 is? Som is 2 bij 11 Som is 3 bij 12 en 21 P(som is 2 of 3) = P(som is 2) + P(som is 3) = 1/36 + 2/36 = 3/36 = 1/12 Let op: Je mag de somregel gebruiken omdat de gebeurtenissen som ogen is 2 En som ogen is 3 elkaar uitsluiten. 2

3 11.1 Kansberekeningen [1] Complementregel: P(gebeurtenis) = 1 P(complement gebeurtenis) Voorbeeld 3: Wat is de kans dat als je met 3 dobbelstenen gooit, de som van de ogen minder dan 17 is? P(som is minder dan 17) = 1 P(som is 17) P(som is 18) = 1 3/216 1/216 = 212/216 = 53/54 Let op: Gebruik de complementregel als je hierdoor een kans sneller kunt uitrekenen. 3

4 11.1 Kansberekeningen [1] Het vaasmodel: Het aantal manieren om r dingen uit n dingen te pakken zonder op de volgorde te letten, dus het aantal combinaties van r uit n, is Voorbeeld 4: Een groep van 25 personen bestaat uit 10 mannen en 15 vrouwen. Uit deze groep Worden 5 personen gekozen. Bereken de kans dat er 3 vrouwen gekozen worden [Vergelijk dit met een vaas met 25 knikkers (10 rood en 15 groen). Je pakt 5 knikkers Uit de vaas en wilt de kans berekenen dat er 3 groene knikkers bijzitten.] P(3 vrouwen) = , n r 4

5 11.1 Kansberekeningen [2] Samengesteld kansexperiment : Hetzelfde kansexperiment wordt een aantal keer herhaald. Productregel voor onafhankelijke gebeurtenissen: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het Andere kansexperiment geldt P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) Voorbeeld 1: Bereken de kans dat je 6 van de 6 keer kop gooit met een muntstuk: 1 P(6 keer kop) = P(KKKKKK) = ½ ½ ½ ½ ½ ½ = 0,

6 11.1 Kansberekeningen [2] Voorbeeld 2: Bereken de kans dat je 4 van de 6 keer kop gooit met een muntstuk: P(4 keer kop) = P(KKKKMM) = 0, Let op: Er zijn 6 boven 4 manieren om bij 6 keer gooien met een muntstuk 4 keer kop te krijgen. Voorbeeld 3: Er is een rad met 5 sectoren: 1 wit, 2 rood en 2 blauw. Bereken de kans op drie gelijke kleuren P(3 gelijke kleuren) = P(WWW) + P(RRR) + P(BBB) =

7 11.1 Kansberekeningen [2] Let op: Als je een kleine steekproef neemt uit een grote populatie mag je trekken zonder teruglegging opvatten als trekken met teruglegging. Voorbeeld 4: Van de Nederlanders woont 31% in een grote stad en 15% in een middelgrote stad. Bereken de kans dat van twaalf willekeurig ondervraagde Nederlanders er 2 in een grote stad wonen en 3 in een middelgrote stad (0,31) (0,15) (0,54) 0, P(2 groot, 3 middelgroot en 7 overig) =

8 11.2 Formules in de kansrekening [1] Berekeningen met breuken: 1. Gelijknamige breuken mag je optellen: A C A C a a a B B B 2. Niet-gelijknamige breuken maak je gelijknamig en tel je dan op: 6 2 6b 2a 6b 2a A C AD BC a b ab ab ab B D BD 3. Bij het vermenigvuldigen van breuken vermenigvuldig je de tellers met elkaar en de noemers met elkaar A C AC a b ab B D BD 8

9 11.2 Formules in de kansrekening [1] Berekeningen met breuken: 4. Delen door een breuk is vermenigvuldigen met het omgekeerde: A C AC 5: 5 7 A B B B 3 C 5. Haakjes wegwerken (1): 5(a + 3b) = 5a + 15b => A(B + C) = AB + AC 6. Haakjes wegwerken (2): (a + 5)(a 6) = a 2 + 5a 6a 30 = a 2 a 30 => (A + B)(C + D) = AC + AD + BC + BD 9

10 11.2 Formules in de kansrekening [2] Voorbeeld 1: Vaas 1 heeft 8 knikkers (a rood, rest zwart) Vaas 2 heeft 10 knikkers (a rood, rest zwart) Uit elke vaas wordt één knikker gehaald. Bereken de kans op het pakken van twee rode knikkers: P(2 rood) = P(RR) = a 2 a a Voorbeeld 2: Bereken de kans op het pakken van één rode en één zwarte knikker: P(rood en zwart) = P(RZ) + P(ZR) = a 10 a 8 a a a(10 a) (8 a) a a a 8a a 18a 2a 9a a

11 11.2 Formules in de kansrekening [2] Voorbeeld 3: Vaas 1 heeft 8 knikkers (a rood, rest zwart) Vaas 2 heeft 10 knikkers (a rood, rest zwart) Uit elke vaas wordt één knikker gehaald. Is het mogelijk om het aantal rode knikkers in de vaas zo te kiezen, Dat de kans op één rode en één zwarte knikker gelijk is aan 0,55 P(rood en zwart) = Invullen op de GR: 9x x a a 40 y 1 = en y 2 = 0,55 Stel bij TBLSET in TblStart = 0 en Tbl = 1 Aflezen geeft dat dit voor geen enkele a het geval is. 2 Let op: a mag enkel een geheel getal zijn!!! 11

12 11.2 Formules in de kansrekening [3] Voorbeeld 1: Een vaas heeft 10 knikkers, waarvan 5 rood, 3 wit en 2 zwart. Er worden twee knikkers uit deze vaas gehaald. Bereken de kans op 2 witte knikkers. Mogelijkheid 1: P(2 wit) = Mogelijkheid 2: P(2 wit) = 3 2 0, , Let op: Bij trekken zonder teruglegging kun je combinaties of de productregel gebruiken. 12

13 11.2 Formules in de kansrekening [3] Voorbeeld 2: Een vaas heeft 25 knikkers, waarvan a rood en de rest zwart. Iemand haalt 2 knikkers uit deze vaas. Bereken de kans op 2 rode knikkers. P(2 rood) = P(RR) = a a 2 1 a ( a 1) a a Voorbeeld 3: Bereken de kans op één rode en één zwarte knikker P(rood en zwart) = P(RZ) + P(ZR) = 2 P(RZ) = a a(25 a) a(25 a) 25a a

14 11.2 Formules in de kansrekening [3] Voorbeeld 4: Een vaas heeft 25 knikkers, waarvan a rood en de rest zwart. Iemand haalt 2 knikkers uit deze vaas. Bereken hoeveel rode knikkers er in de vaas moeten zitten wanneer geldt: P(rood en zwart) = 0,52 Invullen op de GR: 25x x y 1 = en y 2 = 0,52 Stel bij TBLSET in TblStart = 0 en Tbl = 1 Aflezen uit de tabel geeft: X = 12 geeft Y 1 = 0,52 X = 13 geeft Y 1 = 0,52 Dus er zitten 12 of 13 rode knikkers in de vaas. 14

15 11.3 De binomiale verdeling [1] Bernoulli-experiment = een kansexperiment met slechts twee mogelijke uitkomsten. De kans op succes is p. Voorbeelden: Gooien met een muntstuk (Kop of munt) Beantwoorden meerkeuze vragen (Goed of fout) Examen doen (Slagen of zakken) Voorbeeld : In een loterij met 40 loten zijn 5 prijzen te winnen. Iemand koopt vier loten. Het winnen van twee prijzen is voor deze persoon een succes. Bereken p 5 35 P = P(2 prijzen) = 2 2 0,

16 11.3 De binomiale verdeling [2] Binomiaal kansexperiment = Het een aantal keer (n) achter elkaar uitvoeren van hetzelfde Bernoulli experiment. Voorbeelden: 10 keer gooien met een muntstuk (X = aantal keer munt, n = 10, p = 0,5) 20 vierkeuze vragen gokken (X = aantal vragen goed, n = 20, p = 0,25) 12 keer elke maand met loterij het vorige voorbeeld meedoen (X = aantal keer 2 prijs, n = 12, p = 0,0651) 16

17 11.3 De binomiale verdeling [2] Voorbeeld: Iemand beantwoord 20 vierkeuzevragen. Bereken de kans op 15 goede antwoorden: X = aantal juiste antwoorden, n = 20, p = 0,25 Stap 1: De kans op 15 keer succes en 5 keer een mislukking is: (0,25) 15 (0,75) 5 Stap 2: Je kunt op een aantal manieren 15 keer succes en 5 keer een mislukking hebben: SSSSSSSSSSSSSSSMMMMM, SSSSSMMMMMSSSSSSSSSS, enz. In totaal zijn er mogelijkheden Stap 3: 20 P(X = 15) = (0,25) 15 (0,75)

18 11.3 De binomiale verdeling [2] Voorbeeld: Iemand beantwoord n vierkeuzevragen. Bereken de kans op k goede antwoorden: X = aantal juiste antwoorden, n = n, p = 0,25 Stap 1: De kans op k keer succes en n-k keer een mislukking is: (0,25) k (0,75) n-k Stap 2: Je kunt op een aantal manieren n keer succes en n-k keer een mislukking hebben. In totaal zijn er n n k n k n k k mogelijkheden Stap 3: Dus: P(X = k) = n k (0,25) k (0,75) n-k 18

19 11.3 De binomiale verdeling [3] Voorbeeld 1: X = binomiaal verdeeld n = 3 p = 0,2 x P(X = x) 0,512 0,384 0,096 0,008 P(X x) 0,512 0,896 0,992 1 De tweede rij van de tabel is de binomiale verdeling van X De derde rij van de tabel is de cumulatieve binomiale verdeling van X Er geldt bij de GR: Binomiale verdeling: P(X = k) = binompdf(n,p,k) Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) 19

20 11.3 De binomiale verdeling [3] Voorbeeld 2: Een schijf heeft vijf sectoren (2 appel, 2 kers en 1 banaan) Bereken de kans op twee keer banaan in acht beurten: X = aantal keer banaan, n = 8, p = 0,2 P(X = 2) = binompdf(8, 0.2, 2) 0,294 Op de GR: 2ND VARS A: binompdf( ENTER 8, 0.2, 2) ENTER Voorbeeld 3: Bereken de kans op hoogstens drie kers in twaalf beurten: X = aantal keer kers, n = 12, p = 0,4 P(X 3) = binomcdf(12,0.4,3) = 0,225 Op de GR: 2ND VARS B: binomcdf( ENTER 12,0.4,3) ENTER 20

21 11.4 Binomiale kansen gebruiken [1] Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kansexperiment met n = 25 en p = 0,20 en X = aantal keer succes P(X 7) = binomcdf(25, 0.20, 7) = Voorbeeld 2: P(X 8) = 1 P(X 7) = 1 binomcdf(25, 0.20, 7) = = Voorbeeld 3: P(X < 8) = P(X 7) = binomcdf(25, 0.20, 7) =

22 11.4 Binomiale kansen gebruiken [1] Voorbeeld 4: Binomiaal kansexperiment met n = 25 en p = 0,20 en X = aantal keer succes P(tussen 5 en 10 keer succes) = P(5 < X < 10) = P(6, 7, 8 of 9 keer succes) = = P(X 9) P(X 5) = binomcdf(25, 0.20, 9) binomcdf(25, 0.20, 5) = = Voorbeeld 5: P(7 of 8 keer succes) = binompdf(20, 0.20, 7) + binompdf(20, 0.20, 8) = =

23 11.4 Binomiale kansen gebruiken [2] Let op: Tot nu toe was n (aantal keren dat je experiment doet) bekend. Voorbeeld: Gooien met muntstuk. Bereken hoeveel keer je moet gooien zodat de kans op minstens drie keer munt groter dan 98% is. X = aantal keer munt, p = 0.5, n = onbekend Dus bij welke n geldt: P(X 3) = 1 P(X 2) is groter dan 0.98 Invullen in de GR: Y1 = 1 binomcdf(x, 0.5, 2) Y2 = 0.98 Aflezen uit TABLE geeft n = 11 => 1 P(X 2) n = 12 => 1 P(X 2) Dus je moet minstens 12 keer gooien. 23

24 11.4 Binomiale kansen gebruiken [3] Voorbeeld: Een machine vult pakken koffie met een gemiddelde van 510 gram en een standaardafwijking van 5 gram. Bereken de kans dat in een steekproef van 20 pakken minstens drie pakken minder dan 505 gram bevatten. X = aantal pakken koffie dat minder dan 505 gram bevat n = 20 p = kans dat één pak koffie minder dan 505 gram bevat p = normalcdf(-10^99, 505, 510, 5) = P(X 3) = 1 P(X 2) = 1 binomcdf(20, 0.159, 2)

25 11.5 De verwachtingswaarde [1] Voorbeeld: Een loterij heeft 1000 loten. Er is één hoofdprijs van 100 euro. Er zijn 100 troostprijzen van 5 euro. Elk lot kost één euro. Wat is de verwachte winst van iemand die meedoet aan deze loterij? Stap 1: Maak een tabel met alle mogelijke winsten en hun kans. w P(W = w) 0,001 0,1 0,899 Als je de hoofdprijs wint (Kans is 1/1000 = 0,001), krijg je 100 euro. Het lot wat je gekocht hebt, kostte 1 euro. Dus de winst is = 99 euro; Als je de troostprijs wint (Kans is 100/1000 = 0,1) krijg je 5 euro. Het lot wat je gekocht hebt, kostte 1 euro. Dus de winst is 5 1 = 4 euro. Als je niets wint (Kans is 899/1000 = 0,899) krijg je 0 euro. Het lot wat je gekocht hebt, kostte 1 euro. Dus de winst is 0 1 = -1 euro. 25

26 11.5 De verwachtingswaarde [1] Voorbeeld: Een loterij heeft 1000 loten. Er is één hoofdprijs van 100 euro. Er zijn 100 troostprijzen van 5 euro. Elk lot kost één euro. Wat is de verwachte winst van iemand die meedoet aan deze loterij? Stap 2: Vermenigvuldig elke mogelijke waarde van W met zijn kans en tel de uitkomsten op. Je berekent nu de verwachtingswaarde: E(W) = 99 0, ,1 1 0,899 = -0,4 Conclusie: De verwachtingswaarde van -0,4 betekent dat een deelnemer per lot gemiddeld 0,4 euro verliest. (De organisator van de loterij maakt per lot dus gemiddeld 0,4 euro winst) 26

27 11.5 De verwachtingswaarde [1] Voorbeeld: Een loterij heeft 1000 loten. Er is één hoofdprijs van 100 euro. Er zijn 100 troostprijzen van 5 euro. Elk lot kost één euro. Bereken de standaardafwijking van deze kansverdeling. Bij de keuze uit verschillende loterijen is niet alleen de verwachtingswaarde van belang, maar ook de spreiding van de uitkomsten. Bij twee loterijen met een gelijke verwachte winst zul je kiezen voor de loterij waar de spreiding van de uitkomsten het kleinste is. De spreiding kun je uitdrukken met de standaardafwijking. Stap 1: Maak een tabel met alle mogelijke winsten en hun kans w P(W = w) 0,001 0,1 0,899 27

28 11.5 De verwachtingswaarde [1] Voorbeeld: Een loterij heeft 1000 loten. Er is één hoofdprijs van 100 euro. Er zijn 100 troostprijzen van 5 euro. Elk lot kost één euro. Bereken de standaardafwijking van deze kansverdeling. Stap 2: Bereken de standaardafwijking met de grafische rekenmachine. STAT EDIT 1:EDIT ENTER L1 = {99, 4, -1} L2 = {0,001; 0,1; 0,899} STAT CALC 1-Var Stats 2 ND 1, 2 ND 2 geeft σ x 3,48. Let op: Bij twee onafhankelijke toevalsvariabelen X en Y geldt: Standaardafwijking van X + Y is 2 2 x y x y 28

29 11 Samenvatting Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Somregel: Voor elkaar uitsluitende gebeurtenissen G 1 en G 2 geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) Complementregel: P(gebeurtenis) = 1 P(complement gebeurtenis) Het vaasmodel: Het aantal manieren om r dingen uit n dingen te pakken zonder op de volgorde te letten, dus het aantal combinaties van r uit n, is n r Samengesteld kansexperiment : Hetzelfde kansexperiment wordt een aantal keer herhaald. Productregel voor onafhankelijke gebeurtenissen: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het Andere kansexperiment geldt P(G 1 en G 2 ) = P(G 1 ) P(G 2 ) 29

30 11 Samenvatting Als je een kleine steekproef neemt uit een grote populatie mag je trekken zonder teruglegging opvatten als trekken met teruglegging. Berekeningen met breuken: 1. Gelijknamige breuken mag je optellen; 2. Niet-gelijknamige breuken maak je gelijknamig en tel je dan op; 3. Bij het vermenigvuldigen van breuken vermenigvuldig je de tellers met elkaar en de noemers met elkaar; 4. Delen door een breuk is vermenigvuldigen met het omgekeerde. Bernoulli-experiment = een kansexperiment met slechts twee mogelijke uitkomsten. De kans op succes is p. Binomiaal kansexperiment = Het een aantal keer (n) achter elkaar uitvoeren van hetzelfde Bernoulli experiment. X = aantal keer succes en p = kans op succes Binomiale verdeling: P(X = k) = binompdf(n,p,k) Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) 30

31 11 Samenvatting De verwachtingswaarde van -0,4 bij een loterij betekent dat een deelnemer per lot gemiddeld 0,4 euro verliest. (De organisator van de loterij maakt per lot dus gemiddeld 0,4 euro winst) Bij twee onafhankelijke toevalsvariabelen X en Y geldt: Standaardafwijking van X + Y is 2 2 x y x y 31

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

Paragraaf 7.1 : Het Vaasmodel

Paragraaf 7.1 : Het Vaasmodel Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5: Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )

Nadere informatie

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen:

4.0 Voorkennis. Bereken het aantal manieren om de functies te verdelen: 4.0 Voorkennis Voorbeeld 1: Een bestuur bestaat uit 6 personen. Uit deze 6 personen wordt eerst een voorzitter, dan een secretaris en tot slot een penningmeester gekozen. Bereken het aantal manieren om

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

Keuze onderwerp: Kansrekening 5VWO-wiskunde B

Keuze onderwerp: Kansrekening 5VWO-wiskunde B Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c Hoofdstuk : Het kansbegrip.. Kansen Opgave : De kans dat ze gooit is groter, want ze kan op zes manieren gooien: -, 2-, -, -, -2, -. Ze kan op manieren 9 gooien: -, -, -, -. Opgave 2: e. Opgave : 9 0 2

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten.

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten. G&R vwo C deel C von Schwartzenberg / Som kan met! (op = manieren) (op! manieren) (op manier)! =, = en Dus totaal + + = 0 gunstige uitkomsten Dubbel onderstreept betekent: "niet alleen" in de genoteerde

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars

Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars Paper 2 Bijlage 1: Lesplan (volgens MDA); Wil Baars-10630996. Docent: Wil Baars Les: 1 Klas:4VWO Aantal leerlingen:21 Lesonderwerp Het vaasmodel: introductie Beginsituatie De leerling weet dat het aantal

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

H10: Allerlei functies H11: Kansverdelingen..6-7

H10: Allerlei functies H11: Kansverdelingen..6-7 Oefenmateriaal V5 wiskunde A Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-3 H10: Allerlei functies....4-5 H11: Kansverdelingen..6-7 Hoofdstuk 9: Rijen & Reeksen Recursieve

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

Kern 1 Rekenen met binomiale kansen

Kern 1 Rekenen met binomiale kansen Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

Checklist Wiskunde A HAVO 4 2014-2015 HML

Checklist Wiskunde A HAVO 4 2014-2015 HML Checklist Wiskunde A HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Ik weet hoe je met procenten moet rekenen: procenten en breuken, percentage berekenen, toename en afname in procenten, rekenen met groeifactoren.

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

wiskundeleraar.nl

wiskundeleraar.nl 2015-2016 wiskundeleraar.nl 1. voorkennis Volgorde bij bewerkingen 1. haakjes 2. machtsverheffen. vermenigvuldigen en delen van links naar rechts 4. optellen en aftrekken van links naar rechts Voorbeeld

Nadere informatie

5 Totaalbeeld. Samenvatten. Achtergronden. Testen

5 Totaalbeeld. Samenvatten. Achtergronden. Testen 5 Totaalbeeld Samenvatten Je hebt nu het onderwerp Kansrekening doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat

Nadere informatie

college 4: Kansrekening

college 4: Kansrekening college 4: Kansrekening Deelgebied van de statistiek Doel: Kansen berekenen voor het waarnemen van bepaalde uitkomsten Kansrekening 1. Volgordeproblemen Permutaties Variaties Combinaties 2. Kans 3. Voorwaardelijke

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 29 juli 2013 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

H8: Regelmaat & verandering H9: Kansverdelingen...4-7

H8: Regelmaat & verandering H9: Kansverdelingen...4-7 Oefenmateriaal V5 wiskunde C Voorbereiding op SE-toets 1 wiskunde INHOUDSOPGAVE H8: Regelmaat & verandering...1-3 H9: Kansverdelingen....4-7 Hoofdstuk 8: Regelmaat & veranderingen Rekenkundige rij Meetkundige

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 28 juli 2014 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Kansberekeningen Hst

Kansberekeningen Hst 1 Kansberekeningen Hst. 1 1. P(,) + P(,) + P(,) = 1 1 1 1 1 1 5 + + = 16 b. P(10) = P(,,) + P(,,) = 1 1 1 1 1 1 1 6 + = 6 c. P(min stens keer een ) =1 P(max imaal keer een ) = 1 binomcdf (1, 1,) 0,981

Nadere informatie

Examenprogramma wiskunde A vwo

Examenprogramma wiskunde A vwo Examenprogramma wiskunde A vwo Het eindexamen Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein Bg Functies

Nadere informatie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen havo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE A A1: Informatievaardigheden X X Vaardigheden A2:

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Gifgebruik in de aardappelteelt

Gifgebruik in de aardappelteelt Gifgebruik in de aardappelteelt Opgave 1. jaar gifgebruik 1998 32 kg/ha 2007 24,5 kg/ha Van 2007 naar 2015 is een periode van 8 jaar. Maak eventueel een verhoudingstabel. In 9 jaar neemt het gifgebruik

Nadere informatie

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip 27 januari 2014 Deze les Kanstheorie volgens Laplace Experimentele kanstheorie Axiomatische kanstheorie Intuïtie Kanstheorie volgens Laplace (1749-1827) De kans op een gebeurtenis wordt verkregen door

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Hoe verwerk je gegevens met de Grafische Rekenmachine?

Hoe verwerk je gegevens met de Grafische Rekenmachine? Hoe verwerk je gegevens met de Grafische Rekenmachine? Heb je een tabel met alleen gegevens? Kies STAT EDIT Vul L 1 met je gegevens (als de lijst niet leeg is, ga je met de pijltjes helemaal naar boven,

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 16 januari 2014 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

2 Kansen optellen en aftrekken

2 Kansen optellen en aftrekken 2 Kansen optellen en aftrekken Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/ VWO wi-a Kansrekening Optellen/aftrekken Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a c d e Hoofdstuk - De inomiale verdeling. Succes en mislukking ladzijde 9 zoon dochter DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters Het aantal mogelijkheden

Nadere informatie

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1 Algemene vaardigheden Veel knopjes hebben drie functies. De functie die op een knop... staat krijg je door er op de drukken. De blauwe functie die er boven een knop... staat krijg je met 2nd.... Zo zet

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen

Kansrekenen. Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Kansrekenen Lesbrief kansexperimenten Havo 4 wiskunde A Maart 2012 Versie 3: Dobbelstenen Inhoud Inleiding...3 Doel van het experiment...3 Organisatie van het experiment...3 Voorkennis...4 Uitvoeren van

Nadere informatie

2. Optellen en aftrekken van gelijknamige breuken

2. Optellen en aftrekken van gelijknamige breuken 1. Wat is een breuk? Een breuk Een breuk is een verhoudingsgetal. Een breuk geeft aan hoe groot een deel is van een geheel. Stel een taart is verdeeld in stukken. Je neemt 2 stukken van de taart. Je hebt

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 23 januari 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW])

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) vorige week: kansrekening de uitkomstvariabele was bijna altijd discreet aantal keer een vijf gooien

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

begin van document Eindtermen vwo wiskunde C (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde C (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde C (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein subdomein in CE moet in SE A Vaardigheden A1: Informatievaardigheden A2: Onderzoeksvaardigheden

Nadere informatie

Hoofdstuk 5 - De binomiale verdeling

Hoofdstuk 5 - De binomiale verdeling Moderne wiskunde 9e editie Havo A deel Hoofdstuk - De inomiale verdeling ladzijde 0 a zoon dochter c DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters d e Het aantal

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde A (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

9.1 Gemiddelde, modus en mediaan [1]

9.1 Gemiddelde, modus en mediaan [1] 9.1 Gemiddelde, modus en mediaan [1] De onderstaande frequentietabel geeft aan hoeveel auto s er in een bepaald uur in een straat geteld zijn. Aantal auto s per uur 15 16 17 18 19 20 21 frequentie 2 7

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 28 januari 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen....

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen.... 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken de rekenregel breuk Ik kan

Nadere informatie

wiskunde A vwo 2016-II

wiskunde A vwo 2016-II OVERZICHT FORMULES Kansrekening Voor toevalsvariabelen X en Y geldt: E( X + Y) = E( X) + E( Y) Voor onafhankelijke toevalsvariabelen X en Y geldt: 2 2 σ ( X + Y) = σ ( X) +σ ( Y) n -wet: bij een serie

Nadere informatie

wiskunde A Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde A Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen VWO 2014 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit

Nadere informatie

Oefentoets Tentamen 1 Wiskunde A HAVO

Oefentoets Tentamen 1 Wiskunde A HAVO Oefentoets Tentamen 1 Wiskunde A HAVO Opgave 1 In een kist perssinaasappelen zitten standaard 50 sinaasappelen. Voor het persen van één glas sap zijn vijf sinaasappelen nodig. Verder wordt aangenomen dat

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A

Leerstof voortentamen wiskunde A. 1. Het voortentamen wiskunde A Leerstof voortentamen wiskunde A In dit document wordt de leerstof beschreven van het programma van het voortentamen wiskunde A op havo niveau te beginnen met het voortentamen van juli 2016. Deze specificatie

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Economie en maatschappij(a/b)

Economie en maatschappij(a/b) Natuur en gezondheid(a/b) Economie en maatschappij(a/b) Cultuur en maatschappij(a/c) http://profielkeuze.qompas.nl/ Economische studies Talen Recht Gedrag en maatschappij http://www.connectcollege.nl/download/decanaat/vwo%20doorstroomeisen%20universiteit.pdf

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Examen VWO. wiskunde A. tijdvak 2 woensdag 22 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A. tijdvak 2 woensdag 22 juni 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2016 tijdvak 2 woensdag 22 juni 13:30-16:30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 82 punten te behalen. Voor

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correctievoorschrift VWO 04 tijdvak wiskunde C Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Eindexamen wiskunde A1-2 compex vwo 2008-I

Eindexamen wiskunde A1-2 compex vwo 2008-I Eindexamen wiskunde A-2 compex vwo 2008-I Beoordelingsmodel Tennisballen maximumscore 4 De diameter moet liggen tussen 2,575 en 2,700 inch Beschrijven hoe met de GR de bijbehorende kans kan worden berekend

Nadere informatie

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen.

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen. 1 Kansbomen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Kansbomen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! Examentoets 2 6VWO-A Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij gebruik

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 5 Dinsdag 28 September 1 / 25 1 Kansrekening Indeling: Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen Voor software R: van http://sourceforge.net

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie