Zin en onzin van normale benaderingen van binomiale verdelingen

Maat: px
Weergave met pagina beginnen:

Download "Zin en onzin van normale benaderingen van binomiale verdelingen"

Transcriptie

1 Zin en onzin van normale benaderingen van binomiale verdelingen Johan Walrave, docent EHSAL 0. Inleiding Voordat het grafisch rekentoestel in onze school ingevoerd werd, was er onder de statistiekdocenten onenigheid over de impact van het rekentoestel op de didactische aanpak en de inhoud van het vak Statistiek. Sommigen beweerden dat alleen de tabellen zouden verdwijnen, anderen beweerden dat onze syllabus in de papiermand zou belanden. Nu drie jaar na de invoering kunnen we stellen dat de waarheid ergens in het midden ligt. Zo zijn bijvoorbeeld de tabellen effectief verdwenen en worden kansen meer en meer gevisualiseerd. Het standaardiseren heeft aan belang ingeboet maar is niet verdwenen en de benaderingen worden nog steeds gebruikt maar in andere situaties dan vroeger. Benaderen als er exact kan gewerkt worden, is onzin. Benaderen als een kans niet exact kan berekend worden, is uiteraard zinvol. Aan de hand van negen voorbeelden probeer ik het bovenstaande te illustreren. 1. De normale verdelingen Vroeger hadden we bij oefeningen over de normale verdeling een aantal vaste stappen : een schets maken, standaardiseren, alles in functie van de verdelingsfunctie schrijven en tenslotte de tabellen raadplegen. Sinds de invoering van het grafisch rekentoestel is het visueel aspect enorm toegenomen: kansen worden effectief berekend als oppervlaktes onder de kansdichtheid (zie Voorbeeld 1). Het ontbreken van een parameter is geen probleem meer, de Solver lost dit eenvoudig op (zie Voorbeeld 2). Als de twee parameters niet gekend zijn, dan blijft standaardiseren de handigste oplossing, het rekenwerk dat daarna komt wordt nu door het rekentoestel overgenomen (zie Voorbeeld 3). Voorbeeld 1 : Het IQ van Vlamingen is normaal verdeeld met een verwachte waarde van 100 en een standaardafwijking van 15. a. Maak een grafiek van de kansdichtheid van het IQ van Vlamingen. b. Bereken de kans dat een willekeurige Vlaming een IQ heeft dat gelegen is tussen 95 en 112. Oplossing: a. De kansdichtheid heeft als voorschrift 2 ( x 100) 2 2*15 1 fiq ( x) = e = normalpdf(x, 100, 15). 2 π *15 We voeren deze functie in, bepalen de grenzen van het tekenvenster en maken een grafiek, 1

2 b. De kans dat het IQ tussen 95 en 112 gelegen is, is gelijk aan de oppervlakte onder de kansdichtheid gelegen boven het interval [95, 112]. We berekenen (via CALCULATE) deze oppervlakte eerst grafisch en daarna via de functie normalcdf(ondergrens, bovengrens, µ, σ ). 2

3 Voorbeeld 2 : Het gewicht van een mandarijntje is normaal verdeeld. Gemiddeld weegt een mandarijntje 73g. De kans dat een mandarijntje meer dan 85g weegt bedraagt 5%. a. Bereken de standaardafwijking van het gewicht van één mandarijntje. b. De mandarijntjes worden in 3 categorieën verdeeld: klein, gewoon en groot. De categorie gewoon bevat 3 keer zo veel mandarijntjes als de categorie klein, die evenveel mandarijntjes bevat als de categorie groot. Hoeveel moet een mandarijntje wegen om tot de categorie gewoon te behoren? Oplossing: a. A1s X het gewicht in g is van een mandarijntje, dan weten we dat X normaal verdeeld is met µ = 73 en σ niet gekend. We weten wel dat PX> ( 85) = Als we deze laatste gelijkheid in rekentoesteltaal vertalen geeft dit normalcdf(85, E99, 73, σ) = 0. Dit is een vergelijking met 1 onbekende en die lossen we op met de Solver. b. De categorie gewoon bestaat uit de 60% middelste mandarijntjes qua gewicht. Dit betekent dat links van de ondergrens 20% gelegen is en links van de bovengrens 80% gelegen is, via de functie invnorm(oppervlakte links, µ, σ) berekenen we de gevraagde grenzen. Gewone mandarijntjes zijn mandarijntjes met een gewicht tussen 66.86g en 79.14g. 3

4 Voorbeeld 3 : Het gewicht van tennisspeelsters is normaal verdeeld. Nu blijkt dat 10% van de tennisspeelsters meer dan 70kg weegt en slechts 2,5% minder dan 50kg. Bereken de kans dat een willekeurig gekozen tennisspeelster minder dan 60kg weegt. Oplossing : Als G het gewicht in kg van een tennisspeelster is, dan weten we dat G normaalverdeeld is en dat PG ( < 50) = en PG ( > 70) = 0.1. Het rekentoestel biedt hier weinig soelaas, daarom standaardiseren we eerst en krijgen we dat of nog 50 µ 70 µ = invnorm(0.025) en = invnorm(0.9) σ σ µ + invnorm(0.025) σ = 50 µ + invnorm(0.9) σ = 70 We zetten deze coëfficiënten in de matrix A en via de functie rref([a]) krijgen we de gezochte verwachte waarde en standaardafwijking. We lezen af dat µ = 62.1kg en σ = 6.17kg. De gevraagde kans is gelijk aan Conclusie: - de student kan zelf veel meer grafisch werken en veel minder abstract - geen tabellen meer nodig en standaardiseren wordt minder belangrijk - het rekenwerk wordt tot een minimum herleid 4

5 2. De binomiale verdelingen Door de beperktheid van de tabellen moesten we vroeger vrij snel overstappen op een benadering, dat is nu niet meer het geval. Dankzij het rekentoestel kunnen we veel meer kansen exact berekenen en kunnen we grafieken maken van de binomiale verdelingen (zie Voorbeeld 4). Het niet kennen van de kans op succes π is geen probleem meer, de solver lost dit vrij snel op. Zelfs het aantal herhalingen n bepalen is geen enkel probleem, het rekentoestel genereert de kanstabel van bijna alle binomiale verdelingen (zie Voorbeeld 5). Alleen als n zeer groot wordt, laat het rekentoestel ons in de steek (zie Voorbeeld 6). Voorbeeld 4: Uit een onderzoek blijkt dat 13.2% van de bevolking linkshandig is. Een groep van 63 willekeurig gekozen personen komt samen en we willen het aantal linkshandigen bestuderen. a. Maak een grafiek met daarop de kansfunctie van het aantal linkshandigen in deze groep. Duid op deze grafiek het modale aantal linkshandigen aan. b. Bereken de kans dat er meer dan 10 linkshandigen zijn in zo n groep. c. Men wil met minstens 95% zekerheid minstens 50 linkshandigen, hoeveel personen moet men dan minstens uitnodigen? Oplossing: a. We zetten de kanstabel van deze toevalsvariabele in de lijsten L1 en L2 en zetten vervolgens de STAT PLOT aan. Als we een mooie grafiek willen, dan moeten we een idee hebben waar dit staafdiagram gelegen is en wat zijn spreiding is. De verwachte waarde 63*0.132 = is een kengetal van ligging en de standaardafwijking 8.316*( ) = leert ons iets over de spreiding. Na het instellen van het tekenvenster, tekenen we het gevraagde staafdiagram. 5

6 Uit de laatste grafiek volgt dat het modaal aantal linkshandigen 8 zal zijn, met een kans van Een pientere student merkt vanzelf op dat de grafiek de vorm heeft van een normale kansdichtheid. b. Grafisch is de gevraagde kans niets anders dan de oppervlakte van alle staafjes boven 11, 12, 13, 14,,63. Als we nu een benaderende normale kansdichtheid tekenen, kunnen we de oppervlakte helemaal grafisch berekenen. We tekenen op dezelfde grafiek de kansdichtheid van de normale verdeling met dezelfde kengetallen als de binomiale die we willen benaderen. Bij het berekenen van de benaderende oppervlakte moeten we goed nadenken wat we als ondergrens nemen. Het staafje boven 11 begint bij 10.5 en de studenten ontdekken vanzelf de continuïteitscorrectie. De exacte kans is gelijk aan 1 binomcdf(63, 0.132,10) = c. We definiëren X als het aantal linkshandigen in een groep van n willekeurig geselecteerde personen. X is binomiaal verdeeld met parameters n en Nu zoeken we n zodanig dat PX ( 50) 0.95 of nog PX ( 49) Deze laatste ongelijkheid vertalen we in rekentoesteltaal : binomcdf(n, 0.132, 49) 0.05 en kan op verschillende manieren opgelost worden. Een manier is het maken van een tabel (via TABLE en TBLSET) waarbij de n varieert en we deze n zoeken waarbij de gegeven kans voor het eerst onder de 5% duikt. 6

7 Als 13.2% van de bevolking linkshandig is, dan zullen we meer dan 400 mensen nodig hebben om met 95% zekerheid minstens 50 linkshandigen te hebben. De stap nemen we aanvankelijk van grootte 10 zodat we snel kunnen vaststellen dat het gezochte aantal gelegen is tussen 460 en 470. We verfijnen de stap tot grootte 1 en dit vanaf 460 Er moeten minstens 465 mensen uitgenodigd worden om met minstens 95% zekerheid minstens 50 linkshandigen te hebben. Voorbeeld 5: In een studie over adoptie door homo-koppels beweert men dat met 95% zekerheid meer dan 90% van een groep van 120 willekeurige Nederlanders voor adoptie door homokoppels is. Hoe groot is de kans dat een willekeurige Nederlander tegen homo-adoptie is? Oplossing : We definiëren X als het aantal Nederlanders dat voor homo-adoptie is in een groep van 120 Nederlanders. Deze toevalsvariabele is binomiaal verdeeld met parameters 120 en π = de kans dat een willekeurige Nederlander voor homo-adoptie is. Verder weten we dat PX> ( 108) = 0.95 of P(X 108)=0.05, deze laatste gelijkheid vertalen we in rekentoesteltaal : binomcdf(120, π, 108) = 0.05 en laten we oplossen door de Solver. De kans dat een willekeurige Nederlander tegen homo-adoptie is bedraagt = Conclusie: - de student kan zelf veel meer grafisch werken en veel minder abstract - geen tabellen meer nodig zodat er met realistische waarden kan gewerkt worden - er moet veel minder benaderd worden door een andere verdeling 7

8 3. Zin en onzin van benaderingen Voorbeeld 6 : In de veronderstelling dat het IQ van een Vlaming normaal verdeeld is met verwachte waarde 100 en standaardafwijking 15 en dat het IQ van de ene Vlaming onafhankelijk is van het IQ van een andere Vlaming, bereken dan de kans dat er a. meer dan Vlamingen zijn met een IQ kleiner dan 85. b. meer dan 1 Vlaming is met een IQ groter dan 175. Je mag veronderstellen dat er 6 miljoen Vlamingen zijn. Oplossing: a. Eerst berekenen we de kans dat een willekeurige Vlaming een IQ heeft dat kleiner is dan 85: normalcdf(-e99, 85, 100, 15) = Daarna berekenen we de kans dat er op 6 miljoen Vlamingen meer dan Vlamingen een IQ hebben dat kleiner is dan 85. Wie dit probeert via binomcdf( krijgt een foutmelding omdat het eerste argument (= het aantal herhalingen) kleiner dan 1 miljoen moet zijn. Kunnen we dan niets zeggen over deze kans? Jawel, we mogen de binomiale in dit geval benaderen door een normale verdeling met dezelfde kengetallen, namelijk µ = en σ = Een benadering voor de gevraagde kans is dan normalcdf( , E99, µ, σ) = b. Eerst berekenen we de kans dat een willekeurige Vlaming een IQ heeft dat groter is dan 175: normalcdf(175, E99, 100, 15) = 2.871*10-7. Daarna berekenen we de kans dat er op 6 miljoen Vlamingen meer dan 1 Vlaming een IQ heeft dat groter is dan 175. Via binomcdf( lukt dit niet, maar kunnen we dan niets zeggen over deze kans? Jawel, we mogen de binomiale in dit geval benaderen door een Poisson verdeling met als parameter * 2.871*10-7 = Een benadering voor de gevraagde kans is dan 1- poissoncdf(1.7226, 1) = De exacte kans kan in dit geval berekend worden via de complementregel en de kansfunctie van de binomiale, 8

9 De som van twee onafhankelijke binomiale verdelingen met dezelfde kans op succes is opnieuw binomiaal verdeeld, maar wat als de kans op succes verschillend is? Voorbeeld 7 : Van de 15-jarigen rookt 18.3% van de jongens en 19.1% van de meisjes. We selecteren aselect een groep van jarige jongens en jarige meisjes. Bereken dan de volgende kansen: a. de kans dat er juist 20 rokers zijn b. de kans dat er meer dan 20 rokers zijn Oplossing: Definieer X als het aantal jongens op 45 dat rookt, dan is X binomiaal verdeeld met parameters 45 en Deze mag benaderd worden door XB, een normale verdeling met verwachte waarde en variantie Definieer Y als het aantal meisjes op 54 dat rookt, dan is Y binomiaal verdeeld met parameters 54 en Deze mag benaderd worden door YB, een normale verdeling met verwachte waarde en variantie We kunnen nu X+Y benaderen door XB + YB een normale verdeling met verwachte waarde = en variantie = a. PX ( + Y= 20) P(19.5 XB+ YB 20.5) = normalcdf(19.5,20.5,18.549, ) = We berekenen deze kans exact met het rekentoestel: b. De gevraagde kans is PX ( + Y> 20) en kan benaderd worden door PXB ( + YB> 20.5) = normalcdf(20.5,e99, , ) =

10 Voorbeeld 8 : Er wordt beweerd dat 35% van de Vlaamse leerkrachten zou uitkijken naar een andere job. We willen deze uitspraak testen en nemen daarom een aselect staal van 100 leerkrachten. Uit een anonieme enquête blijkt dat 27 van hen effectief uitkijkt naar een andere job. Doe een 90% betrouwbare uitspraak over de gestelde bewering. Oplossing: We moeten een hypothesetest uitvoeren voor de populatieproportie π = het percentage Vlaamse leerkrachten dat uitkijkt naar een andere job. 1. H0 : π = Ha : π a = Testfase : we confronteren de voorgestelde hypothese met het steekproefresultaat: Met behulp van de ingebouwde 1-PropZtest krijgen we een p-waarde die kleiner is dan 10%, waaruit we besluiten om de nulhypothese met 90% betrouwbaarheid te verwerpen. Als controle hebben we het 90% betrouwbaarheidsinterval ook berekend. We komen tot hetzelfde besluit, 0.35 is geen betrouwbare waarde voor π als we werken met 90% betrouwbaarheid. Voor alle zekerheid berekenen we de p-waarde exact en wat blijkt: de exacte p-waarde is groter dan 10%, dus kunnen we de nulhypothese niet verwerpen. 10

11 Hoe ziet het exacte 90% betrouwbaarheidsinterval van π er dan uit? We zoeken die populatieproporties die betrouwbaar zijn bij dit steekproefresultaat met als betrouwbaarheid 90%. We zoeken dus die proporties π 0 die niet verworpen worden bij een tweezijdige hypothesetoets: 1. H0 : π = π 0 2. Ha : π π 0 3. a = Testfase : als H0 juist is, is 100 Pˆ binomiaal verdeeld met parameters 100 en π 0. We veronderstellen eerst dat π 0 groter is dan 0.27, de éénzijdige p-waarde is P( 100P ˆ 27 ) en we zoeken die waarden zodanig dat deze p-waarde gelijk is aan 5% We veronderstellen dan dat π 0 kleiner is dan 0.27, de éénzijdige p-waarde is P( 100P ˆ 27) = 1 P(100Pˆ 26) ) en we zoeken die waarden zodanig dat deze p-waarde gelijk is aan 5% Hieruit blijkt dat het exacte betrouwbaarheidsinterval [0.1979, ] is, wat toch niet hetzelfde is als het benaderend interval [0.197, 0.343]. We besluiten ook hier dat 0.35 een betrouwbare waarde is. 11

12 Voorbeeld 9 : In opdracht van Testaankoop werd een onderzoek gestart naar de veiligheid in Vlaamse zonnecentra. Een aselect staal van 50 zonnecentra werd onderzocht en 5 van deze zonnecentra voldeden helemaal niet aan de voorgeschreven veiligheidsnormen. Geef een 99% betrouwbaarheidsinterval voor het percentage onveilige zonnecentra in Vlaanderen. Oplossing: Op het eerste gezicht lijkt een betrouwbaarheidsinterval op basis van een normale benadering geen probleem, er zijn immers 50 herhalingen en 5 successen. We gebruiken daarom de ingebouwde functie van het rekentoestel. Met 99% betrouwbaarheid kunnen we stellen dat het percentage onveilige zonnecentra gelegen is tussen 1% en 21%. Maar liggen proporties niet altijd in het interval [0, 1]? Effectief, de normale benadering zorgt ervoor dat er nonsens verschijnt op ons rekentoestel. Het exacte betrouwbaarheidsinterval moet opgesteld worden. Om niet telkens de volledige constructie te moeten doorlopen, hebben we een programma geschreven dat exacte betrouwbaarheidsintervallen berekent voor proporties. Dit ziet er al veel beter uit, met 99% betrouwbaarheid ligt het percentage onveilige zonnecentra in Vlaanderen tussen 2% en 25.8%. Conclusie: - benaderen blijft nuttig, maar exact werken is altijd beter en dankzij het rekentoestel kan de exacte oplossing vaak effectief berekend worden. 12

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k)

11.0 Voorkennis. Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) 11.0 Voorkennis Let op: Cumulatieve binomiale verdeling: P(X k) = binomcdf(n,p,k) Wanneer je met binomcdf werkt, werk je dus altijd met een kans van de vorm P(X k) Voorbeeld 1: Binomiaal kanseperiment

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Kansverdelingen Inductieve statistiek met Geogebra 4.2

Kansverdelingen Inductieve statistiek met Geogebra 4.2 Kansverdelingen Inductieve statistiek met Geogebra 4.2 Brecht Dekeyser Pedic 20 november 2013 Gent 1 Inhoud Nieuw in Geogebra 4.2 Kansverdelingen: Berekeningen en grafische voorstellingen Manueel in rekenblad

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten

We illustreren deze werkwijze opnieuw a.h.v. de steekproef van de geboortegewichten Hoofdstuk 8 Betrouwbaarheidsintervallen In het vorige hoofdstuk lieten we zien hoe het mogelijk is om over een ongekende karakteristiek van een populatie hypothesen te formuleren. Een andere manier van

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Populatie: De gehele groep elementen waarover informatie wordt gewenst.

Populatie: De gehele groep elementen waarover informatie wordt gewenst. Statistiek I Werkcollege 1 Populatie: De gehele groep elementen waarover informatie wordt gewenst. Steekproef: Gedeelte van de populatie dat feitelijk wordt onderzocht om informatie te vergaren. Eenheden:

Nadere informatie

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling 12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)

De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De normale verdeling Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf In deze les ga je veel met

Nadere informatie

Toetsen van Hypothesen. Het vaststellen van de hypothese

Toetsen van Hypothesen. Het vaststellen van de hypothese Toetsen van Hypothesen Wisnet-hbo update maart 2008 1. en Het vaststellen van de hypothese De nulhypothese en de Alternatieve hypothese. Het gaat in deze paragraaf puur alleen om de formulering. Er wordt

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Hoofdstuk 5 Een populatie: parametrische toetsen

Hoofdstuk 5 Een populatie: parametrische toetsen Hoofdstuk 5 Een populatie: parametrische toetsen 5.1 Gemiddelde, variantie, standaardafwijking: De variantie is als het ware de gemiddelde gekwadrateerde afwijking van het gemiddelde. Hoe groter de variantie

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 7 juni 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses

Vandaag. Onderzoeksmethoden: Statistiek 3. Recap 2. Recap 1. Recap Centrale limietstelling T-verdeling Toetsen van hypotheses Vandaag Onderzoeksmethoden: Statistiek 3 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Recap Centrale limietstelling

Nadere informatie

Werkbladen 3 Terugzoeken

Werkbladen 3 Terugzoeken Werkbladen Terugzoeken We keren nu de vraag om. Bij een gegeven percentage (oppervlakte zoeken we de bijbehorende grenswaarde(n. Als voorbeeld zoeken we hoe groot een Nederlandse vrouw anno 97 moest zijn

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Werken met de grafische rekenmachine

Werken met de grafische rekenmachine Werken met de grafische rekenmachine Plot de grafiek blz. Schets de grafiek of teken een globale grafiek blz. 3 Teken de grafiek blz. 4 Het berekenen van snijpunten blz. 3 5 Het berekenen van maxima en

Nadere informatie

7.1 Toets voor het gemiddelde van een normale verdeling

7.1 Toets voor het gemiddelde van een normale verdeling Hoofdstuk 7 Toetsen van hypothesen Toetsen van hypothesen is, o.a. in de medische en chemische wereld, een veel gebruikte statistische techniek. Het wordt vaak gebruikt om een gevestigde norm eventueel

Nadere informatie

Statistiek voor A.I. College 12. Dinsdag 23 Oktober

Statistiek voor A.I. College 12. Dinsdag 23 Oktober Statistiek voor A.I. College 12 Dinsdag 23 Oktober 1 / 20 2 Deductieve statistiek Orthodoxe statistiek 2 / 20 3 / 20 Jullie - onderzoek Wivine Tijd waarop je opstaat (uu:mm wordt weergeven als uumm). Histogram

Nadere informatie

HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN

HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN HOOFDSTUK 6: INTRODUCTIE IN STATISTISCHE GEVOLGTREKKINGEN Inleiding Statistische gevolgtrekkingen (statistical inference) gaan over het trekken van conclusies over een populatie op basis van steekproefdata.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Toetsen van hypothesen

Toetsen van hypothesen Les 4 Toetsen van hypothesen We hebben tot nu toe enigszins algemeen naar grootheden van populaties gekeken en bediscussieerd hoe we deze grootheden uit steekproeven kunnen schatten. Vaak hebben we echter

Nadere informatie

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen.

Empirische kansen = op ervaring gegrond; bereken je door relatieve frequenties te gebruiken. Wet van de grote aantallen. Samenvatting Kansen Definitie van Laplace : P(G) = aantal _ gunstige _ uitkomsten aantal _ mogelijke _ uitkomsten Voorbeeld : Vb kans op 4 gooien met dobbelsteen: Aantal gunstige uitkomsten = 1 ( namelijk

Nadere informatie

KANSREKENEN EN VERDELINGEN REEKS 1

KANSREKENEN EN VERDELINGEN REEKS 1 KANSREKENEN EN VERDELINGEN REEKS 1 Moeilijkere oefeningen zijn aangegeven met een gevarendriehoek Niet elke regel met R-code zal je kunnen/moeten gebruiken Versie 18/07/2019 1. Verdelingsfunctie Het aantal

Nadere informatie

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet?

Verklarende Statistiek: Toetsen. Zat ik nou in dat kritische gebied of niet? Verklarende Statistiek: Toetsen Zat ik nou in dat kritische gebied of niet? Toetsen, Overzicht Nulhypothese - Alternatieve hypothese (voorbeeld: toets voor p = p o in binomiale steekproef) Betrouwbaarheid

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

wiskunde A vwo 2017-II

wiskunde A vwo 2017-II wiskunde A vwo 07-II Eiwit en vet in melk maximumscore 4 Voorbeeld van een juiste berekening: 005, 8500 aflezen De punten ( 985, 5500 ) en ( ) De toename per jaar is 50 De vergelijking 8500 + 50t = 000

Nadere informatie

Hoofdstuk 3 Statistiek: het toetsen

Hoofdstuk 3 Statistiek: het toetsen Hoofdstuk 3 Statistiek: het toetsen 3.1 Schatten: Er moet een verbinding worden gelegd tussen de steekproefgrootheden en populatieparameters, willen we op basis van de een iets kunnen zeggen over de ander.

Nadere informatie

Paragraaf 9.1 : De Verwachtingswaarde

Paragraaf 9.1 : De Verwachtingswaarde Hoofdstuk 9 Kansverdelingen (V5 Wis A) Pagina 1 van 8 Paragraaf 9.1 : De Verwachtingswaarde Les 1 Verwachtingswaarde Definities : Verwachtingswaarde Verwachtingswaarde = { wat je verwacht } { gemiddelde

Nadere informatie

Sheets K&S voor INF HC 10: Hoofdstuk 12

Sheets K&S voor INF HC 10: Hoofdstuk 12 Sheets K&S voor INF HC 1: Hoofdstuk 12 Statistiek Deel 1: Schatten (hfdst. 1) Deel 2: Betrouwbaarheidsintervallen (11) Deel 3: Toetsen van hypothesen (12) Betrouwbaarheidsintervallen (H11) en toetsen (H12)

Nadere informatie

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen)

Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) Hoofdstuk 8: Het Toetsen van Hypothesen (Extra Oefeningen) 8.16. Men wenst H 0 : p 0.2 te testen tegenover H 1 : p 0.4 voor een binomiale distributie met n 10. Bepaal α en β als de testfunctie gegeven

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

Eindexamen wiskunde A 1-2 vwo I

Eindexamen wiskunde A 1-2 vwo I Beoordelingsmodel Marathonloopsters maximumscore uur, 4 minuten en seconden is 98 seconden De snelheid is 495 98 (m/s) Het antwoord: 4, (m/s) maximumscore Uit x = 5 volgt v 4,04 (m/s) De tijd die een 5-jarige

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 14 Donderdag 28 Oktober 1 / 37 2 Statistiek Indeling: Hypothese toetsen Schatten 2 / 37 Vragen 61 Amerikanen werd gevraagd hoeveel % van de tijd zij liegen. Het gevonden

Nadere informatie

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN

HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN HOOFDSTUK II BIJZONDERE THEORETISCHE VERDELINGEN. Continue Verdelingen 1 A. De uniforme (of rechthoekige) verdeling Kansdichtheid en cumulatieve frequentiefunctie Voor x < a f(x) = 0 F(x) = 0 Voor a x

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk Het toetsen van hypothesen.. Beslissen op grond van een steekproef Opgave : a. hij gebruikt totaal meer schuurmiddel dan nodig is en dat kost dus extra geld b. de klanten gaan klagen als er te

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter.

+ ( 1 4 )2 σ 2 X σ2. 36 σ2 terwijl V ar[x] = 11. Aangezien V ar[x] het kleinst is, is dit rekenkundig gemiddelde de meest efficiënte schatter. STATISTIEK OPLOSSINGEN OEFENZITTINGEN 5 en 6 c D. Keppens 2004 5 1 (a) Zij µ de verwachtingswaarde van X. We moeten aantonen dat E[M i ] = µ voor i = 1, 2, 3 om te kunnen spreken van zuivere schatters.

Nadere informatie

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk : Kansen en beslissingen. Beslissen op grond van een steekproef. Opgave : a. normalcdf,,8,), 78 b. a invnorm.,8,) 7, c. normalcdf,.,.8, ), 7 y normalcdf,.,.8, X ) kijk in de tabel voor welke

Nadere informatie

15.1 Beslissen op grond van een steekproef

15.1 Beslissen op grond van een steekproef 05 15 Exponenten Het toetsen van en logaritmen hypothesen 15.1 Beslissen op grond van een steekproef bladzijde 8 1 a Er wordt dan te veel schuurmiddel geleverd en dit kost geld. b Dan zit er te weinig

Nadere informatie

Hoofdstuk 3 Toetsen uitwerkingen

Hoofdstuk 3 Toetsen uitwerkingen Kern Kansen ij een normale verdeling a normalcdf(3.7,., 3,7) =,9 normalcdf(9, 9999,, 7) =,7 c normalcdf( 9999, 3,, ) =,978 a g = invnorm(.3, 8, 7) = 77,9 g = invnorm(.873,, ) = 97,9 c P(X < g μ = 8 en

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Hoofdstuk 2 De normale verdeling. Kern 1 Normale verdelingen. 1 a

Hoofdstuk 2 De normale verdeling. Kern 1 Normale verdelingen. 1 a Hoofdstuk De normale verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b In totaal is 0, + 0,9 + 3,3 +,0 +,3 + 7,3= 50,5 procent van de

Nadere informatie

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval

Nadere informatie

Lang leve invnorm op de TI-83 grafische rekenmachine

Lang leve invnorm op de TI-83 grafische rekenmachine Bij de kansrekening op HAVO en VWO wordt ruimschoots aandacht besteed aan de normale verdeling. In de schoolboeken staan talrijke variaties, waarvan we de volgende beschouwen: Geef van een normaal verdeelde

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

S0A17D: Examen Sociale Statistiek (deel 2)

S0A17D: Examen Sociale Statistiek (deel 2) S0A17D: Examen Sociale Statistiek (deel 2) 21 juni 2011 Naam : Jaar en studierichting : Lees volgende aanwijzingen eerst voor het examen te beginnen : Wie de vragen aanneemt en bekijkt, moet minstens 1

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Hoofdstuk 6 Twee populaties: parametrische toetsen

Hoofdstuk 6 Twee populaties: parametrische toetsen Hoofdstuk 6 Twee populaties: parametrische toetsen 6.1 De t-toets voor het verschil tussen twee gemiddelden: In veel onderzoekssituaties zijn we vooral in de verschillen tussen twee populaties geïnteresseerd.

Nadere informatie

Antwoorden door K woorden 14 augustus keer beoordeeld. Wiskunde A. Supersize me. Opgave 1: leerstof: Formules met meer variabelen.

Antwoorden door K woorden 14 augustus keer beoordeeld. Wiskunde A. Supersize me. Opgave 1: leerstof: Formules met meer variabelen. Antwoorden door K. 1901 woorden 14 augustus 2015 1 1 keer beoordeeld Vak Wiskunde A Supersize me Opgave 1: leerstof: Formules met meer variabelen. Formule energiebehoefte = =33,6 G 5000(kcal) = dagelijkse

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Inleiding statistiek

Inleiding statistiek Inleiding Statistiek Pagina 1 uit 8 Inleiding statistiek 1. Inleiding In deze oefeningensessie is het de bedoeling jullie vertrouwd te maken met een aantal basisbegrippen van de statistiek, meer bepaald

Nadere informatie

Les 1: Waarschijnlijkheidrekening

Les 1: Waarschijnlijkheidrekening Les 1: Waarschijnlijkheidrekening A Men neemt een steekproef van 1000 appelen. Deze worden ingedeeld volgens gewicht en volgens symptomen van een bepaalde schimmel: geen, mild, gematigd of ernstig. Het

Nadere informatie

Inhoudsopgave. Deel I Schatters en toetsen 1

Inhoudsopgave. Deel I Schatters en toetsen 1 Inhoudsopgave Deel I Schatters en toetsen 1 1 Hetschattenvanpopulatieparameters.................. 3 1.1 Inleiding:schatterversusschatting................. 3 1.2 Hetschattenvaneengemiddelde..................

Nadere informatie

1. De wereld van de kansmodellen.

1. De wereld van de kansmodellen. STATISTIEK 3 DE GRAAD.. De wereld van de kansmodellen... Kansmodellen X kansmodel Discreet model Continu model Kansverdeling Vaas Staafdiagram Dichtheidsfunctie f(x) GraJiek van f Definitie: Een kansmodel

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 20 Oktober 1 / 1 2 Statistiek Vandaag: Hypothese toetsen 2 / 1 3 / 1 Terzijde NU.nl 19 oktober 2011: Veel Facebookvrienden wijst op grotere hersenen. (http://www.nu.nl/wetenschap/2645008/veel-facebookvrienden-wijst-groterehersenen-.html)

Nadere informatie

Meetkunde en Lineaire Algebra

Meetkunde en Lineaire Algebra Hoofdstuk 1 Meetkunde en Lineaire Algebra Vraag 1.1 Zij p en q twee veeltermfuncties met reële coëfficiënten en A een reële vierkante matrix. Dan is p(a) diagonaliseerbaar over R als en slechts dan als

Nadere informatie

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1

de Wageningse Methode Beknopte gebruiksaanwijzing TI84 1 Algemene vaardigheden Veel knopjes hebben drie functies. De functie die op een knop... staat krijg je door er op de drukken. De blauwe functie die er boven een knop... staat krijg je met 2nd.... Zo zet

Nadere informatie

Eindexamen wiskunde B1 havo 2006-I

Eindexamen wiskunde B1 havo 2006-I Eindexamen wiskunde B havo 006-I 4 Beoordelingsmodel IJs 5000 5 h beschrijven hoe deze vergelijking algebraïsch met de GR opgelost kan worden ( h 000 dus) h 3,6 cm; de minimale dikte is ongeveer 3 cm de

Nadere informatie

Beslissen op grond van een steekproef Hoofdstuk 15

Beslissen op grond van een steekproef Hoofdstuk 15 1 Beslissen op grond van een steekproef Hoofdstuk 15 1. a. Het gaat veel geld kosten voor de fabrikant als er te veel schuurmiddel gebruikt wordt. b. Bij een te laag gemiddelde zullen de klanten niet tevreden

Nadere informatie

Eindexamen wiskunde B1 havo 2000-I

Eindexamen wiskunde B1 havo 2000-I Eindexamen wiskunde B havo 000-I 4 Antwoordmodel Bioritme a = 50 π b = ( b 0,44) 8 50sin ( t ) = 5 Dit op de GR met (bijv.) linker- en rechterlid invoeren en snijpunt bepalen geeft in de eerste periode

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 23 januari 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Probeer zeker de opdrachten 1, 4 en 6 te maken. 1. In de tabel hieronder vind je gegevens over de borstomtrek van 5732

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 11 Dinsdag 25 Oktober 1 / 27 2 Statistiek Vandaag: Hypothese toetsen Schatten 2 / 27 Schatten 3 / 27 Vragen: liegen 61 Amerikanen werd gevraagd hoeveel % van de tijd

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

4 Domein STATISTIEK - versie 1.2

4 Domein STATISTIEK - versie 1.2 USolv-IT - Boomstructuur DOMEIN STATISTIEK - versie 1.2 - c Copyrighted 42 4 Domein STATISTIEK - versie 1.2 (Op initiatief van USolv-IT werd deze boomstructuur mede in overleg met het Universitair Centrum

Nadere informatie

Hoofdstuk 5: Steekproevendistributies

Hoofdstuk 5: Steekproevendistributies Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel

Nadere informatie

= P(B) = 2P(C), P(A B) = 1 2 en P(A C) = 2 5. d. 31

= P(B) = 2P(C), P(A B) = 1 2 en P(A C) = 2 5. d. 31 Tentamen Statistische methoden 45STAMEY april, 9: : Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

wiskunde C vwo 2017-II

wiskunde C vwo 2017-II Eiwit en vet in melk maximumscore 4 Voorbeeld van een juiste berekening: 005, 8500 aflezen De punten ( 985, 5500 ) en ( ) De toename per jaar is 50 De vergelijking 8500 50t = 000 oplossen (met t = 0 op

Nadere informatie

Oefenvragen bij Statistics for Business and Economics van Newbold

Oefenvragen bij Statistics for Business and Economics van Newbold Oefenvragen bij Statistics for Business and Economics van Newbold Hoofdstuk 1 1. Wat is het verschil tussen populatie en sample? De populatie is de complete set van items waar de onderzoeker in geïnteresseerd

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies

Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies Hoofdstuk 7: Statistische gevolgtrekkingen voor distributies 7.1 Het gemiddelde van een populatie Standaarddeviatie van de populatie en de steekproef In het vorige deel is bij de significantietoets uitgegaan

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE

DEEL 3 INDUCTIEVE STATISTIEK INLEIDING TOT DE INDUCTIEVE STATISTIEK 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE DEEL 3 INDUCTIEVE STATISTIEK INHOUD H 10: INLEIDING TOT DE INDUCTIEVE STATISTIEK H 11: PUNTSCHATTING 11.1 ALGEMEEN 11.1.1 Definities 11.1.2 Eigenschappen 11.2 DE GROOTSTE AANNEMELIJKHEID - METHODE 11.3

Nadere informatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie

Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie Betrouwbaarheid van een steekproefresultaat m.b.t. de hele populatie Verschillende steekproeven uit eenzelfde populatie leveren verschillende (steekproef) resultaten op. Dit onvermijdelijke verschijnsel

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Eindexamen wiskunde C vwo II

Eindexamen wiskunde C vwo II Beoordelingsmodel Denksport maximumscore 4 In de periode 963-975 is de toename 3000 4500 = 8500 (± 000) De gemiddelde toename per jaar is dan 8500: 700 In de periode 975-978 is de gemiddelde toename per

Nadere informatie

Tentamen Statistische methoden MST-STM 8 april 2010, 9:00 12:00

Tentamen Statistische methoden MST-STM 8 april 2010, 9:00 12:00 Tentamen Statistische methoden MST-STM 8 april 2, 9: 2: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop inleveren alstublieft.

Nadere informatie

Examen Statistiek I Januari 2010 Feedback

Examen Statistiek I Januari 2010 Feedback Examen Statistiek I Januari 2010 Feedback Correcte alternatieven worden door een sterretje aangeduid. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Twee derden van de mannen

Nadere informatie