De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "De normale verdeling. Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)"

Transcriptie

1 De normale verdeling Les 3 De Z-waarde (Deze les sluit aan bij de paragraaf 10 van Binomiale en normale verdelingen van de Wageningse Methode)

2 De grafische rekenmachine Vooraf In deze les ga je veel met de grafische rekenmachine (GR) werken. Bij de uitleg is aangesloten bij de Wageningse Methode. Dat betekent dat bij de opdrachten uitgegaan is van de TI-84 Plus. Mocht je op school een andere GR gebruiken, lees dan eerst goed wat de opdracht is en zoek de juiste commando s bij je eigen GR (kijk in de handleiding of vraag je docent).

3 De normale verdeling De grafieken zijn symmetrisch rond het gemiddelde. De totale oppervlakte is 1. De grafiek heeft twee buigpunten. standaardnormaal Standaardnormale verdeling: =0, =1

4 De Z-waarde Pakken suiker hebben een gemiddeld gewicht van 1000 gram. De gewichten zijn normaal verdeeld met standaardafwijking 10. Een pak suiker weegt 982 gram.

5 De Z-waarde Pakken suiker hebben een gemiddeld gewicht van 1000 gram. De gewichten zijn normaal verdeeld met standaardafwijking 10. Een pak suiker weegt 982 gram. De afwijking van het gemiddelde is = 18 gram. Dat is 1,8 10 = 1,8 σ.

6 De Z-waarde Pakken suiker hebben een gemiddeld gewicht van 1000 gram. De gewichten zijn normaal verdeeld met standaardafwijking 10. Een pak suiker weegt 982 gram. De afwijking van het gemiddelde is = 18 gram. Dat is 1,8 10 = 1,8 σ. De afwijking van het gemiddelde uitgedrukt in het aantal keer de standaardafwijking heet de z-waarde.

7 De Z-waarde Het aantal keer de standaardafwijking dat een waarneming afwijkt van het gemiddelde heet de z-waarde. z-waarde = Hoe groter de z-waarde, hoe uitzonderlijker de waarneming.

8 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Lengte van 16-jarige meisjes: µ = 164 cm, σ = 10 cm

9 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Lengte van 16-jarige meisjes: µ = 164 cm, σ = 10 cm Lengte Simon = 196 cm z- waarde Simon = = =1,67

10 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Lengte van 16-jarige meisjes: µ = 164 cm, σ = 10 cm Lengte Simon = 196 cm z- waarde Simon = Lengte Simona = 186 cm z- waarde Simona =! = =1,67 = =2,2

11 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Lengte van 16-jarige meisjes: µ = 164 cm, σ = 10 cm Lengte Simon = 196 cm z- waarde Simon = Lengte Simona = 186 cm z- waarde Simona = = =1,67 = =2,2 Lengte Peter = 158 cm. z- waarde Peter = # = = 1,5

12 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Hoeveel procent van de jongens heeft een lengte tussen 164 cm en 188 cm?

13 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Hoeveel procent van de jongens heeft een lengte tussen 164 cm en 188 cm? Uitwerking: 164 = = en 188 = +. Volgens de vuistregel is dat 68%.

14 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Hoeveel procent van de jongens heeft een lengte tussen z = -1,5 en z= 1,5?

15 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Hoeveel procent van de jongens heeft een lengte tussen z = -1,5 en z= 1,5? Uitwerking z = -1,5 komt overeen met cm = 156 cm. z = 1,5 komt overeen met cm = 194 cm. Met GR: DRAW shadenorm (156, 194, 176, 12) = 88,5%.

16 De Z-waarde Lengte van 16-jarige jongens: µ = 176 cm, σ = 12 cm Hoeveel procent van de jongens heeft een lengte tussen z = -1,5 en z= 1,5? Uitwerking z = -1,5 komt overeen met cm = 156 cm. z = 1,5 komt overeen met cm = 194 cm. Met GR: DRAW shadenorm (156, 194, 176, 12) = 88,5%. Of rechtstreeks via de standaardnormale verdeling: Met GR: DISTR normalcdf (-1.5, 1.5, 0, 1) = 88,5%.

17 De Z-waarde Met de GR DRAW shadenorm (links, rechts, µ, σ) = 88,5%. (tekent en berekent percentagegebied) DISTR normalcdf (links, rechts, µ, σ) = 88,5%. (berekent percentage) invnorm (percentage, 0, 1) = z-waarde (berekent z-waarde cumulatief gebied) µ-σ z-waarde µ µ+σ

18 De z-waarde De vulmachine voor pakken suiker geeft een standaardafwijking van 10 gram. Het gemiddelde gewicht kan worden ingesteld. Niet meer dan 2% van de pakken suiker een gewicht onder de 985 gram hebben. Hoe moet het gemiddelde gewicht van de vulmachine worden ingesteld?

19 De z-waarde De vulmachine voor pakken suiker geeft een standaardafwijking van 10 gram. Het gemiddelde gewicht kan worden ingesteld. Niet meer dan 2% van de pakken suiker een gewicht onder de 985 gram hebben. Hoe moet het gemiddelde gewicht van de vulmachine worden ingesteld? Met de GR: invnorm (0.02, 0, 1) = -2,05 is de z-waarde van de standaardnormale verdeling die hoort bij 2%.

20 De z-waarde De vulmachine voor pakken suiker geeft een standaardafwijking van 10 gram. Het gemiddelde gewicht kan worden ingesteld. Niet meer dan 2% van de pakken suiker een gewicht onder de 985 gram hebben. 20,5 Hoe moet het gemiddelde gewicht van de vulmachine worden ingesteld? Met de GR: invnorm (0.02, 0, 1) = -2,05 is de z-waarde van de standaardnormale verdeling die hoort bij 2%. 2,05 10 gram = 20,5 gram. De afwijking van het gemiddelde mag niet meer zijn dan 20,5 gram. Het gemiddelde moet minstens op ,5 = 1005,5 gram worden ingesteld.

21 De z-waarde µ en σ zijn bekend. Bereken het percentage. Een autorobot heeft gemiddeld 96 seconden nodig om een wiel te monteren. De standaardafwijking is 5 seconden. 110 In hoeveel procent van de gevallen zal de montagetijd meer zijn dan 110 seconden?

22 De z-waarde µ en σ zijn bekend. Bereken het percentage. Een autorobot heeft gemiddeld 96 seconden nodig om een wiel te monteren. De standaardafwijking van de robot is 5 seconden. In hoeveel procent van de gevallen zal de montagetijd meer zijn dan 110 seconden? Met de GR De z-waarde is # = 2,8. DISTR normalcdf (2.8,9999,0,1) = Of rechtstreeks: DISTR normalcdf (110,9999,96,5) = Dat is in 0,26% van de gevallen.

23 De z-waarde µ en percentage zijn bekend. Bereken σ. Een autorobot heeft gemiddeld 80 seconden nodig om een bumper te monteren. In 20% van de gevallen lukt dat in 77 seconden. Hoe groot is σ? 20% 77? 80?

24 De z-waarde µ en percentage zijn bekend. Bereken σ. Een autorobot heeft gemiddeld 80 seconden nodig om een bumper te monteren. In 20% van de gevallen lukt dat in 77 seconden. Hoe groot is σ? Met de GR Bereken de z-waarde bij 20% met invnorm. invnorm. (0.2,0,1) = -0,84. 0,84 σ = 3 seconden dus σ = 3 : 0,84 = 3,57 seconden.

25 De z-waarde σ en percentage zijn bekend. Bereken µ. Een autorobot mag niet meer dan 8 op de 1000 gevallen langer dan 105 seconden doen om een deur te monteren. De standaardafwijking van de robot is 4 seconden. Hoe moet het gemiddelde worden ingesteld? 4? 4 0,8% 105

26 De z-waarde σ en percentage zijn bekend. Bereken µ. Een autorobot mag niet meer dan 8 op de 1000 gevallen langer dan 105 seconden doen om een deur te monteren. De standaardafwijking van de robot is 4 seconden. Hoe moet het gemiddelde worden ingesteld? Met de GR Het percentage moet kleiner zijn dan 0,8%. 99,2% is niet gearceerd. De bijbehorende z-waarde is invnorm(0.992,0,1) = 2,4. =105 2,41 =105 9,64=95,36.

27 Oefenen Maken: De opgaven 10, in ieder geval opgaven 8, 11 en 14

28 Inleveren: Van paragraaf 10, opgave 19. Huiswerk

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel)

Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) Rekenen met de normale verdeling (met behulp van grafisch rekentoestel) In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek verricht naar de lichaamsafmetingen van de Nederlandse

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 5 les 3

Wiskunde D Online uitwerking 4 VWO blok 5 les 3 Paragraaf 10 De standaard normale tabel Opgave 1 a Er geldt 20,1 16,6 = 3,5 C. Dit best wel een fors verschil, maar hoeft niet direct heel erg uitzonderlijk te zijn. b Er geldt 167 150 = 17. Dat valt buiten

Nadere informatie

Werkbladen 3 Terugzoeken

Werkbladen 3 Terugzoeken Werkbladen Terugzoeken We keren nu de vraag om. Bij een gegeven percentage (oppervlakte zoeken we de bijbehorende grenswaarde(n. Als voorbeeld zoeken we hoe groot een Nederlandse vrouw anno 97 moest zijn

Nadere informatie

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram

Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Werkblad 1 Normale dichtheidsfunctie als benadering voor een klokvormig histogram Probeer zeker de opdrachten 1, 4 en 6 te maken. 1. In de tabel hieronder vind je gegevens over de borstomtrek van 5732

Nadere informatie

UITWERKINGEN VOOR HET VWO NETWERK B13

UITWERKINGEN VOOR HET VWO NETWERK B13 12 UITWERKINGEN VOOR HET VWO NETWERK B13 HOOFDSTUK 6 KERN 1 1a) Zie plaatje De polygoon heeft een klokvorm 1b) Ongeveer 50% 1c) 0,1 + 0,9 + 3,3 + 11,0 = 15,3% 2a) klokvorm 2b) geen klokvorm 2c) klokvorm

Nadere informatie

Boek 2 hoofdstuk 8 De normale verdeling.

Boek 2 hoofdstuk 8 De normale verdeling. 52a. de groepen verschillen sterk in grootte b. 100 van de 5000 = 1 van de 50 dus 1 directielid, 90 winkelmedewerkers en 9 magazijnmedewerkers. Boek 2 hoofdstuk 8 De normale verdeling. 8.1 Vuistregels

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links.

13,5% 13,5% De normaalkromme heeft dezelfde vorm als A (even breed en even hoog), maar ligt meer naar links. G&R havo A deel C. von Schwartzenberg /8 a Er is uitgegaan van de klassen: < 60; 60 < 6; 6 < 70;... 8 < 90. b c De onderzochte groep bestaat uit 000 personen. (neem nog eens GRpracticum uit hoofdstuk 4

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 2

Wiskunde D Online uitwerking 4 VWO blok 6 les 2 Paragraaf 8 De klokvorm Opgave 1 a De top van de grafiek van de PvdA ligt bij 30 %. Dus voor de PvdA wordt 30% voorspeld. b De grafiek loopt van ongeveer 27 tot 33, dus het percentage ligt met grote waarschijnlijkheid

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most

Hoofdstuk 9 De Normale Verdeling. Kern 1 Normale verdelingen. Netwerk, 4 Havo A, uitwerkingen Hoofdstuk 9, De Normale Verdeling Elleke van der Most Hoofdstuk 9 De Normale Verdeling Kern Normale verdelingen a percentage 30 0 0 57 6 67 7 77 8 87 9 97 0 07 De polygoon heeft een klokvorm. b De gemiddelde lengte valt in de klasse 80 84 cm. Omdat 8 precies

Nadere informatie

Hoe verwerk je gegevens met de Grafische Rekenmachine?

Hoe verwerk je gegevens met de Grafische Rekenmachine? Hoe verwerk je gegevens met de Grafische Rekenmachine? Heb je een tabel met alleen gegevens? Kies STAT EDIT Vul L 1 met je gegevens (als de lijst niet leeg is, ga je met de pijltjes helemaal naar boven,

Nadere informatie

34% 34% 2,5% 2,5% ,5% 13,5%

34% 34% 2,5% 2,5% ,5% 13,5% C. von Schwartzenberg 1/16 1a Er is uitgegaan van de klassen: 1 < 160; 160 < 16; 16 < 170;... 18 < 190. 1b De onderzochte groep bestaat uit 1000 personen. 1c x = 17,3 (cm) en σ, 7 (cm). 1de 680 is 68%

Nadere informatie

De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek

De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek De normale verdeling, 1 De normale verdeling (gebaseerd op De normale verdeling uit UW 18/1) Een histogram en een grafiek In 1947 werd in opdracht van N.V. Magazijn De Bijenkorf een statistisch onderzoek

Nadere informatie

Hoofdstuk 8 - De normale verdeling

Hoofdstuk 8 - De normale verdeling ladzijde 216 1a Staafdiagram 3 want te verwachten is dat er elke maand ongeveer evenveel mensen jarig zijn. Dat is meteen ook de reden waarom de andere drie niet voldoen. Feruari estaat uit vier weken

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2

G&R vwo A/C deel 2 8 De normale verdeling C. von Schwartzenberg 1/14. 3a 1 2 G&R vwo A/C deel 8 De normale verdeling C. von Schwartzenberg 1/14 1a Gemiddelde startgeld x = 1 100000 + 4 4000 + 3000 = 13100 dollar. 10 1b Het gemiddelde wordt sterk bepaald door de uitschieter van

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1:

Hoofdstuk 8: De normale verdeling. 8.1 Centrum- en spreidingsmaten. Opgave 1: Hoofdstuk 8: De normale verdeling 8. Centrum- en spreidingsmaten Opgave : 00000 4 4000 5 3000 a. 300 dollar 0 b. 9 van de atleten verdienen minder dan de helft van het gemiddelde. Het gemiddelde is zo

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

1 Normaal of niet. 1 In de eredivisie voetbal worden per seizoen 306 wedstrijden gespeeld. Die zijn als volgt verdeeld over het aantal doelpunten.

1 Normaal of niet. 1 In de eredivisie voetbal worden per seizoen 306 wedstrijden gespeeld. Die zijn als volgt verdeeld over het aantal doelpunten. Normale verdeling 1 1 Normaal of niet 1 In de eredivisie voetbal worden per seizoen 306 wedstrijden gespeeld. Die zijn als volgt verdeeld over het aantal doelpunten. 70 60 50 40 30 20 10 0 0 1 2 3 4 5

Nadere informatie

TI83-werkblad. Vergelijkingen bij de normale verdeling

TI83-werkblad. Vergelijkingen bij de normale verdeling TI83-werkblad Vergelijkingen bij de normale verdeling 1. Inleiding Een normale verdeling wordt bepaald door de constanten µ en σ. Dit blijkt uit het voorschrift van de verdelingsfunctie van de normale

Nadere informatie

Voorbereiding PTA1-V5 wiskunde A

Voorbereiding PTA1-V5 wiskunde A Voorbereiding PTA1-V5 wiskunde A ma. 1 mrt. Les 1 Allerlei vergelijkingen oplossen (1) wo. 3 mrt. Les Valt uit: ga zelf iets oefenen! vr. 5 mrt. Les 3 Normale verdeling ma. 8 mrt. Les 4 Allerlei vergelijkingen

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW])

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 9 de normale verdeling (niet in [PW]) vorige week: kansrekening de uitkomstvariabele was bijna altijd discreet aantal keer een vijf gooien

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen HAVO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen HAVO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 3. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 06 Tijdvak Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

Zin en onzin van normale benaderingen van binomiale verdelingen

Zin en onzin van normale benaderingen van binomiale verdelingen Zin en onzin van normale benaderingen van binomiale verdelingen Johan Walrave, docent EHSAL 0. Inleiding Voordat het grafisch rekentoestel in onze school ingevoerd werd, was er onder de statistiekdocenten

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Lang leve invnorm op de TI-83 grafische rekenmachine

Lang leve invnorm op de TI-83 grafische rekenmachine Bij de kansrekening op HAVO en VWO wordt ruimschoots aandacht besteed aan de normale verdeling. In de schoolboeken staan talrijke variaties, waarvan we de volgende beschouwen: Geef van een normaal verdeelde

Nadere informatie

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1

het antwoord 0,9032 1 Antwoordmodel VWO wa1 2003-II Startende ondernemingen Maximumscore 4 1 40% komt overeen met een kans van 0,4 (per 9 jaar) 1 Antwoordmodel VWO wa -II Antwoorden Startende ondernemingen % komt overeen met een kans van, (per 9 jaar) Per jaar is dat een kans van, 9 het antwoord,9 5 CV8 Lees verder De kans is,9 =,656(,66) Een overlevingskans

Nadere informatie

Examen VWO. wiskunde B1 (nieuwe stijl)

Examen VWO. wiskunde B1 (nieuwe stijl) wiskunde B1 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Dinsdag 25 mei 13.30 16.30 uur 20 04 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit

Nadere informatie

Examen VWO - Compex. wiskunde A1 Compex

Examen VWO - Compex. wiskunde A1 Compex wiskunde A1 Compex Examen VWO - Compex Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni totale examentijd 3,5 uur 2 6 In dit deel van het examen staan de vragen waarbij de computer niet

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur

Examen HAVO. wiskunde A. tijdvak 2 woensdag 23 juni 13.30-16.30 uur Examen HAVO 2010 tijdvak 2 woensdag 23 juni 13.30-16.30 uur wiskunde A Dit examen bestaat uit 21 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Examen HAVO. Wiskunde B1 (nieuwe stijl)

Examen HAVO. Wiskunde B1 (nieuwe stijl) Wiskunde B1 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 84 punten te behalen; het examen bestaat uit 20

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Keuze onderwerp: Kansrekening 5VWO-wiskunde B

Keuze onderwerp: Kansrekening 5VWO-wiskunde B Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 20 05 Tijdvak Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk Het toetsen van hypothesen.. Beslissen op grond van een steekproef Opgave : a. hij gebruikt totaal meer schuurmiddel dan nodig is en dat kost dus extra geld b. de klanten gaan klagen als er te

Nadere informatie

Eindexamen wiskunde B1 vwo 2004-I

Eindexamen wiskunde B1 vwo 2004-I Machten van een derdegraadsfunctie Gegeven is de functie 3 2 1 3 4 4 f ( x) x x op het domein [0, 3]. 4p 1 Toon algebraïsch aan dat het maximum van f gelijk is aan 1. V is het gebied ingesloten door de

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr.

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 5. Normaal verdeelde kansmodellen. Werktekst voor de leerling. Prof. dr. VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een voorbeeld...2 2. De normale familie...5

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Centrummaten

Uitwerkingen bij 1_0 Voorkennis: Centrummaten Uitwerkingen bij 1_0 Voorkennis: Centrummaten + + + + + + = + + + + + + =! " "" ## $!! % &#' % #! %!% $ % "$ ()*+," "!!""-.$!"" -.!-!%! " $-.#" &#! / 0 & ) ))) ))))), 1 & )))) ) ))) ), $ " % "-! #-!-!""

Nadere informatie

4 De normale verdeling

4 De normale verdeling 4 De normale verdeling 1 Inhoudsopgave 4.0 Extreem weer 3 4.1 Vele kleintjes middelen uit 5 4.2 Wat is normaal? 7 4.3 Standaardiseren 15 4.4 Over continue verdelingen 23 Colofon 2011 ctwo Experimentele

Nadere informatie

Boek 1 hoofdstuk 4 Havo 4 Statistiek.

Boek 1 hoofdstuk 4 Havo 4 Statistiek. Samenvatting statistiek havo4 boek 1 H4 Centrummaten: Modus (modaal) = wat het vaakst voorkomt, zowel kwalitatief als kwantitatief Mediaan = het middelste getal, in een rij getallen die op volgorde staat

Nadere informatie

De normale verdeling. Hilde Eggermont (redactie Uitwiskeling)

De normale verdeling. Hilde Eggermont (redactie Uitwiskeling) De normale verdeling Hilde Eggermont (redactie Uitwiskeling) Dag van de Wiskunde 15 november 2003 Inhoud 1. Inleiding 2. De start: histogrammen beschrijven met een dichtheidsfunctie 3. Relatieve frequenties

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 1 Data presenteren 1.3 Representaties In opdracht van: Commissie Toekomst Wiskunde Onderwijs 1 Data presenteren 1.1 Introductie In

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 2008 tijdvak 2 wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2006-II

Eindexamen wiskunde A1-2 vwo 2006-II Eindexamen wiskunde A- vwo 006-II 4 Beoordelingsmodel Zeep aangeven hoe de kans P(X < 90 = 93, =,4) met de GR kan worden berekend Deze kans is (ongeveer) 0,06 3 De gevraagde kans is 006, het antwoord (ongeveer)

Nadere informatie

Examen HAVO. wiskunde A1,2. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A1,2. tijdvak 2 woensdag 20 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2007 tijdvak 2 woensdag 20 juni 13.30-16.30 uur wiskunde A1,2 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 80 punten te behalen.

Nadere informatie

Correctievoorschrift HAVO

Correctievoorschrift HAVO Correctievoorschrift HAVO 00 tijdvak wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Eindexamen wiskunde B1 havo 2002-II

Eindexamen wiskunde B1 havo 2002-II Pompen of Een cilindervormig vat met een hoogte van 32 decimeter heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ) en is geheel gevuld met water. Aan de kraan onder aan het vat (zie figuur 1) wordt een

Nadere informatie

Uitwerkingen Wiskunde A HAVO

Uitwerkingen Wiskunde A HAVO Uitwerkingen Wiskunde A HAVO Nederlands Mathematisch Instituut December 28, 2012 Supersize me Opgave 1. De formule voor de dagelijkse energiebehoefte is E b = 33,6 G. Als we dit invullen dan krijgen we

Nadere informatie

Keuzemenu - De standaardnormale verdeling

Keuzemenu - De standaardnormale verdeling ladzijde 4 a Volgens de vuistregels ligt 68% innen μ σ en μ + σ en ligt 95% innen μ σ en μ + σ. a c μ σ,5% 3,5% 34% 34% 3,5% μ σ μ De oppervlakte onder de klokvorm rechts van haar gewicht is,5%, dus daar

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde A,2 Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde A, Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel Regels

Nadere informatie

Gifgebruik in de aardappelteelt

Gifgebruik in de aardappelteelt Gifgebruik in de aardappelteelt Opgave 1. jaar gifgebruik 1998 32 kg/ha 2007 24,5 kg/ha Van 2007 naar 2015 is een periode van 8 jaar. Maak eventueel een verhoudingstabel. In 9 jaar neemt het gifgebruik

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 21 juni 13.30 16.30 uur 20 06 Voor dit examen zijn maximaal 79 punten te behalen; het examen bestaat uit 21 vragen. Voor

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde A, Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

Normale verdeling. Domein Statistiek en kansrekening havo A

Normale verdeling. Domein Statistiek en kansrekening havo A Domein Statistiek en kansrekening havo A 4 Normale verdeling Inhoud 4.0 Een bijzondere verdeling 4.1 Gemiddelde en standaardafwijking 4.2 Normale verdeling 4.3 Rekenen met normale verdelingen 4.4 Steekproef

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Examen HAVO. wiskunde A1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak 2 Woensdag 21 juni uur

Examen HAVO. wiskunde A1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak 2 Woensdag 21 juni uur wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 13.3 16.3 uur 2 6 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 22 vragen. Voor elk

Nadere informatie

Examen VWO. Wiskunde A1,2 (nieuwe stijl)

Examen VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A1,2 (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 31 mei 13.30 16.30 uur 20 01 Voor dit examen zijn maximaal 0 punten te behalen; het examen bestaat uit

Nadere informatie

Normale Verdeling Inleiding

Normale Verdeling Inleiding Normale Verdeling Inleiding Wisnet-hbo update maart 2010 1 De Normale verdeling De Normale Verdeling beschrijft het gedrag van een continue kansvariabele x. Om kansen te berekenen, moet de dichtheidsfunctie

Nadere informatie

Examen VWO. wiskunde A1,2

Examen VWO. wiskunde A1,2 wiskunde A1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni 13.3 16.3 uur 2 6 Voor dit examen zijn maximaal 83 punten te behalen; het examen bestaat uit 2 vragen. Voor

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

Werkblad bij lesvoorbereiding Breuken. 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij!

Werkblad bij lesvoorbereiding Breuken. 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij! Werkblad bij lesvoorbereiding Breuken 1. Vereenvoudig de volgende breuken: 2. Maak de volgende sommen: Schrijf de berekening erbij! 3. En nu iets moeilijker. Schrijf de berekening erbij! Werkblad bij lesvoorbereiding

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1 (nieuwe stijl) Wiskunde A (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 Tijdvak Inzenden scores Vul de scores van de alfabetisch eerste vijf kandidaten per school in op de optisch

Nadere informatie

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk : Kansen en beslissingen. Beslissen op grond van een steekproef. Opgave : a. normalcdf,,8,), 78 b. a invnorm.,8,) 7, c. normalcdf,.,.8, ), 7 y normalcdf,.,.8, X ) kijk in de tabel voor welke

Nadere informatie

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A

DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A DOEN! - Praktische Opdracht Statistiek 4 Havo Wiskunde A Docentenhandleiding 1. Voorwoord Doel van de praktische opdracht bij het hoofdstuk over statistiek 1 : Het doel van de praktische opdracht (PO)

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

Oefentoets Tentamen 1 Wiskunde A HAVO

Oefentoets Tentamen 1 Wiskunde A HAVO Oefentoets Tentamen 1 Wiskunde A HAVO Opgave 1 In een kist perssinaasappelen zitten standaard 50 sinaasappelen. Voor het persen van één glas sap zijn vijf sinaasappelen nodig. Verder wordt aangenomen dat

Nadere informatie

Correctievoorschrift HAVO

Correctievoorschrift HAVO Correctievoorschrift HAVO 009 tijdvak oud programma wiskunde B Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores

Nadere informatie

Examen HAVO. wiskunde A. tijdvak 1 woensdag 23 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde A. tijdvak 1 woensdag 23 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 2012 tijdvak 1 woensdag 23 mei 13.30-16.30 uur wiskunde A Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor

Nadere informatie

V6 Programma tijdens de laatste weken

V6 Programma tijdens de laatste weken V6 Programma tijdens de laatste weken Datum ma. 18-4-11 di. 19-4-11 ma. 5-4-11 di. 6-4-11 ma. -5-11 di. 3-5-11 ma. 9-5-11 di. 10-5-11 Activiteit 1. Differentiëren. Vergelijkingen oplossen e Paasdag 3.

Nadere informatie

3. Data verwerven. Boekje 3 havo wiskunde A, domein E: Statistiek. Uitwerkingen

3. Data verwerven. Boekje 3 havo wiskunde A, domein E: Statistiek. Uitwerkingen 3. Data verwerven Boekje 3 havo wiskunde A, domein E: Statistiek Uitwerkingen 1 Verantwoording 2015, SLO (nationaal expertisecentrum leerplanontwikkeling), Enschede Dit lesmateriaal is ontwikkeld in het

Nadere informatie

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg.

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg. Supersize me In de film Supersize Me besluit de hoofdpersoon, Morgan Spurlock, dertig dagen lang uitsluitend fastfood te eten. Op deze manier krijgt hij elke dag 5000 kcal aan energie binnen. Eerst wordt

Nadere informatie

Beslissen op grond van een steekproef Hoofdstuk 15

Beslissen op grond van een steekproef Hoofdstuk 15 1 Beslissen op grond van een steekproef Hoofdstuk 15 1. a. Het gaat veel geld kosten voor de fabrikant als er te veel schuurmiddel gebruikt wordt. b. Bij een te laag gemiddelde zullen de klanten niet tevreden

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2006-I

Eindexamen wiskunde A1-2 vwo 2006-I Beschuit Gewone beschuiten worden verkocht in beschuitrollen van 13 stuks. Een gewone beschuit weegt gemiddeld 8, gram. Er zijn ook grotere, zogeheten Twentsche beschuiten die worden verkocht in zakken

Nadere informatie

Hoofdstuk 3 Toetsen uitwerkingen

Hoofdstuk 3 Toetsen uitwerkingen Kern Kansen ij een normale verdeling a normalcdf(3.7,., 3,7) =,9 normalcdf(9, 9999,, 7) =,7 c normalcdf( 9999, 3,, ) =,978 a g = invnorm(.3, 8, 7) = 77,9 g = invnorm(.873,, ) = 97,9 c P(X < g μ = 8 en

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 03 Tijdvak Inzenden scores Vul de scores van de alfabetisch eerste vijf kandidaten per school in op de optisch

Nadere informatie

Examen HAVO. Wiskunde B1

Examen HAVO. Wiskunde B1 Wiskunde B1 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 21 juni 13.30 16.30 uur 20 00 Dit examen bestaat uit 21 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

Paracetamol in het bloed

Paracetamol in het bloed Paracetamol in het bloed Paracetamol is een veelgebruikte pijnstiller, die in tabletvorm te koop is. Voor volwassenen zijn er tabletten die 500 mg paracetamol bevatten. Na het innemen van een tablet wordt

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Eindexamen wiskunde A1-2 havo 2006-I

Eindexamen wiskunde A1-2 havo 2006-I Eindexamen wiskunde A-2 havo 2006-I 4 Beoordelingsmodel Verdienen vrouwen minder? Het gemiddelde jaarinkomen is met 4200 0200 00% toegenomen 0200 2 Dit is ruim 39% 2 In 990 was het gemiddelde jaarinkomen

Nadere informatie

Eindexamen wiskunde A1-2 havo 2007-II

Eindexamen wiskunde A1-2 havo 2007-II Sprintsnelheid Een hardloopster is gespecialiseerd op de 1 meter. Bij dit atletiekonderdeel moet je zo snel mogelijk je topsnelheid halen en die dan proberen vast te houden tot de finish. Haar trainer

Nadere informatie

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Examen VWO. wiskunde A1

Examen VWO. wiskunde A1 wiskunde A1 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 1 juni 13.30 16.30 uur 20 06 Voor dit examen zijn maximaal 82 punten te behalen; het examen bestaat uit 19 vragen. Voor

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 dinsdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 dinsdag 19 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2015 tijdvak 1 dinsdag 19 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 75 punten te behalen.

Nadere informatie

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschappelijk Onderwijs 0 0 Tijdvak Inzenden scores Uiterlijk op 5 juni de scores van de alfabetisch eerste vijf kandidaten per school

Nadere informatie