TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica"

Transcriptie

1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, uur. 1. Gegeven zijn twee onafhankelijke stochastische variabelen met kansdichtheid: λe λx x f X (x) = λe λy y f Y (y) = met λ een gegeven positieve constante. a) Bepaal de simultane kansdichtheid f X,Y (x, y). Omdat X en Y onafhankelijk zijn geldt dat: λ 2 e λ(x+y) x en y f X,Y (x, y) = f X (x) f Y (y) = b) Bepaal de correlatie r X,Y = E[XY ] van X en Y. Weer kunnen we goed gebruiken dat X en Y onafhankelijk zijn want daardoor geldt: r X,Y = E[XY ] = E[X]E[Y ] Nu hebben X en Y een exponentiële verdeling met constante λ en dan kunnen we uit het boek halen dat E[X] = E[Y ] = 1/λ maar we kunnen het ook even berekenen met behulp van partieel integreren: E[X] = en we vinden dus: λxe λx dx = [ xe λx] + e λx dx = [ 1 λ e λx] = 1 λ r X,Y = 1 λ 2 c) Bepaal de cumulatieve verdelingsfunctie F W (w) met W = X + Y. 1

2 We zien natuurlijk meteen dat P[W ] =. Voor w vinden we: F W (w) = = = w w x w w λ 2 e λ(x+y) dydx [ λe λ(x+y) ] w x y= dx λe λw + λe λx dx = [ λxe λw e λx] w x= = 1 (λw + 1)e λw Het is altijd goed om te zien dat F W () = en dat F W (w) 1 als w als een simpele controle op rekenfouten. We hebben dus: 1 (λw + 1)e λw w F W (w) = d) Bepaal de kansdichtheid van W = X + Y. Het is natuurlijk mooi als je je realiseert dat de som van twee onafhankelijke exponentieel verdeelde stochasten met constante λ een Erlang(2, λ) verdeling oplevert waarvan de kansdichtheid in het boek staat: λ 2 we λw w, f W (w) =. Dit zouden we zelfs kunnen gebruiken om het vorig onderdeel op te lossen. Maar we kunnen ook rechtstreeks gebruik maken van de cumulatieve verdelingsfunctie want we hebben: f W (w) = df W dw (w) en dus het antwoord volgt ook door het antwoord uit het vorige onderdeel te differentiëren. e) Bepaal E[W ] en Var[W ]. Als we ons realiseren dat W een Erlang(2, λ) verdeling heeft dan lezen we in het boek: E[W ] = 2 λ, Var[W ] = 2 λ 2 (1) Maar een andere eenvoudige manier is om te gebruiken dat X en Y onafhankelijk zijn en dus: E[W ] = E[X + Y ] = E[X] + E[Y ] Var[W ] = Var[X + Y ] = Var[X] + Var[Y ] Omdat X en Y indentieke verdelingen hebben we E[X] = E[Y ] en Var[X] = Var[Y ]. We hoeven nu alleen nog maar de verwachting en variantie van X uit te rekenen. Bij een eerder onderdeel hebben we al bepaald dat E[X] = E[Y ] = 1/λ en de variantie halen we uit het boek voor de exponentiële verdeling of we bepalen het rechtstreeks uit de kansverdeling. Hieruit volgt Var[X] = Var[Y ] = 1/λ 2 en we vinden hetzelfde antwoord (1). 2

3 f) Bepaal de conditionele kansdichtheid f X B (x) met B de gebeurtenis dat Y X. Hint: Bepaal eerst f X,Y B (x, y). We hebben dat P[B] = P[X Y ] = P[Y X] omdat X en Y identiek verdeeld en onafhankelijk zijn. We zien dus dat P[B] = 1/2. Maar we kunnen dit ook uitrekenen: P[B] = y λ 2 e λ(x+y) dxdy en dit levert hetzelfde antwoord op. We vinden: f X,Y B (x, y) = en dit levert op: f X,Y B (x, y) = f X,Y (x,y) P[B] (x, y) B 2λ 2 e λ(x+y) x, y x Om nu f X B (x) te berekenen gebruiken we dat: f X B (x) = f X,Y B (x, y) dy en dit resulteert voor x in: f X B (x) = x 2λ 2 e λ(x+y) dy = [ 2λe λ(x+y)] y=x = 2λe 2λx. Merk op dat velen hier de fout in gaan door niet mee te nemen dat (x, y) B impliceert dat y x en dat moet in de integratiegrenzen natuurlijk wel meegenomen worden. In totaal vinden we: 2λe 2λx x f X B (x) = 2. We hebben een grote verzameling woningen. Woningen hebben met kans 1/4 een alarminstallatie. In een willekeurig jaar heeft een woning met een alarminstallatie een kans van 4 (d.w.z. een kans van 4/1) op een inbraak en heeft een huis zonder alarminstallatie een kans van 12 op een inbraak. De kans dat in een huis wordt ingebroken wordt niet beïnvloed door een eventuele inbraak in een ander huis. a) Wat is de kans op een inbraak in een willekeurig gekozen huis. We hebben P[I ] = P[I A]P[A] + P[I G]P[G] 3

4 als I een inbraak aangeeft, A het hebben van een alarm aangeeft en G het ontbreken van een alarm aangeeft. We hebben: en dus: P[A] = 1 4, P[G] = , P[I A] =, P[I G] = P[I ] = = 1 1. b) Bepaal de kans op een inbraak in maximaal 1 huis van een straat met 1 huizen. Dit is een binomiale (n, p) verdeling met n = 1 en p =.1 en dus als we met X het aantal inbraken aangeven dan geldt dat: en P[X = ] = ( ) ( P[X = 1] = ). De kans op maximaal 1 inbraak is dus gelijk aan: ( P[X = ] + P[X = 1] = ).996 c) Zij W het aantal inbraken in een stad met 99 woningen. Bepaal E[W ] en Var[W ]. We hebben W = X 1 + X X 99 met alle X i onderling onafhankelijk en identiek verdeeld met een Bernouilli verdeling met p =.1. We zien dat W dus binomiaal verdeeld is met n = 99 en p =.1 en dus weten we: E[W ] = np = 99, Var[W ] = np(1 p) = d) Bepaal (bij benadering) de kans dat er onze stad meer dan 11 inbraken plaats vinden, d.w.z. de kans dat W > 11. Hint: gebruik de centrale limietstelling. Volgens de centrale limietstelling is: V = W E[W ] Var[W ] bij benadering Gaussisch verdeeld met verwachting en variantie 1. We kunnen eenvoudig verifiëren dat W > 11 hetzelfde is als V > Uit de tabel voor de standaard normale verdeling kunnen we dan aflezen dat P[V > 1.11] = 1 P[V 1.11] = 1 (1.11) e) Zij X = 1 als er in een huis wordt ingebroken en X =. We definiëren B als de gebeurtenis dat in dit huis een alarminstallatie is geïnstalleerd. Bepaal E[X B]. 4

5 We weten dat B waar is en dus heeft het huis een alarminstallatie. Dan is de kans op een inbraak dus gelijk aan 4. We vinden dus: E[X B] = 4 1. f) In een huis kan natuurlijk meerdere keren per jaar worden ingebroken. We verbeteren nu ons model om dit mee te nemen. Laten we aannemen dat het aantal inbraken een Poissonverdeling heeft met constante α =.4 voor een huis met alarminstallatie en met constante α =.12 voor een huis zonder alarminstallatie. Wat is de kans op twee of meer inbraken in een willekeurig gekozen huis? Gezien de uitkomst vindt u ons eerste model een goede benadering? Stel dat we weten dat het huis een alarminstallatie heeft. Zij R het aantal inbraken. We weten dus dat R een Poissonverdeling heeft. Dan geldt: P[R = ] = e.4, P[R = 1] =.4e.4 Maar dan geldt P[R > 1] = 1 P[R = ] P[R = 1] = 1 e.4.4e Voor een huis zonder alarminstallatie vinden we: P[R > 1] = 1 P[R = ] P[R = 1] = 1 e.12.12e Als we dit samenvoegen dan zien we dat de kans op meer dan 1 inbraak in een huis (ongeveer) gelijk is aan: De kans op meerdere inbraken is inderdaad zo klein dat die verwaarloosbaar is. 3. We beschouwen een stationaire stochastische rij Z n waarbij Z i en Z j onafhankelijk zijn voor i = j met E[Z n ] = en Var[Z n ] = 1. We analyseren de vergelijkingen Y n = X n X n 1, (2) X n = Z n + Z n 1, (3) met n =..., 2, 1,, 1, 2,.... a) Bepaal de impulsresponsie van het filter (2) met ingang X n en uitgang Y n. Als we voor de ingangsfunctie een puls kiezen: 1 n = X n = n = dan vinden we met behulp van Y n = X n X n 1 5

6 dat Y n = voor n = en n = 1. Voor n = krijgen we Y = 1 terwijl voor n = 1 we vinden dat Y 1 = 1. De impulsresponsie is gelijk van de uitgang van het systeem als de ingang gelijk is aan een puls. We krijgen dus: 1 n =, h n = 1 n = 1,. b) Bepaal E[Y n ]. We hebben met behulp van (3) dat E[X n ] = E[Z n ] + E[Z n 1 ] en omdat E[Z i ] = voor alle i vinden we E[X n ] = voor alle n. Maar dan kunnen we gebruik maken van (2) om te zien dat: voor alle n. E[Y n ] = E[X n ] E[X n 1 ] = c) Bepaal de autocorrelatie functie van Z n. Omdat Z i en Z j onafhankelijk zijn voor alle i en j met i = j en bovendien verwachting nul hebben, vinden we: Cov[Z i, Z j ] = E[Z i Z j ] = E[Z i ]E[Z j ] =. Daarnaast vinden we voor i = j dat: Cov[Z i, Z i ] = Var[Z i ] = 1. Alles bij elkaar zien we dus dat de autocorrelatiefunctie gelijk is aan: 1 k = R Z [k] = d) Bepaal de kruiscorrelatie functie van Z n en X n. Op dezelfde wijze als in onderdeel a) vinden we dat de impulsresponsie van het systeem (3) gegeven wordt door: 1 n =, h n = 1 n = 1,. We krijgen: R Z X [n] = i= h i R Z [n i] = h n 1 n =, 1 = 6

7 e) Bepaal Var[X n ] en de autocorrelatie functie van X n. We hebben voor n : Tot slot: R X [n] = i= h i R Z X [n i] = R Z X [n] + R Z X [n + 1] 1 n = 1 = 2 n = 1 n = 1 Var[X n ] = R X [] = 2, waarbij we gebruiken dat E[X n ] =. f) Bepaal de overdrachtsfunctie van het gecombineerde filter met ingang Z n en uitgang Y n. We hebben voor (3) de volgende overdrachtsfunctie: H(φ) = n= h n e j2πnφ = 1 + e j2πφ. en voor (2) de volgende overdrachtsfunctie: H(φ) = n= h n e j2πnφ = 1 e j2πφ. Voor het gecombineerde filter is de overdrachtsfunctie dus gelijk aan: H(φ) H(φ) = (1 e j2πφ )(1 + e j2πφ ) = 1 e j4πφ. g) Bepaal de kruis spectraaldichtheid van Y n en Z n. We hebben dat de autocorrelatie van Z n gelijk is aan δ[n]. De spectraaldichtheid van Z n is dus volgens tabel 11.2 gelijk aan: S Z (φ) = 1 maar dan geldt: S ZY (φ) = H(φ) H(φ)S Z (φ) = 1 e j4πφ. en we vinden dus: S Y Z (φ) = S XY ( φ) = 1 e j4πφ. h) Bepaal de spectraaldichtheid van Y n. We hebben: S Y (φ) = H (φ) H (φ)s ZY (φ) 7

8 Nu geldt dat: H (φ) H (φ) = 1 e j4πφ en we vinden S Y (φ) = (1 e j4πφ )(1 e j4πφ ) = 2 e j4πφ e j4πφ = 2 2 cos(4πφ) met gebruik maken van de rekenregels: cos(β) = e jβ + e jβ, sin(β) = e jβ e jβ. 2 2 j 8

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.

Set 3 Inleveropgaven Kansrekening (2WS20) Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 3 Inleveropgaven Kansrekening (2WS2) 23-24 Opgaven met sterretjes zijn lastiger dan opgaven zonder sterretje.. Voetbalplaatjes. Bij

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1)

Cursus Statistiek Hoofdstuk 4. Statistiek voor Informatica Hoofdstuk 4: Verwachtingen. Definitie (Verwachting van discrete stochast) Voorbeeld (1) Cursus Statistiek Hoofdstuk 4 Statistiek voor Informatica Hoofdstuk 4: Verwachtingen Cursusjaar 29 Peter de Waal Departement Informatica Inhoud Verwachtingen Variantie Momenten en Momentengenererende functie

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2, Vrijdag 23 januari 25, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven dienen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden.

Het tentamen heeft 25 onderdelen. Met ieder onderdeel kan maximaal 2 punten verdiend worden. Hertentamen Inleiding Kansrekening WI64. 9 augustus, 9:-: Het tentamen heeft 5 onderdelen. Met ieder onderdeel kan maximaal punten verdiend worden. Het tentamen is open boek. Boeken, nota s en een (eventueel

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/28 Schatten van de verwachting We hebben een stochast X en

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 12 augustus 2010, 10.00 13.00 uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Mathematisch Instituut 333 CA Leiden Tentamen Inleiding Kansrekening augustus,. 3. uur Docent: F. den Hollander Bij dit tentamen is het gebruik van een (grafische) rekenmachine

Nadere informatie

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07)

b) Uit Bayes volgt, gebruik makend van onderdeel a) P (T V )P (V ) P (T ) = (0.09)(0.07) Uitwerkingen tentamen 6 juli 22. We stellen T de gebeurtenis test geeft positief resultaat, F de gebeurtenis, chauffeur heeft gefraudeerd, V de gebeurtenis, chauffeur heeft vergissing gemaakt C de gebeurtenis,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

UitwerkingenOefenQuiz Kansrekening 2009

UitwerkingenOefenQuiz Kansrekening 2009 Universiteit Utrecht *Universiteit-Utrecht Boedapestlaan 6 Mathematisch Instituut 3584 CD Utrecht UitwerkingOefQuiz Kansreking 29 1. James Bond zoekt e brief in één van de drie ladkast in het voormalige

Nadere informatie

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur

Tentamen Kansrekening en statistiek wi2105in 25 juni 2007, uur Tentamen Kansrekening en statistiek wi205in 25 juni 2007, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische rekenmachine toegestaan. Tevens krijgt u een formuleblad uitgereikt na afloop

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Toegepaste Wiskunde 2: Het Kalman-filter

Toegepaste Wiskunde 2: Het Kalman-filter Toegepaste Wiskunde 2: Het Kalman-filter 25 februari, 2008 Hans Maassen 1. Inleiding Het Kalman filter schat de toestand van een systeem op basis van een reeks, door ruis verstoorde waarnemingen. Een meer

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur.

Tentamen Mathematische Statistiek (2WS05), vrijdag 29 oktober 2010, van 14.00 17.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (WS05), vrijdag 9 oktober 010, van 14.00 17.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamenopgaven Statistiek 2DD71: UITWERKINGEN 1. Stroopwafels a De som S van de 12 gewichten is X 1 + X 2 + + X 12. Deze is normaal

Nadere informatie

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling.

Deze week: Verdelingsfuncties. Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties. Bernoulli verdeling. Bernoulli verdeling. Deze week: Verdelingsfuncties Statistiek voor Informatica Hoofdstuk 5: Verdelingsfuncties Cursusjaar 29 Peter de Waal Toepassingen Kansmassafuncties / kansdichtheidsfuncties Eigenschappen Departement Informatica

Nadere informatie

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014

Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal. Toets Kansrekenen I. 28 maart 2014 Voorbehouden voor de correctoren Vraag 1 Vraag 2 Vraag 3 Vraag 4 Vraag 5 Totaal Toets Kansrekenen I 28 maart 2014 Naam : Richting : Lees volgende aanwijzingen alvorens aan het examen te beginnen Wie de

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Tentamen Inleiding Kansrekening 11 augustus 2011, uur

Tentamen Inleiding Kansrekening 11 augustus 2011, uur Mathematisch Instituut Niels Bohrweg Universiteit Leiden 2 CA Leiden Delft Tentamen Inleiding Kansrekening augustus 20, 09.00 2.00 uur Bij dit examen is het gebruik van een evt. grafische) rekenmachine

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door

Zo geldt voor o.o. continue s.v.-en en X en Y dat de kansdichtheid van X + Y gegeven wordt door APP.1 Appendix A.1 Erlang verdeling verdeling met parameters n en λ Voor o.o. discrete s.v.-en X en Y geldt P (X + Y = z) =P (X = x 1 en Y = z x 1 )+P(X = x en Y = z x )+... = P (X = x 1 )P (Y = z x 1

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 18 Oktober 1 / 1 2 Statistiek Vandaag: Centrale Limietstelling Correlatie Regressie 2 / 1 Centrale Limietstelling 3 / 1 Centrale Limietstelling St. (Centrale

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Donderdag 21 Oktober 1 / 38 2 Statistiek Indeling: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 38 Deductieve

Nadere informatie

Algemeen overzicht inleiding kansrekening en statistiek

Algemeen overzicht inleiding kansrekening en statistiek Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19

Stochastiek 2. Inleiding in de Mathematische Statistiek 1/19 Stochastiek 2 Inleiding in de Mathematische Statistiek 1/19 Herhaling H.1 2/19 Mathematische Statistiek We beschouwen de beschikbare data als realisatie(s) van een stochastische grootheid X.(Vaak een vector

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 2 Donderdag 16 September 1 / 31 1 Kansrekening Indeling: Eigenschappen van kansen Continue uitkomstenruimtes Continue stochasten 2 / 31 Vragen: cirkels Een computer genereert

Nadere informatie

Handout limietstellingen Kansrekening 2WS20

Handout limietstellingen Kansrekening 2WS20 Handout limietstellingen Kansrekening WS0 Remco van der Hofstad 13 januari 017 Samenvatting In deze hand out bespreken we een aantal limietstellingen en hun bewijzen. In meer detail, behandelen we de volgende

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig

Nadere informatie

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur.

Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Mathematische Statistiek (2WS05), dinsdag 3 november 2009, van 4.00 7.00 uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

uitwerkingen OefenTentamen kansrekening 2007

uitwerkingen OefenTentamen kansrekening 2007 Universiteit Utrecht *Universiteit-Utrecht Boedaestlaan Mathematisch Instituut 3584 CD Utrecht uitweringen OefenTentamen ansreening 2007 Uitwering van Ogave Ogave Veronderstel dat α de ans is dat van een

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Kanstheorie, -rekenen en bekende verdelingen

Kanstheorie, -rekenen en bekende verdelingen Kanstheorie, -rekenen en bekende verdelingen 1 Rekenregels kansrekenen Kans van de zekere gebeurtenis: P () = P (U) = 1 Kans van de onmogelijke gebeurtenis: P (;) = 0 Complementregel: P (A c ) = 1 P (A)

Nadere informatie

Set 1 Inleveropgaven Kansrekening (2WS20)

Set 1 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

Statistiek I Semester 2

Statistiek I Semester 2 Statistiek I Semester 2 Hoofdstuk 1 Axiomatische kansrekening Basisbegrippen Stochastisch proces = Proces met onzekere uitkomst Toevalsgebeuren = Uitkomst stochastisch proces o Elementair = slecht 1 uitkomst

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten

Deze week: Steekproefverdelingen. Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen. Kwaliteit van schatter. Overzicht Schatten Deze week: Steekproefverdelingen Statistiek voor Informatica Hoofdstuk 7: Steekproefverdelingen Cursusjaar 29 Peter de Waal Zuivere Schatters Betrouwbaarheidsintervallen Departement Informatica Hfdstk

Nadere informatie

Statistiek voor A.I. College 5. Dinsdag 25 September 2012

Statistiek voor A.I. College 5. Dinsdag 25 September 2012 Statistiek voor A.I. College 5 Dinsdag 25 September 2012 1 / 34 2 Deductieve statistiek Kansrekening 2 / 34 Percentages 3 / 34 Vragen: blikkie Kinderen worden slanker als ze anderhalf jaar lang limonade

Nadere informatie

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen)

Hoofdstuk 4: Aanvullende Begrippen (Extra Oefeningen) Hoofdstuk 4: Aavullede Begrippe (Extra Oefeige) 9. Veroderstel dat X e Y ormaal verdeeld zij met resp. gemiddelde waarde µ X e µ Y e met dezelfde variatie 2. Wat is da de distributie va X Y? Bepaal de

Nadere informatie

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2.

Model: Er is één bediende en de capaciteit van de wachtrij is onbegrensd. 1/19. 1 ) = σ 2 + τ 2 = s 2. Het M/G/1 model In veel toepassingen is de aanname van exponentiële bedieningstijden niet realistisch (denk bijv. aan produktietijden). Daarom zullen we nu naar het model kijken met willekeurig verdeelde

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Statistiek (2DD14) op vrijdag 17 maart 2006, 9.00-12.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Statistiek DD14) op vrijdag 17 maart 006, 9.00-1.00 uur. UITWERKINGEN 1. Methoden om schatters te vinden a) De aannemelijkheidsfunctie

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden:

We zullen in deze les kijken hoe we netwerken kunnen analyseren, om bijvoorbeeld de volgende vragen te kunnen beantwoorden: Wiskunde voor kunstmatige intelligentie, 24 Les 5 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin een aantal knopen acties aangeeft en opdrachten langs verbindingen tussen de

Nadere informatie

Uitwerkingen bij 1_0 Voorkennis: Centrummaten

Uitwerkingen bij 1_0 Voorkennis: Centrummaten Uitwerkingen bij 1_0 Voorkennis: Centrummaten + + + + + + = + + + + + + =! " "" ## $!! % &#' % #! %!% $ % "$ ()*+," "!!""-.$!"" -.!-!%! " $-.#" &#! / 0 & ) ))) ))))), 1 & )))) ) ))) ), $ " % "-! #-!-!""

Nadere informatie

Gegeven is een kansvariabele X met cumulatieve verdelingsfunctie P(X x)= 1/3 x voor 0 < x < 3. Bereken (a) P(2<X 3) (b) E(X) (c) Var(X)

Gegeven is een kansvariabele X met cumulatieve verdelingsfunctie P(X x)= 1/3 x voor 0 < x < 3. Bereken (a) P(2<X 3) (b) E(X) (c) Var(X) Opgave 1 Een kom tomatensoep voor 6 personen bevat 30 balletjes. De soep wordt willekeurig uitgeschonken over 6 borden. Bereken (a) De kans dat er geen enkel balletje in je bord terecht komt (b) De kans

Nadere informatie

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur

Kansrekening en statistiek WI2211TI / WI2105IN deel 2 2 februari 2012, uur Kansrekening en statistiek WI22TI / WI25IN deel 2 2 februari 22, 4. 6. uur VOOR WI22TI: Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad is niet toegestaan.

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast,

en-splitsingen: een aantal alternatieven worden parallel toegepast, of-splitsingen: van een aantal alternatieven wordt er één toegepast, Kansrekening voor Informatiekunde, 25 Les 8 Proces analyse Veel processen laten zich door netwerken beschrijven, waarin knopen acties aangeven en opdrachten langs verbindingen tussen de knopen verwerkt

Nadere informatie

Statistiek voor A.I. College 10. Donderdag 18 Oktober

Statistiek voor A.I. College 10. Donderdag 18 Oktober Statistiek voor A.I. College 10 Donderdag 18 Oktober 1 / 28 Huffington Post poll verkiezingen VS - 12 Oktober 2012 2 / 28 Gallup poll verkiezingen VS - 15 Oktober 2012 3 / 28 Jullie - onderzoek Kimberly,

Nadere informatie

Kansrekenen [B-KUL-G0W66A]

Kansrekenen [B-KUL-G0W66A] KU Leuven Kansrekenen [B-KUL-G0W66A] Notities Tom Sydney Kerckhove Gestart 8 februari 2015 Gecompileerd 25 maart 2015 Docent: Prof. Tim Verdonck Inhoudsopgave 1 Voorkennis 3 1.1 Verzamelingen.......................................

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamenopgaven Statistiek (2DD71) op xx-xx-xxxx, xx.00-xx.00 uur. VOORAF: Hieronder staat een aantal opgaven over de stof. Veel meer dan op het tentamen zelf gevraagd zullen worden. Op het tentamen zullen in totaal 20 onderdelen gevraagd worden. TECHNISCHE UNIVERSITEIT

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

Stochastiek voor Informatici Sara van de Geer voorjaar 2000

Stochastiek voor Informatici Sara van de Geer voorjaar 2000 Stochastiek voor Informatici Sara van de Geer voorjaar 2000 1 Inhoud hoofdstuk 1 t/m 3 1. Uniforme verdeling, transformaties, wet van de grote aantallen. 1.1. Discrete uniforme verdeling. 1.2. Realisaties.

Nadere informatie

Formules Excel Bedrijfsstatistiek

Formules Excel Bedrijfsstatistiek Formules Excel Bedrijfsstatistiek Hoofdstuk 2 Data en hun voorstelling AANTAL.ALS vb: AANTAL.ALS(A1 :B6,H1) Telt hoeveel keer (frequentie) de waarde die in H1 zit in A1:B6 voorkomt. Vooral bedoeld voor

Nadere informatie

Alleen deze bladen inleveren! Let op je naam, studentnummer en klas

Alleen deze bladen inleveren! Let op je naam, studentnummer en klas Naam: Studentnummer: Klas/groep: HvA-HES Amsterdam, Fraijlemaborg 133, 1102 CV Amsterdam Postbus 22575, 1100 DB Amsterdam Nummer Studiegids: Code onderwijseenheid: 1012_KM1-T2 KM1VPAFE01 Toets 2 Versie

Nadere informatie

Samenvatting Statistiek

Samenvatting Statistiek Samenvatting Statistiek De hoofdstukken 1 t/m 3 gaan over kansrekening: het uitrekenen van kansen in een volledig gespecifeerd model, waarin de parameters bekend zijn en de kans op een gebeurtenis gevraagd

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 29 juli 2013 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Gebruik van een grafisch rekenmachine in de 3de graad ASO

Gebruik van een grafisch rekenmachine in de 3de graad ASO in de 3de Dr Didier Deses Koninklijk Atheneum Koekelberg Vrije Universiteit Brussel T 3 -Vlaanderen wiskak@yahoo.com Overzicht 1 2 ::een grafiek maken Dmv y= en zoom [zdecimal]: ::een grafiek maken Dmv

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

De Wachttijd-paradox

De Wachttijd-paradox De Wachttijd-paradox Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Mastercourse 15 november 25 Peter Spreij spreij@science.uva.nl 1 Het probleem In deze mastercourse behandelen

Nadere informatie

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur.

Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Opdracht 2. Deadline maandag 28 september 2015, 24:00 uur. Deze opdracht bestaat uit vier onderdelen; in elk onderdeel wordt gevraagd een Matlabprogramma te schrijven. De vier bijbehore bestanden stuur

Nadere informatie

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek

Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek UNIVERSITY OF GHENT Samenvatting Formules uit de cursus Waarschijnlijkheidsrekenen en statistiek Auteur: Nicolas Vanden Bossche Lesgever: Prof. Hans De Meyer Hoofdstuk 1 Het kansbegrip en elementaire kansrekening

Nadere informatie

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur

Tentamen Inleiding Meten Vakcode 8E020 22 april 2009, 9.00-12.00 uur Tentamen Inleiding Meten Vakcode 8E april 9, 9. -. uur Dit tentamen bestaat uit opgaven. Indien u een opgave niet kunt maken, geeft u dan aan hoe u de opgave zou maken. Dat kan een deel van de punten opleveren.

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

Frits C. Schoute. Prestatie-analyse van Telecommunicatiesystemen

Frits C. Schoute. Prestatie-analyse van Telecommunicatiesystemen Frits C. Schoute Prestatie-analyse van Telecommunicatiesystemen Tekstopmaak: Dirk Sparreboom Tekstverwerker: MS-Word 7.0 Lettertype: Times New Roman Woord vooraf Telecommunicatie maakt in onze samenleving

Nadere informatie

Introductie tot traditionele herverzekering

Introductie tot traditionele herverzekering Introductie tot traditionele herverzekering Module AN17 Schadeverzekering 26 maart 2012 Nico de Boer nico.de.boer@aaa-riskfinance.nl Lesindeling onderdeel herverzekering Datum Te behandelen 19 maart Hoofdstuk

Nadere informatie

Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken

Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken Opgeloste Oefeningen Hoofdstuk 4: Numerieke Karakteristieken Verwachtingswaarde en Variantie 4.1 Een muntstuk wordt 3 maal opgegooid. Zij X de toevalsveranderlijke die met elke uitkomst het grootste aantal

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Beknopte uitwerking Examen Neurale Netwerken (2L490) d.d. 11-8-2004. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Beknopte uitwerking Eamen Neurale Netwerken (2L490) d.d. 11-8-2004. 1. Beschouw de volgende configuratie in het platte vlak. l 1 l 2

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur.

Universiteit Utrecht Faculteit Wiskunde en Informatica. Examen Optimalisering op maandag 18 april 2005, uur. Universiteit Utrecht Faculteit Wiskunde en Informatica Examen Optimalisering op maandag 18 april 2005, 9.00-12.00 uur. De opgaven dienen duidelijk uitgewerkt te zijn en netjes ingeleverd te worden. Schrijf

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Rik Lopuhaä TU Delft 30 januari, 2015 Rik Lopuhaä (TU Delft) Schatten van de Duitse oorlogsproductie 30 januari,

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES. Tentamen Inleiding Kansrekening 1 27 maart 2013

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES. Tentamen Inleiding Kansrekening 1 27 maart 2013 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGES Tentamen Inleiding Kansrekening 1 27 maart 2013 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

b. F (y) = 1 2 f. F (y) =

b. F (y) = 1 2 f. F (y) = Tentamen Statistische methoden MST-STM 27 juni 20, 9:00 2:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in en op het open vragen formulier graag beide, naar volgend voorbeeld:

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie