Kansrekening en Statistiek

Maat: px
Weergave met pagina beginnen:

Download "Kansrekening en Statistiek"

Transcriptie

1 Kansrekening en Statistiek College 1 Dinsdag 14 September 1 / 34

2 Literatuur iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma, and Stephen G. Jurs. Hoofdstuk 1 t/m 4 van de (legale) online versie van Introduction to Probability, Charles M. Grinstead and J. Laurie Snell: chance/teaching aids/books articles/ probability book/book.html. Optioneel: software R. 2 / 34

3 Kansrekening en Statistiek? Wat is de kans dat ik de loterij win? Kansspelen Bevordert luieren de fantasie? Psychologie Hoe leert mijn spamfilter wat spam is? Informatica Does God play dice with the universe? Natuurkunde Is Lucia de B. schuldig? Nee. Rechtspraak Werkt paracetamol? Geneeskunde Wat is een kans? Filosofie 3 / 34

4 Inductief redeneren Deductief redeneren (logica): Uit dit volgt dat. Inductief redeneren (kansrekening): Uit dit volgt met deze waarschijnlijkheid dat. Als dit gebeurt is de kans dat dat gebeurt zo en zoveel. 4 / 34

5 Indeling college 1 Kansrekening. 2 Statistiek. Onderweg Toepassingen, geschiedenis, filosofie en kritiek. 5 / 34

6 Kritisch zijn 6 / 34

7 1 Kansrekening Indeling: Axioma s van de kansrekening Eigenschappen Discrete stochasten Natuurlijke getallen. 7 / 34

8 Vragen: verjaardag Wat is de kans dat twee van ons op dezelfde dag jarig zijn? 8 / 34

9 Vragen: Monty Hall Achter één van drie gesloten deuren staat een auto, achter de andere twee een geit. Jij gaat voor een deur staan. Bijv: geit geit jij auto De quizmaster Monty Hall opent een van de twee deuren waar jij niet voor staat en waarachter een geit staat: geit geit jij auto Jij mag blijven staan of voor de andere gesloten deur gaan staan. Vervolgens win je dat wat achter jouw deur staat. Is het beter altijd van deur te veranderen (indien je geen geit wilt)? 9 / 34

10 Vragen: loterij Wat is de kans dat je bij een loterij met 100 loten en drie prijzen een prijs wint als je 7 loten koopt? Is die kans veel groter dan als je 5 loten koopt? 10 / 34

11 Vragen: cirkels Een computer genereert willekeurige punten in de grote cirkel. Wat is de kans dat het punt in de kleine cirkel valt? In tegenstelling tot de vorige vragen is bij dit experiment het aantal uitkomsten oneindig. 11 / 34

12 Vragen: natuurlijke getallen Wat is de kans dat je uit een zak gevuld met de natuurlijke getallen een 7 trekt? 12 / 34

13 Vragen: het drie gevangenen probleem Er zijn drie gevangen, A, B en C, die weten dat er twee van hen willekeurig gekozen en vervolgens terechtgesteld zullen worden. De overlevingskans voor ieder van hen is dus 1. A vraagt aan Rita, de cipier, om één gevange ongelijk A 3 te noemen die terechtgesteld wordt. Rita zegt: B. Wat is nu de kans dat A overleeft? Er lijken twee antwoorden mogelijk: A krijgt geen nieuwe informatie, hij wist toch al dat B of C terechtgesteld zou worden, dus zijn overlevingskans blijft 1 3. Eerst waren er drie mogelijkheden: A of B of C overleeft. Nu zijn er twee mogelijkheden: A of C overleeft. De kans dat A overleeft is 1 2. Wat is de juiste redenering? 13 / 34

14 Vragen: een rechtszaak De rechtszaak People vs Collins (1968) in Californië: Een portemonnee wordt gestolen en een getuige zegt een blonde vrouw met staart te hebben zien vluchten in een gele auto bestuurd door een zwarte man met baard. Een aantal dagen later wordt er een paar dat aan deze beschrijving voldoet gearresteerd, maar er wordt geen bewijsmateriaal gevonden. Hoe zou je kansrekening kunnen toepassen in deze rechtszaak? 14 / 34

15 Vragen: spam Je laat een spamfilter weten dat een mail onterecht als spam is geclassificeerd. Volgens welke regels past het filter zich aan, d.w.z. hoe leert een spamfilter? 15 / 34

16 Uitkomstenruimte Def. Een kansexperiment heeft een aantal mogelijke uitkomsten. De uikomstenruimte (sample space) is de verzameling S van alle mogelijke uitkomsten. (Het boek gebruikt Ω in plaats van S.) 16 / 34

17 Uitkomstenruimte Vb. Twee dobbelstenen gooien en het aantal ogen tellen: S = {2, 3,..., 12}. Een dobbelsteen en een munt gooien: S = {1K, 1M, 2K, 2M,..., 6K, 6M} = {1,..., 6} {K, M}. Een vis uit een vijver hengelen: S = 17 / 34

18 Uitkomstenruimte Vb. Het aantal manieren om drie schilderijen naast elkaar te hangen. S = {ASD,ADS,SAD,SDA,DAS,DSA}. 18 / 34

19 Uitkomstenruimte: volgorde Vb. Twee willekeurige getallen onder de 2 kiezen ongeacht de volgorde: S = {(0, 0), (0, 1), (1, 1)}. Een willekeurig getal onder de 2 kiezen, en dan nogmaals: S = {(0, 0), (0, 1), (1, 0), (1, 1)}. Een commissie van drie parlementsleden kiezen: S bestaat uit alle verzamelingen van drie parlementsleden. Een commissie van drie parlementsleden kiezen, bestaande uit een voorzitter, secretaris en penningmeester: S bestaat uit alle rijtjes van drie parlementsleden. 19 / 34

20 Gebeurtenis Def. Een gebeurtenis (event) is een deelverzameling A van de uitkomstenruimte S: A S. A S 20 / 34

21 Gebeurtenis Vb. Even gooien bij het gooien van een dobbelsteen: A = {2, 4, 6} Positieve uitslag bij het testen op een ziekte: A = {ziek}. Een bruine, grijze en zwarte hoed worden willekeurig aan haakjes 1 t/m 3 gehangen. De gebeurtenis dat de grijze hoed aan haakje 1 of 2 en de zwarte hoed aan 1 of 3 hangt: A = {GBZ,BGZ,ZGB}. 21 / 34

22 Kansen toekennen Vraag: Wat is de kans op een gebeurtenis? Doel: Kansen kunnen berekenen en vergelijken. Inductief redeneren. Intuïtie: Als alle uitkomsten even waarschijnlijk zijn, dan is de kans op elke uitkomst hetzelde. 22 / 34

23 De drie axioma s van de kansrekening Def. De kans op gebeurtenis A wordt aangeduid met P(A). Def. Het aantal elementen in A wordt aangeduid met #A. Axioma s Voor elke gebeurtenis A geldt P(A) 0. Voor de uitkomstenruimte S geldt P(S) = 1. Als A 1, A 2,... onafhankelijk (onderling disjunct) zijn, dan geldt [ P( A i ) = i=1 X P(A i ). i=1 St. Als S een eindige uitkomstenruimte is waarin alle uitkomsten dezelfde kans hebben, dan geldt voor elke gebeurtenis A: P(A) = #A #S = aantal elementen van A aantal elementen van S. 23 / 34

24 Kansen toekennen P(A) = #A #S = / 34

25 Kansen toekennen Vb. S bestaat uit zes schoeisels: Bij het willekeurig pakken van een schoeisel is de kans op een vis 1 3. De kans op een slipper is / 34

26 Kansen toekennen Vb. Een bruine, grijze en zwarte hoed willekeurig aan haakjes 1 t/m 3 hangen: P(BGZ) = P(BZG) = P(GBZ) = P(GZB) = P(ZGB) = P(ZBG) = 1 6. Een dodecaëder gooien: P(1) = P(2) = = P(12) = / 34

27 Kansen toekennen Vb. De kans op een blauwe of grijze bal bij het trekken van 1 bal uit een vaas met 2 blauwe, 3 grijze en 4 paarse ballen: P(B of G) = # blauwe en grijze ballen # ballen = / 34

28 Kansen toekennen: ongeordend Vb. Uit een groep van 3 vrouwen en 2 mannen wordt een commissie van drie mensen (willekeurig) gekozen. De kans op een commissie van 2 vrouwen en 1 man is P(twee vrouwen en een man) = 6 10 = 3 5 : S = { {~,~,~}, {,~,~}, {,~,~}, {,~,~}, {,~,~}, {,~,~}, {,~,~}, {,,~}, {,,~}, {,,~} }. 28 / 34

29 Kansen toekennen: geordend Vb. Uit een groep van 3 vrouwen en 2 mannen wordt een commissie bestaande uit een voorzitter, secretaris en penningmeester gekozen. De kans op een commissie waarbij de voorzitter en secretaris vrouwen zijn en de penningmeester een man, is P(twee vrouwen en een man) = = 1 5 : S = { ~~~, ~~~, ~~~, ~~~, ~~~, ~~~, ~~, ~~, ~~, ~~, ~~, ~~, ~ ~, ~ ~, ~ ~, ~ ~, ~ ~, ~ ~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~~, ~ ~, ~ ~, ~ ~, ~ ~, ~ ~, ~ ~, ~~, ~~, ~~, ~~, ~~, ~~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~, ~ }. 29 / 34

30 Stochasten Def. Een stochastische variabele (stochast, random variable) is een variabele waarvan de waarden de uitkomsten van een kansexperiment zijn, d.w.z. de waarden van de bijbehorende uitkomstenruimte. Stochasten worden aangeduid met X, Y, Z. Als S een aftelbare uitkomstenruimte van een experiment is en X is de bijbehorende stochast, dan is de kansverdeling (verdeling, distributie, distributiefunctie) van X de functie f (m in boek) die aan elke waarde van X de kans op die waarde toekent. Er geldt: P(X = i) = f (i) f : S [0, 1] X f (i) = 1 i S P(A) = X f (i). i A 30 / 34

31 Stochasten Vb. Een dobbelsteen gooien: de waarden van X zijn 1, 2, 3, 4, 5, 6. De verdeling f wordt gegeven door f (1) = = f (6) = 1 6. Compacte notatie: P(X = 2) i.p.v. P(2 gooien). De kans op een zekere ziekte is 0.6. Testen op de ziekte: de waarden van X zijn pos en neg. De verdeling f wordt gegeven door f (pos) = 0.6 en f (neg) = / 34

32 Stochasten Vb. Een bal trekken uit een vaas met 2 blauwe, 3 grijze en 4 paarse ballen: De waarden van X zijn B, G en P. f (B) = P(X = B) = 2 9, f (G) = P(X = G) = 3 9, f (P) = P(X = P) = 4 9. P(X = B of X = G) = / 34

33 Conventie Ten behoeve van een compacte notatie kan het nuttig zijn om een stochast X alleen getalswaarden te laten aannemen. Vb. De kans op een zekere ziekte is 0.6. Het experiment is het testen op de ziekte. Voor de waardes van de bijbehorende stochast worden niet pos en neg maar 1 (pos) en 0 (neg) genomen. Dat geeft P(X = 0) = 0.4 en P(X = 1) = / 34

34 Finis 34 / 34

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 1 Dinsdag 13 September 1 / 47 Literatuur http://www.phil.uu.nl/ iemhoff Applied Statistics for the Behavioral Sciences - 5th edition, Dennis E. Hinkle, William Wiersma,

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 6 Donderdag 30 September 1 / 25 1 Kansrekening Indeling: Voorwaardelijke kansen Onafhankelijkheid Stelling van Bayes 2 / 25 Vraag: Afghanistan Vb. In het leger wordt

Nadere informatie

Statistiek voor A.I. College 7. Dinsdag 2 Oktober

Statistiek voor A.I. College 7. Dinsdag 2 Oktober Statistiek voor A.I. College 7 Dinsdag 2 Oktober 1 / 30 2 Deductieve statistiek Kansrekening 2 / 30 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft is de kans op een positieve

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Woensdag 7 Oktober 1 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie 2 / 51 Kansrekening en Statistiek? Bevordert luieren de fantasie? Psychologie

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 3 Dinsdag 21 September 1 / 21 1 Kansrekening Indeling: Uniforme verdelingen Cumulatieve distributiefuncties 2 / 21 Vragen: lengte Een lineaal wordt op een willekeurig

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 4 Donderdag 23 September 1 / 22 1 Kansrekening Indeling: Permutaties en combinaties 2 / 22 Vragen: verjaardag Wat is de kans dat minstens twee van jullie op dezelfde

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 10 Donderdag 14 Oktober 1 / 71 1 Kansrekening Indeling: Bayesiaans leren 2 / 71 Bayesiaans leren 3 / 71 Bayesiaans leren: spelletje Vb. Twee enveloppen met kralen, waarvan

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 9 Dinsdag 12 Oktober 1 / 21 1 Kansrekening Indeling: Stelling van Bayes Bayesiaans leren 2 / 21 Vraag: test Een test op HIV is 90% betrouwbaar: als een persoon HIV heeft

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren

Overzicht. Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen. Voorwaardelijke kans. Voorbeeld: Probabilistisch redeneren Overzicht Statistiek voor Informatica Hoofdstuk 2: Voorwaardelijke kansen Cursusjaar 2009 Peter de Waal Departement Informatica Voorwaardelijke kans Rekenregels Onafhankelijkheid Voorwaardelijke Onafhankelijkheid

Nadere informatie

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip

Laplace Experimenteel Intuïtie Axiomatisch. Het kansbegrip. W. Oele. 27 januari 2014. W. Oele Het kansbegrip 27 januari 2014 Deze les Kanstheorie volgens Laplace Experimentele kanstheorie Axiomatische kanstheorie Intuïtie Kanstheorie volgens Laplace (1749-1827) De kans op een gebeurtenis wordt verkregen door

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek Henk Broer Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Kansrekening en Statistiek p.1 Overzicht Kansrekening en Statistiek - Geschiedenis - Loterij - Toetsen

Nadere informatie

Logisch denken over kansen

Logisch denken over kansen Logisch denken over kansen In zee met wiskunde D TU Eindhoven, 29 januari 2007 Mirte Dekkers en Klaas Landsman mdekkers@math.ru.nl landsman@math.ru.nl Radboud Universiteit Nijmegen Genootschap voor Meetkunde

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 5 Oktober 1 / 20 1 Kansrekening Indeling: Binomiaalcoëfficiënten Monty Hall Geschiedenis Filosofie 2 / 20 Binomiaalcoëfficiënten 3 / 20 Binomiaalcoëfficiënten

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg)

Voorbeeld 1. Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen. Voorbeeld 2A. Voorbeeld 1 (vervolg) Voorbeeld Statistiek voor Informatica Hoofdstuk 3: Stochastische Variabelen en Verdelingen Cursusjaar 2009 Peter de Waal Departement Informatica In een eperiment gooien we 4 maal met een zuivere munt.

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 12 Vrijdag 16 Oktober 1 / 38 2 Statistiek Indeling vandaag: Normale verdeling Wet van de Grote Getallen Centrale Limietstelling Deductieve statistiek Hypothese toetsen

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Kansrekening en stochastische processen 2DE18

Kansrekening en stochastische processen 2DE18 Kansrekening en stochastische processen 2DE18 Docent : Jacques Resing E-mail: resing@win.tue.nl 1/28 The delta functie Zij De eenheids impulsfunctie is: d ε (x) = { 1ε als ε 2 x ε 2 0 anders δ(x) = lim

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les 1 Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het

Nadere informatie

Kansloos: van Willem Ruis tot Lucia de B.

Kansloos: van Willem Ruis tot Lucia de B. Kansloos: van Willem Ruis tot Lucia de B. Peter Grünwald Centrum voor Wiskunde en Informatica Kruislaan 413, 1098 XJ Amsterdam homepages.cwi.nl/~pdg 1.1 Kansloze Situaties Uitspraken van de vorm deze gebeurtenis

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 13 Dinsdag 26 Oktober 1 / 24 2 Statistiek Indeling: Hypothese toetsen Filosofie 2 / 24 Hypothese toetsen 3 / 24 Hypothese toetsen: toepassingen Vb. Een medicijn wordt

Nadere informatie

Forensische Statistiek

Forensische Statistiek Voorbereidend materiaal Wiskundetoernooi 200: Forensische Statistiek Dit jaar is forensische statistiek het thema van de middagwedstrijd Sum of Us van het Wiskundetoernooi. In dit boekje vind je het voorbereidend

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1 Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 16 Donderdag 4 November 1 / 25 2 Statistiek Indeling: Schatten Correlatie 2 / 25 Schatten 3 / 25 Schatters: maximum likelihood schatters Def. Zij Ω de verzameling van

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

van Willem Ruis tot Lucia de B.

van Willem Ruis tot Lucia de B. Kansloos: * Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 XJ Amsterdam. Internet: homepages.cwi.nl/~pdg van Willem Ruis tot Lucia de B. Uitspraken van de vorm deze gebeurtenis heeft X procent

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2S27), dinsdag 14 juni 25, 9. - 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

Hoofdstuk 4 Kansrekening

Hoofdstuk 4 Kansrekening Hoofdstuk 4 Kansrekening Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Kansrekening p 1/29 Gebeurtenissen experiment : gooien met een dobbelsteen

Nadere informatie

introductie kansen pauze meer kansen random variabelen transformaties ten slotte

introductie kansen pauze meer kansen random variabelen transformaties ten slotte toetsende statistiek week 1: kansen en random variabelen Moore, McCabe, and Craig. Introduction to the Practice of Statistics Chapter 4: Probability: The Study of Randomness 4.1: Randomness 4.2: Probability

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof

bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof bijspijkercursus wiskunde voor psychologiestudenten bijeenkomst 8 [PW] appendix D.1: kansrekening extra stof [PW] appendix D.1 kansrekening kansen: 1. Je gooit met een dobbelsteen. Wat is de kans dat je

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Poortlandplein 6, 2628 BM Delft, The Netherlands

Nadere informatie

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2

is, dat de zijde met cijfer boven te liggen komt, evenzo als de kans voor de koningin 1 2 Hoofdstuk III Kansrekening Les Combinatoriek Als we het over de kans hebben dat iets gebeurt, hebben we daar wel intuïtief een idee over, wat we hiermee bedoelen. Bijvoorbeeld zeggen we, dat bij het werpen

Nadere informatie

Tentamen Inleiding Kansrekening wi juni 2010, uur

Tentamen Inleiding Kansrekening wi juni 2010, uur Technische Universiteit Delft Mekelweg Faculteit Electrotechniek, Wiskunde en Informatica 8 CD Delft Tentamen Inleiding Kansrekening wi juni, 9.. uur Bij dit examen is het gebruik van een (evt. grafische

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Eindtentamen Kansrekening en Statistiek (WS), Tussentoets Kansrekening en Statistiek (WS), Vrijdag 8 april, om 9:-:. Dit is een tentamen

Nadere informatie

Durft u het risico aan?

Durft u het risico aan? Durft u het risico aan? Hoe het uitkeringspercentage van de vernieuwde Nederlandse Lotto te schatten? Ton Dieker en Henk Tijms De Lotto is in Nederland een grote speler op de kansspelmarkt. Met onderdelen

Nadere informatie

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid

Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Wiskunde voor kunstmatige intelligentie, 2006 Les 9 Voorwaardelijke kansen, de Regel van Bayes en onafhankelijkheid Sommige vragen uit de kanstheorie hebben een antwoord dat niet met de intuïtie van iedereen

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander

Tentamen Inleiding Kansrekening 25 juni 2009, uur Docent: F. den Hollander Universiteit Leiden Niels Bohrweg Tentamen Inleiding Kansrekening 25 juni 2009, 0.00 3.00 uur Docent: F. den Hollander Mathematisch Instituut 2333 CA Leiden Bij dit tentamen is het gebruik van een (grafische)

Nadere informatie

Vertaling van enkele termen uit de kansrekening en statistiek alternative hypothesis alternatieve hypothese approximate methods benaderende methoden asymptotic variance asymptotische variantie asymptotically

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

2 Kansen optellen en aftrekken

2 Kansen optellen en aftrekken 2 Kansen optellen en aftrekken Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/ VWO wi-a Kansrekening Optellen/aftrekken Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl

Nadere informatie

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

Opgaven voor Kansrekening - Oplossingen

Opgaven voor Kansrekening - Oplossingen Wiskunde voor kunstmatige intelligentie Opgaven voor Kansrekening - Opgave. Een oneerlijke dobbelsteen is zo gemaakt dat drie keer zo vaak valt als 4 en twee keer zo vaak als 5. Verder vallen,, en even

Nadere informatie

Algemeen overzicht inleiding kansrekening en statistiek

Algemeen overzicht inleiding kansrekening en statistiek Algemeen overzicht inleiding kansrekening en statistiek Robert Fitzner Tim Hulshof 7 Oktober 202 v.3 Voorwoord Deze tekst geeft een overzicht van de stof die behandeld wordt in de meeste cursussen inleiding

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Inleiding Kansrekening en Statistiek

Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek Inleiding Kansrekening en Statistiek S.J. de Lange VSSD 4 VSSD Eerste druk 1989 Tweede druk 1991-2007 Uitgegeven door de VSSD Leeghwaterstraat 42, 2628 CA Delft, The

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de derde graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg Deze tekst sluit aan op de tekst: Kansrekening voor de tweede

Nadere informatie

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen):

Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Deel B Kansrekening Aanbevolen achtergrondliteratuur met veel opgaven (en oplossingen): Murray R. Spiegel, John J. Schiller, R. A. Srinivasan: (Schaum s Outline of Theory and Problems of) Probability and

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Inleiding Kansrekening

Inleiding Kansrekening Inleiding Kansrekening voor het 1e jaar wiskunde, 2e jaar natuurkunde en informatica docent: Hans Maassen November 2007 Onderwijsinstituut voor Wiskunde, Natuurkunde en Sterrenkunde Radboud Universiteit

Nadere informatie

Statistiek voor A.I. College 9. Donderdag 11 Oktober

Statistiek voor A.I. College 9. Donderdag 11 Oktober Statistiek voor A.I. College 9 Donderdag 11 Oktober 1 / 48 2 Deductieve statistiek Bayesiaanse statistiek 2 / 48 Reistijd naar college (minuten). Jullie - onderzoek Tim Histogram of CI Frequency 0 1 2

Nadere informatie

VERZAMELINGEN EN AFBEELDINGEN

VERZAMELINGEN EN AFBEELDINGEN I VERZAMELINGEN EN AFBEELDINGEN Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen. We kennen verzamelingen

Nadere informatie

De enveloppenparadox

De enveloppenparadox De enveloppenparadox Mats Vermeeren Berlin Mathematical School) 6 april 013 1 Inleiding Een spel gaat als volgt. Je krijgt twee identiek uitziende enveloppen aangeboden, waarvan je er één moet kiezen.

Nadere informatie

Set 1 Inleveropgaven Kansrekening (2WS20)

Set 1 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode

Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Het schatten van de Duitse oorlogsproductie: maximum likelihood versus de momentenmethode Rik Lopuhaä TU Delft 30 januari, 2015 Rik Lopuhaä (TU Delft) Schatten van de Duitse oorlogsproductie 30 januari,

Nadere informatie

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) =

2.1 Kansen [1] Er geldt nu dat de kans op som is 6 gelijk is aan: P(som is 6) = 2.1 Kansen [1] Voorbeeld 1: Als je gooit met twee dobbelstenen zijn er in totaal 6 6 = 36 mogelijke uitkomsten. Deze staan in het rooster hiernaast. De gebeurtenis som is 6 komt vijf keer voor. Het aantal

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 7 februari 2011 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Toets Inleiding Kansrekening 1 7 februari 2011 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

1 Beginselen kansrekening

1 Beginselen kansrekening 1 Beginselen kansrekening Drs. J.M. Buhrman Inhoudsopgave 1.1 Experimenten en uitkomstenruimtes 1.2 Gebeurtenissen als verzamelingen 1.3 Kansregels 1.4 Voorwaardelijke kansen, onafhankelijkheid, nog meer

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 3: Het vaasmodel (deze les sluit aan bij de paragrafen 5, 6 en 7 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Kansrekening en Statistiek voor informatici

Kansrekening en Statistiek voor informatici Leidraad bij het college Kansrekening en Statistiek voor informatici Esdert Edens februari 2006 Edens 060214-1610 i Kansrekening en statistiek (Inf.) 1. Inleiding......................................................................

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: kansrekening. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: kansrekening 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Kansen en Risico s in het Leven. Jelle Ritzerveld Sterrewacht Leiden

Kansen en Risico s in het Leven. Jelle Ritzerveld Sterrewacht Leiden Kansen en Risico s in het Leven Jelle Ritzerveld Sterrewacht Leiden God does not play dice. A. Einstein Overzicht Introductie Deel 1: Geschiedenis Deel 2: Elementaire Kansrekening Deel 3: Toeval in de

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur.

Tentamen Kansrekening en Statistiek (2WS04), woensdag 30 juni 2010, van 9.00 12.00 uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (WS4), woensdag 3 juni, van 9.. uur. Dit is een tentamen met gesloten boek. De uitwerkingen van de

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

Werkcollege. Huishoudelijke zaken. Voorbeeld 1: Data-analyse. Deel I. Inleiding. dr.ir. P.R. de Waal CGN, kamer A-358, tel. 9252 e-mail: waal@cs.uu.

Werkcollege. Huishoudelijke zaken. Voorbeeld 1: Data-analyse. Deel I. Inleiding. dr.ir. P.R. de Waal CGN, kamer A-358, tel. 9252 e-mail: waal@cs.uu. Huishoudelijke zaken Werkcollege Docent: dr.ir. P.R. de Waal CGN, kamer A-358, tel. 9252 e-mail: waal@cs.uu.nl Website: Overzicht hoorcolleges (en handouts) Opgaven werkcolleges Oude tentamens Literatuur:

Nadere informatie

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013

FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE. Toets Inleiding Kansrekening 1 22 februari 2013 FOR DUTCH STUDENTS! ENGLISH VERSION NEXT PAGE Toets Inleiding Kansrekening 1 22 februari 2013 Voeg aan het antwoord van een opgave altijd het bewijs, de berekening of de argumentatie toe. Als je een onderdeel

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking tentamen Kansrekening en Stochastische Processen (2S61) op woensdag 27 april 25, 14. 17. uur. 1. Gegeven zijn twee onafhankelijke

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur

Tentamen Kansrekening en Statistiek MST 14 januari 2016, uur Tentamen Kansrekening en Statistiek MST 14 januari 2016, 14.00 17.00 uur Het tentamen bestaat uit 15 meerkeuzevragen 2 open vragen. Een formuleblad wordt uitgedeeld. Normering: 0.4 punt per MC antwoord

Nadere informatie

Kansrekening en stochastische processen 2S610

Kansrekening en stochastische processen 2S610 Kansrekening en stochastische processen 2S610 Docent : Jacques Resing E-mail: j.a.c.resing@tue.nl http://www.win.tue.nl/wsk/onderwijs/2s610 1/39 Een stochastisch proces (stochastic proces) X (t) bestaat

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Jan heeft 4 pennen, 1 daarvan is paars met gele stippen. Jan doet zijn ogen dicht en probeert de paarse met gele stippen te pakken.

Jan heeft 4 pennen, 1 daarvan is paars met gele stippen. Jan doet zijn ogen dicht en probeert de paarse met gele stippen te pakken. VMBO Wiskunde Periodetoets kansrekening 17/12/2010 Deze toets bestaat uit 17 opgaven plus een bonusvraag. Er zijn maximaal 58 punten te behalen. Antwoorden moeten altijd zijn voorzien van een berekening,

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

getallenfeest 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, je hebt alle getallen gezien. 11 en 12 er ook nog bij zij sluiten de rij.

getallenfeest 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, je hebt alle getallen gezien. 11 en 12 er ook nog bij zij sluiten de rij. getallenfeest 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, je hebt alle getallen gezien. 11 en 12 er ook nog bij zij sluiten de rij. Tijd voor een getallenfeest! Doen jullie mee? Zoek de getallen en speel bij elk getal

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.1 Waarschijnlijkheidsrekening 1 Beschouw een toevallig experiment (de resultaten zijn aan het toeval te danken) Noem V de verzameling van alle mogelijke uitkomsten

Nadere informatie

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen.

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen. 1 Kansbomen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Kansbomen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansrekening voor de tweede graad. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Kans als relatieve frequentie...1 1.1. Van realiteit naar

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

code create Welkom! Inspiratie is de basis

code create Welkom! Inspiratie is de basis Welkom! Voor dat we beginnen over de cursus, een kort voorwoord over ons. De cursus Code Create is ontworpen en ontwikkeld door C-TEAM. Een groep experts met een gezamenlijk doel: onze skills gebruiken

Nadere informatie

extra sommen Statistiek en Kans

extra sommen Statistiek en Kans extra sommen Statistiek en Kans 1. Bepaal bij de volgende rijen de modus, de mediaan en het gemiddelde a. 1, 4, 2, 3, 5, 3, 6, 3 b. 12, 11, 13, 11, 12, 11, 12, 13, 11, 14, 75, 15 c. 1, 43, 12, 32, 43,

Nadere informatie

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6

H9: Rijen & Reeksen..1-2. H10: Kansverdelingen..3-4. H11: Allerlei functies.5-6 Oefenmateriaal V5 wiskunde C Voorbereiding op PTA-toets1 wiskunde INHOUDSOPGAVE H9: Rijen & Reeksen..1-2 H10: Kansverdelingen..3-4 H11: Allerlei functies.5- Hoofdstuk 9: Rijen & Reeksen Recursieve formule

Nadere informatie

Haskell: programmeren in een luie, puur functionele taal

Haskell: programmeren in een luie, puur functionele taal Haskell: programmeren in een luie, puur functionele taal Jan van Eijck jve@cwi.nl 5 Talen Symposium, 12 juli 2010 Samenvatting In deze mini-cursus laten we zien hoe je met eindige en oneindige lijsten

Nadere informatie