Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen."

Transcriptie

1 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen? Verklr uw ntwoord. Bepl de complexiteit vn recalg. Licht uw ntwoord toe. Breng een kleine verndering n in recalg zodnig dt deze efficiënter wordt. Bepl de complexiteit vn de vernderde recalg. Licht uw ntwoord toe. Algorithm recalg(n): Input: Integer n Output: Integer result 1 if n > 1 then result 1 + recalg(n - 1) + recalg(n - 1) { end if return result 10 punten OPGAVE Geef een snel recursief lgoritme in pseudo-code of Jv voor het omkeren vn een enkelvoudige geschkelde lijst L, zodt de volgorde vn de schkels in de lijst omgekeerd wordt. Hint: Geruik een hulpmethode wrin de eerste n schkels vn de lijst worden omgekeerd. De terugkeerwrde vn de hulpmethode is een verwijzing nr de n de schkel. U mg er vnuit gn dt de klsse SLinkedList uit codefrgment 3.13 vn het tekstoek methoden ddfirst en getfirst heeft. Wt is de complexiteit vn uw lgoritme? Geef ook een verklring vn de complexiteit. 10 punten OPGAVE 3 Wr kn in een hep het element met de grootste sleutel stn? Licht uw ntwoord toe. 10 punten OPGAVE 4 Gegeven is de rij S Voeg de getllen vn S in de gegeven volgorde (eerst, dn 16, ) toe n een lege inire zoekoom en teken het eindresultt. 1

2 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) Voeg de getllen vn S in de gegeven volgorde toe n een lege AVLoom en teken het tussenresultt direct voor en n elke rottie en teken het eindresultt. 10 punten OPGAVE Op lz 408 vn het tekstoek stt dt een hsh-tel niet geschikt is om een geordende dictionry te reliseren. De uitleg hiervn is summier. Licht dit nder toe. c OPGAVE 6 Op lz. 61 vn het tekstoek wordt gesproken over BFS voor gerichte grfen. Geef een implementtie vn directedbfs in pseudocode. We pssen directedbfs toe op de gerichte grf vn figuur () op lz. 614 vn het tekstoek. Kies een knooppunt vn wruit de gehele grf wordt doorlopen en geef een volgorde vn de knooppunten wrin deze ezocht kunnen worden door directedbfs. Geef de verschillende soorten knten (zowel tree edges ls nontree edges) die door directedbfs worden enoemd. 8 punten 7 punten OPGAVE 7 We ekijken de string X = dogs do not spot hot pots or cts. Geef een frequentietel en een Huffmn oom voor (de krkters vn) X en geef de ijehorende code vn de krkters d, o, g en. Zijn er ndere Huffmn omen voor X mogelijk? Zo j, geef er één en geef de ijehorende code vn de krkters d, o, g en.; zo nee, wrom niet?

3 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) UITWERKINGEN OPGAVE 1 Het eenvoudigste is om chtern te eginnen. recalg(1) = 1 recalg() = 1 + *1 = 3 recalg(3) = 1 + *3 = 7 recalg(4) = 1 + *7 = 1 recalg() = 1 + *1 = 31 recalg(n) = n 1 Dit is in te zien door de uitwerking vn te herschrijven: recalg(1) = 1 = 0 recalg() = 0 + * 0 = recalg(3) = 0 + *( ) = recalg(4) = 0 + *( ) = (eigenlijk met volledige inductie te ewijzen) recalg(n) = n 1 = n 1 c Het ntl recursieve nroepen verduelt steeds en is ij recalg(n) gelijk n n 1. Per nroep heen we 1 toekenning of 1 toekenning en optellingen, dus ltijd O(1), en dus is het totl ntl primitieve ewerkingen evenredig met n 1. De complexiteit is dus O( n ) en zelfs Θ( n ) omdt er geen sprke is vn een verschil tussen een slechtste en este gevl. d Vervng result 1 + recalg(n 1) + recalg(n 1) door result 1 + * recalg(n 1). Nu is de complexiteit Θ(n) wnt het ntl recursieve nroepen ij recalg(n) is gelijk n n 1. OPGAVE privte sttic Node reverse(slinkedlist list, int n){ if (n == 1){ return list.getfirst(); else { Node end = reverse(list, n-1); if (end!= null){ Node newfirst = end.getnext(); end.setnext(newfirst.getnext()); // newfirst verwijderen list.ddfirst(newfirst); return end; Deze recursieve methode roepen we ls volgt n in methode reverse. : pulic sttic void reverse(slinkedlist list){ reverse(list, list.size()); 3

4 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) In totl zijn er n recursieve nroepen wrij n het ntl elementen in de geschkelde lijst is. Binnen een recursieve nroep zijn lle methode nroepen O(1), de complexiteit vn het gehele lgoritme is dus Θ(n). OPGAVE 3 In een hep geldt de eis dt elk knooppunt m.u.v. de wortel een grotere of dezelfde sleutel evt ls zijn ouder. Dus ij lleml verschillende sleutels zl de grootste lleen in de één n onderste of twee n onderste lg voorkomen. (Not ene, de lderen vn een hep evtten geen elementen.) Als de grootste sleutel echter meermls voorkomt, kn deze ook op een hoger niveu stn mits er onder lleen mr duplicten voorkomen. Alleen ls lle sleutels gelijk zijn, kn de grootste in de wortel stn. OPGAVE N toevoeging vn de eerste drie is het hoogteverschil : Enkele rottie: 4

5 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) 16 Verder geen rotties meer nodig, dus meteen het eindresultt: OPGAVE Een hsh-tel is geschikt voor de relistie vn een ongeordende dictionry (zie lz. 393 ev). We hoeven dus lleen te lten zien dt een hsh tel niet geschikt is voor relistie vn de methoden die specifiek zijn voor geordende dictionries, te weten first, lst en successors, predecessors. Uiterrd gn we er vn uit dt de sleutels geordend kunnen worden, nders gezegd dt ze een lineir geordend verzmeling vormen. In een hsh tel wordt een item opgeslgen door op de sleutel de hshfunctie toe te pssen die de hsh code ls functiewrde geeft. Ook l zijn de sleutels geordend, hun hsh codes zijn dt in het lgemeen niet, dus een hsh tel is een ongeordende tel. Als nu een methode first of lst gereliseerd moet worden, etekent dt dt de gehele hsh tel doorzocht moet worden en dt is zeer inefficiënt. Hetzelfde geldt voor successors en predecessors. OPGAVE 6 In het lgoritme op lz 60 vn het tekstoek moeten we lleen knten e ekijken die vnuit punt v vertrekken. Methode endverticeces(e) geeft een Arry A zodnig dt A[0] het egin punt en A[1] het eindpunt is vn de knt e. (zie lz 608 vn het tesktoek). Vervng drom in het lgoritme op lz 60 vn het tekstoek de regel for ll edges e in G.incidentEdges (v) do door for ll edges e in G. incidentedges(v) do if G.endVertices(e)[0] = v De knooppunten worden in gevl vn BFS niveu voor niveu ngelopen. Als we eginnen met knooppunt BOS, dn is dt het 0 e niveu.

6 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) In het 1 e niveu vinden we dn JFK en MIA Het e niveu levert SFO, DFW en LAX op In het 3 e niveu is er nog ORD. Een mogelijke volgorde is BOS, JFK, MIA, SFO, DFW, LAX, ORD. c Opmerking Als er verschillende knten vn het ene niveu nr het volgende niveu lopen dn worden ze in willekeurige volgorde ezocht en dus zijn er ook ndere mogelijkheden voor deze volgorde. JFK en MIA zouden ijvooreeld omgekeerd kunnen stn, ook de drie knooppunten in niveu twee kunnen onderling in een ndere volgorde stn. DirectedBFS verdeelt de edges in tree edges (discovery edges) en nontree edges. De tree edges zijn knten die leiden nr een nog niet ezocht knooppunt, en die smen met de knooppunten een oom vormen met ls wortel het eginknooppunt. In de vooreeldgrf zijn dt voor de gekozen volgorde: BOS JFK, BOS MIA, JFK SFO, JFK DFW, MIA LAX en DFW ORD. Bij de BFS (ongerichte vrint) wren nontree edges ltijd cross edges, dt wil zeggen knten die een knooppunt verinden met een knooppunt dt noch zijn voorouder noch zijn nkomeling is in de BFS oom. In de DirectedBFS vinden we twee soorten nontree edges, de genoemde cross edges: JFK MIA, MIA DFW, DFW LAX, DFW SFO en LAX ORD, en ck edges, die een knooppunt met een voorouder in de BFS oom verinden: JFK BOS en ORD DFW. OPGAVE 7 De frequentietel vn de string X = dogs do not spot hot pots or cts is: A c d g h n o p r s t N verwerking met het Huffmn coderingslgoritme ontstt de volgende oom: 6

7 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) o s t 6 p g c r d 1 1 h n 1 1 De codes worden dn: d = o = 01 g = = 00 Er zijn ndere Huffmn-omen mogelijk. Het hngt f vn de volgorde in de frequentietel (of liever gezegd de volgorde wrin de elementen in eerste instntie in Q worden gezet) en ook vn de implementtie vn de priorityqueue-methoden: nl. om de heporde te herstellen ij insertie en removl wordt een ouder die groter is dn zijn kind(eren) met het kleinste kind omgewisseld. Echter ls eide kinderen even groot zijn geeft het oek geen duidelijke richtlijnen en kun je lijkr kiezen tussen het linker en rechterkind wrmee de ouder verwisseld wordt. Dus zowel verschillen in de volgorde vn de krkters ls verschillen in de mnier vn hepen kunnen tot een ndere oom leiden. Onderstnde oom ontstt door de sptie ls ltste krkter toe te voegen n Q in plts vn ls eerste krkter. 7

8 Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) o t 6 p d s 4 c h n g r De codes worden dn: d = 1110 o = 00 g = = 01 8

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Opdrachten bij hoofdstuk 2

Opdrachten bij hoofdstuk 2 Opdrchten ij hoofdstuk 2 2.1 Het vullen vn je portfolio In hoofdstuk 2 he je gezien op welke mnier je de informtie kunt verzmelen. An de hnd vn die informtie kun je de producten mken wrmee jij je portfolio

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

1 Uw secretaresse vraagt u wie u voor deze sessie wilt uitnodigen. Aan welke mensen denkt u?

1 Uw secretaresse vraagt u wie u voor deze sessie wilt uitnodigen. Aan welke mensen denkt u? CREATIVITEIT drs. R.B.E. vn Wijngrden 1 SITUATIE Elke dg zijn er momenten die om retiviteit vrgen. Een proleem oplossen, een nieuw idee ontwikkelen, ties edenken, vereterpunten zoeken zken wrvoor het nuttig

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Ontleden? Leuk! Inleiding. Opzet van deze lesbrief. Door Henk Jongsma, hoofdauteur Op Niveau tweede fase

Ontleden? Leuk! Inleiding. Opzet van deze lesbrief. Door Henk Jongsma, hoofdauteur Op Niveau tweede fase Door Henk Jongsm, hoofduteur Op Niveu tweede fse Ontleden? Leuk! Inleiding Lstig soms, dt ontleden. Denk je net een regel te egrijpen, kom je weer een uitzondering tegen. En ls je denkt die uitzondering

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Assertiviteit. Agressiviteit

Assertiviteit. Agressiviteit ASSERTIVITEIT drs. M.F. Serrurier Shepper 1 SITUATIE Assertiviteit is een zelfewuste, psyhishe weerrheid wrdoor u in stt ent op te komen voor uw eigen elngen en uiting te geven n uw gevoelens, wensen en

Nadere informatie

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem.

Het bepalen van een evenwichtstoedeling met behulp van het 1 e principe van Wardrop is equivalent aan het oplossen van een minimaliserings-probleem. Exmen Verkeerskunde (H1I6A) Ktholieke Universiteit Leuven Afdeling Industrieel Beleid / Verkeer & Infrstructuur Dtum: dinsdg 2 september 28 Tijd: Instructies: 8.3 12.3 uur Er zijn 4 vrgen over het gedeelte

Nadere informatie

INTERVIEWEN 1 SITUATIE

INTERVIEWEN 1 SITUATIE INTERVIEWEN drs. W. Bontenl 1 SITUATIE Een interview vlt te omshrijven ls een gesprek tussen één of meerdere personen - de interviewers - en een ndere persoon (of diverse nderen) - de geïnterviewden -

Nadere informatie

Werkloosheid, armoede, schooluitval en criminaliteit. Er zal veel belastinggeld nodig zijn om al die problemen op te lossen.

Werkloosheid, armoede, schooluitval en criminaliteit. Er zal veel belastinggeld nodig zijn om al die problemen op te lossen. vk Mtshppijleer them Multiulturele smenleving onderwerp Het multiulturele drm vn P. Sheffer ntwoorden ij de vrgen over het rtikel kls Hvo 5 dtum jnuri 2014 1 2 3 4 5 6 7 8 De vrg hoe de slehte werk-, woon-

Nadere informatie

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel Rpportge Enquête ondergrondse fvlinzmeling Zltommel Enquête ondergrondse fvlinzmeling Zltommel VERSIEBEHEER Versie Sttus Dtum Opsteller Wijzigingen Goedkeuring Door Dtum 0.1 onept 4-11-09 VERSPREIDING

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Examen VWO. wiskunde B1,2 (nieuwe stijl)

Examen VWO. wiskunde B1,2 (nieuwe stijl) wiskunde 1,2 (nieuwe stijl) Exmen VWO Voorbereidend Wetenschppelijk Onderwijs Tijdvk 1 insdg 25 mei 13.30 16.30 uur 20 04 Voor dit exmen zijn mximl 86 punten te behlen; het exmen bestt uit 18 vrgen. Voor

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle Werken met Prezi Infolok Prezi: www.prezi.om prijs ipd pp geshikt voor leerling voordeel Stp 1: het nmken vn een ount. - G nr de wesite. - Kies voor 'Sign Up. grtis j presentties en mindmppen j, studentount

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

11 Wiskundige denkactiviteiten: digitale bijlage

11 Wiskundige denkactiviteiten: digitale bijlage Wiskundige denkctiviteiten: digitle ijlge Suggesties voor opdrchten wrij de leerlingen uitgedgd worden wiskundige denkctiviteiten te ontplooien. De opdrchten heen de volgende structuur. In de kop stn chtereenvolgend:

Nadere informatie

AFRIKA RAPPORT www.burgerszoo.nl

AFRIKA RAPPORT www.burgerszoo.nl AFRIKA RAPPORT Je gt op ontdekkingstoht nr de Afriknse dieren die in het Prk en in de Sfri vn Koninklijke Burgers Zoo leven. Bentwoord lle vrgen en hl je Afrik Rpport! Wrttenzwijnen Welkom in Burgers Prk!

Nadere informatie

2 De kracht van vectoren

2 De kracht van vectoren De krcht vn vectoren Dit is een ewerking vn Meetkunde met coördinten lok Punten met gewicht vn d Goddijn ten ehoeve vn het nieuwe progrmm (015) wiskunde vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

GBK Leden profiel beheer

GBK Leden profiel beheer GBK Leden profiel eheer Op de nieuwe GBK site kn het eigen leden profiel ijgehouden worden. Op dit profiel kn iogrfische informtie worden ingevoerd, werk kn n een portfolio worden toegevoegd, er kunnen

Nadere informatie

Welke van de volgende beweringen over de kromme snavel is of welke zijn juist voor jonge flamingo's? Maak het hokje met een juiste bewering zwart.

Welke van de volgende beweringen over de kromme snavel is of welke zijn juist voor jonge flamingo's? Maak het hokje met een juiste bewering zwart. Route I 1 Flmingo's Flmingo's zeven met hun kromme snvel voedsel uit het wter. Jonge flmingo's heen een rehte snvel. De jonge dieren zeven niet zelf voedsel uit het wter, mr worden door de ouders gevoerd.

Nadere informatie

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck

Antwoorden Doeboek 21 Kijk op kegelsneden. Rob van der Waall en Liesbeth de Clerck Antwoorden Doeboek 1 Kijk op kegelsneden Rob vn der Wll en Liesbeth de Clerk 1 De 3 4 ) 5 Een 6 Als 7 8 ) 9 De Nee, lle punten die 1 entimeter vn het midden liggen, liggen op de irkel. gevrgde figuur bestt

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

Om welke reden heeft een kwak relatief grote ogen?

Om welke reden heeft een kwak relatief grote ogen? Route K - Volière en fznterie Strt ij de volière; de vrgen 1 t/m 6 gn over een ntl grote Europese vogels. De vrgen over de ndere dieren vn deze route hoeven niet in de juiste volgorde te stn. Dt komt omdt

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Tweede Ronde. 1 Vlmse Wiskunde Olymide 1985-1986: Tweede Ronde De tweede ronde bestt uit 30 meerkeuzevrgen Het quoteringssysteem werkt ls volgt : een deelnemer strt met 30 unten Per goed ntwoord krijgt hij of zij 4

Nadere informatie

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel.

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel. 15 Ski-eroics Hoofdstuk 15, Pgin 1 vn 5 15.1 Inleiding Het is elngrijk om SneeuwFit triningen gevrieerd te houden. Proeer het nod vn ctiviteiten zo verschillend mogelijk te houden. Een vooreeld hiervn

Nadere informatie

6.4 Rekenen met evenwichtsreacties

6.4 Rekenen met evenwichtsreacties 6.4 Rekenen met evenwihtsreties An de hnd vn een reeks vooreelden zullen we het rekenwerk ehndelen n evenwihtsreties. Vooreeld 6.2 We estuderen het gsevenwiht: A(g) + B(g) C(g) + D(g) In een ruimte vn

Nadere informatie

Gehele getallen: vermenigvuldiging en deling

Gehele getallen: vermenigvuldiging en deling 3 Gehele getllen: vermenigvuldiging en deling Dit kun je l 1 ntuurlijke getllen vermenigvuldigen 2 ntuurlijke getllen delen 3 de commuttieve en de ssocitieve eigenschp herkennen 4 de rekenmchine gebruiken

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Inhoudsopgave. Inhoud

Inhoudsopgave. Inhoud sopgve 1 Ptronen... 3 2 Vergelijk: tegelptronen... 4 3 Regulier versus context-vrij... 5 4 Lettergrepen: tl met één hnd... 6 5 Bouwpln voor lettergrepen... 7 6 Tlspel met lettergreepstructuur... 8 7 Spiegelwoorden...

Nadere informatie

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan.

Opgaven met dit merkteken kun je zonder de opbouw aan te tasten, overslaan. 2 Verschuiven Dit is een ewerking vn Meetkunde met coördinten Blok Punten met gewicht vn Ad Goddijn ten ehoeve vn het nieuwe progrmm (2014) wiskunde B vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

HANDLEIDING FOKWAARDEN 2014. Informatie & Inspiratie document Met uitleg over het hoe en waarom van de fokwaarden

HANDLEIDING FOKWAARDEN 2014. Informatie & Inspiratie document Met uitleg over het hoe en waarom van de fokwaarden HANDLEIDING FOKWAARDEN 2014 Informtie & Inspirtie document Met uitleg over het hoe en wrom vn de fokwrden Missie Al ruim 25 jr ondersteunt ELDA bedrijven in de grrische sector, en het is voor ons een belngrijke

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Discrete Wiskunde. D. Bruin J.M. Jansen

Discrete Wiskunde. D. Bruin J.M. Jansen Discrete Wiskunde D. Bruin J.M. Jnsen Opleiding Hogere Informtic Noordelijke Hogeschool Leeuwrden Nederlndse defensie cdemie, fculteit militire wetenschppen Juni 1999 + oktoer 2013 Discrete Wiskunde 2

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1987-1988 : Eerste Ronde. Vlmse Wiskunde Olympide 987-988 : Eerste Ronde De eerste ronde estt steeds uit 0 meerkeuzevrgen, opgemkt door de jury vn VWO Het quoteringssysteem werkt ls volgt: een deelnemer strt met 0 punten, per goed

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

Hoofdstuk 8 Beslissen onder risico en onzekerheid

Hoofdstuk 8 Beslissen onder risico en onzekerheid Hoofdstuk 8 Beslissen onder risico en onzekerheid 8.5 Tectronis Tectronis, een friknt vn elektronic, kn vn een nder edrijf een éénjrige licentie verkrijgen voor de fricge vn product A, B of C. Deze producten

Nadere informatie

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt?

Hoeveel betaal je in totaal? Hoe kun je dat bedrag narekenen? Hoe bereken je het bedrag dat je van de 20 euro terug krijgt? Opgve 1 Je ziet hier een eenvoudige ksson. Hoeveel dingen he je volgens de ksson gekoht? Hoeveel etl je in totl? Hoe kun je dt edrg nrekenen? Hoe ereken je het edrg dt je vn de 20 euro terug krijgt? Je

Nadere informatie

Inhoud. 1 Handgereedschappen 6. 2 Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 128

Inhoud. 1 Handgereedschappen 6. 2 Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 128 Inhoud 1 Hndgereedshppen 6 2 Verindingen 34 3 Elektrishe tehniek 66 4 Pompen 88 5 Verrndingsmotoren 128 1 Hndgereedshppen 1.1 Opdrht 1.1 Gereedshppen 1 Doel N deze opdrht kun je diverse hndgereedshppen

Nadere informatie

Gekke Voronoi diagrammen.

Gekke Voronoi diagrammen. Gekke Voronoi digrmmen. Roderik Lindenergh Mthemtishe Geodesie en Puntsepling Tehnishe Universiteit Delft R.C.Lindenergh@geo.tudelft.nl 5 6 7 Figuur : Een Voronoi digrm. Stel je een ntl supermrkten in

Nadere informatie

JOB-monitor 2016 Vragenlijst

JOB-monitor 2016 Vragenlijst JOB-monitor 2016 Vrgenlijst (versie met wijzigingen t.o.v. 2014) JOB in smenwerking met ReserchNed 2015 JOB. Geen vn de mterilen die onderdeel uitmken vn de JOB-monitor 2016 mogen zonder voorfgnde schriftelijke

Nadere informatie

Platte en bolle meetkunde

Platte en bolle meetkunde Hoofdstuk I Pltte en olle meetkunde F. vn der lij Dit hoofdstuk evt een door de redctie gemkte ewerking vn een in Utrecht op 6 oktoer 1993 gegeven Kleidoscoop college vn F. vn der lij. Grg willen we professor

Nadere informatie

Merkwaardige producten en ontbinden in factoren

Merkwaardige producten en ontbinden in factoren 6 Merkwrdige producten en ontinden in fctoren Dit kun je l 1 een mcht tot een mcht verheffen eentermen vermenigvuldigen 3 eentermen delen 4 veeltermen vermenigvuldigen 5 een veelterm delen door een eenterm

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Oplossen van een vergelijking van de vorm ax 3 + bx 2 + cx + d =0

Oplossen van een vergelijking van de vorm ax 3 + bx 2 + cx + d =0 CARDANO S METHODE (oor ng. P.H. Stkker) Olossen vn een vergeljkng vn e vorm x x x 0 Verse: 8 fe. 00 PDF rete wt fftor trl verson www.fftor.om LET OP ER ZULLEN NOG ENKELE VOORBEELDEN LATER WORDEN TOEGEVOEGD

Nadere informatie

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter.

De standaard oppervlaktemaat is de vierkante meter. Die is afgeleid van de standaard lengtemaat, de meter. Opgve 1 Dit is een roosterord. Elk roosterhokje is 5 m ij 5 m. Hoeveel edrgt de oppervlkte vn dit ord? Opgve 2 Welke oppervlktemten ken je l? Noem er zoveel mogelijk. De oppervlkte-eenheid is de vierknte

Nadere informatie

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet.

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet. kennismking met i-respect.nl INTRODUCTIE GEMAAKT DOOR: Annèt Lmmers ONDERWERP: Een eerste kennismking met i-respect.nl en het onderwerp publiceren. DOEL: Weten wt de gevolgen en risico s kunnen zijn vn

Nadere informatie

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken?

les 1 1 Welke breuk is het grootst? 2 Hoe kun je een meter veterdrop in zes gelijke stukken verdelen? Hoe vergelijk je de breuken? 0 vergelijken en op volgorde zetten vn eenvoudige reuken en kommgetllen reuken omzetten in kommgetllen en omgekeerd Welke reuk is het grootst? 5 6 2 7 9 5 5 9 2 5 7 2 7 8 8 9 8 5 00 5 6 7 20 5 7 27 70

Nadere informatie

Mytylschool De Trappenberg Peter van Sparrentak

Mytylschool De Trappenberg Peter van Sparrentak Mytylshool De Trppenberg Peter vn Sprrentk www.m3v.nl Nieuwbouwonept en revlidtieentrum geriht op de toekomst Mytylshool De Trppenberg en het ngrenzende revlidtieentrum in Huizen willen in de toekomst

Nadere informatie

M1 Combinatie van naar voren staande tanden met impacties en een overtallig gebitselement bij een 10-jarig meisje

M1 Combinatie van naar voren staande tanden met impacties en een overtallig gebitselement bij een 10-jarig meisje M1 Comintie vn nr voren stnde tnden met impcties en een overtllig geitselement ij een 10-jrig meisje Trefwoorden: Klsse-II/1 mlocclusie Impctie Overtllig geitselement Eversie Functionele pprtuur Buiteneugel

Nadere informatie

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl)

Correctievoorschrift VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe stijl) Correctievoorschrift VWO Voorbereidend Wetenschppelijk Onderwijs 0 0 Tijdvk Inzenden scores Vul de scores vn de lfbetisch eerste vijf kndidten per school in op de optisch leesbre

Nadere informatie

Bijlage agendapunt 7: Inhoudelijke planning overlegtafels 2015

Bijlage agendapunt 7: Inhoudelijke planning overlegtafels 2015 Bijlge gendpunt 7: Inhoudelijke plnning overlegtfels 2015 In de Ontwikkelgend (ijlge 5 ij de Deelovereenkomst mtwerkvoorziening egeleiding 18+) zijn 7 them s en 31 suthem s opgenomen die in 2015 tijdens

Nadere informatie

schets 10 Bergrede: tweeërlei fundament (7:24-29)

schets 10 Bergrede: tweeërlei fundament (7:24-29) shets 10 Bergrede: tweeërlei fundment (7:24-29) A Kernpunten * An het einde vn de Bergrede vergelijkt Jezus de mens met de ouwer vn een huis. Het is een eeld voor wt wij vn ons leven mken en vioor de hele

Nadere informatie

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl Hoe zichtbr ben jij mobiel? MOBIELpkket Oplossingen voor ondernemende kppers die kiezen 2012 www.wiewthr.nl Reviews? Voordelen 27% Nederlnders vindt reviewsites ls WieWtHr.nl erg nuttig* Wiewthr.nl is

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat

4. Wortels van decimale getallen mag je met het RT uitrekenen. Maar voor opgaven met gehele numerieke factoren wordt een exact resultaat Modelvrgstukken Algebr vn wortelvormen Tenzij expliciet nders vermeld stellen lle letters positieve getllen voor Vereenvoudigen vn enkelvoudige wortels ; Dit is gewoon de bsisregel ) ) 8 ) ; ) Een 8-ste

Nadere informatie

Bewerkingen met eentermen en veeltermen

Bewerkingen met eentermen en veeltermen 5 Bewerkingen met eentermen en veeltermen Dit kun je l 1 werken met letters ls onekenden, ls vernderlijken en om te verlgemenen 2 een tel mken ij een situtie 3 de fsprken over lettervormen toepssen 4 oppervlkteformules

Nadere informatie

Snelstartgids Access Online: Betalingen en Rapportage

Snelstartgids Access Online: Betalingen en Rapportage Snelstrtgids Access Online: Betlingen en Rpportge Snel op weg met Access Online Voor het geruik vn de pplictie De meest geruikte functies in overzichtelijke stppen Snelstrtgids Access Online: Betlingen

Nadere informatie

Handreiking voor zij-instroom in de zuivelindustrie

Handreiking voor zij-instroom in de zuivelindustrie Hndreiking voor zij-instroom in de zuivelindustrie Inleiding In het projet zij-instroom, onderdeel vn het progrmm Areidsmrkt & Opleiding Zuivelindustrie, is in de periode 2011-2012 onderzoek gedn nr mogelijkheden

Nadere informatie

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN

MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN III - 1 HOODSTUK 3 MOMENT VAN EEN KRACHT KOPPEL VAN KRACHTEN De kennis vn het moment vn een krcht is nodig voor het herleiden vn een krcht en een krchtenstelsel, voor het (nlytisch) smenstellen vn niet-snijdende

Nadere informatie

V2.1 Eerlijk verdeeld?

V2.1 Eerlijk verdeeld? Wie verdient wt? v2 Mkt geld gelukkig? L Voor je sisehoeften zols eten, woonruimte en kleding en je l guw dit edrg kwijt. Bedenk mr eens wt de mndhuur is. En hoeveel etl je voor vste lsten 1s gs, liht

Nadere informatie

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a Werkbld Een feestml Nm: Ieder lnd en iedere cultuur kent specile dgen. Dn gn fmilies bij elkr op bezoek. Op die specile dgen is er meestl extr ndcht voor het eten. Hier zie je wt voorbeelden vn feesten

Nadere informatie

Didactische ondersteuning van theoretische informatica

Didactische ondersteuning van theoretische informatica Didctische ondersteuning vn theoretische informtic Annelotte BOLLEN promotor: Prof. dr. Frnk NEVEN Acdemiejr 2004-2005 Eindverhndeling voorgedrgen tot het ekomen vn de grd licentit in de informtic fstudeervrint

Nadere informatie

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT

Vraag 1. Vraag 2. Vraag 3. Zij gegeven de volgende declaratie in Eiffel. Guido : STUDENT Vrg 1 Zij gegeven de volgende declrtie in Eiffel Gui : STUDENT in de veronderstelling dt er een klssentekst bestt voor de klsse STUDENT. Welke vn de volgende uitsprken is wr: A. N uitvoering vn de instructie

Nadere informatie

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.

Nadere informatie

Verschil zal er zijn hv bovenbouw WERKBLAD

Verschil zal er zijn hv bovenbouw WERKBLAD Vershil zl er zijn hv ovenouw WERKBLAD 1. Hoe heet de gemeente wr jij in woont? 2. Hoeveel inwoners heeft je gemeente in 2010? 3. Is het ntl inwoners in jouw gemeente sinds 2010 gestegen of gedld? 4. In

Nadere informatie

Dat kan toch niet waar zijn?

Dat kan toch niet waar zijn? Door Henk Jongsm, hoofduteur Op Niveu tweede fse Dt kn toch niet wr zijn? 1 Inleiding In de Leeuwrder Cournt vn zterdg 16 jnuri 2010 stond dit ericht. Eerder dood door tv kijken? Dt geloof je toch niet?

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

Wiskunde voor 1 havo/vwo

Wiskunde voor 1 havo/vwo Wiskunde voor 1 hvo/vwo Deel 2 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons

Nadere informatie

INFORMATIE. hart. verwennend WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT

INFORMATIE. hart. verwennend WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT INFORMATIE hrt WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT COLOFON INHOUD INITIATIEFNEEMSTER Jessy Jnsen www.jessyjnsen.nl Hvelte Inleiding 05 HrtVerwennend voor Jou & Visie 07

Nadere informatie

Wat is goed voor een mooie, gezonde huid? Kruis de goede antwoorden aan. weinig slaap. buitenlucht goede voeding. ontspanning veel fruit eten

Wat is goed voor een mooie, gezonde huid? Kruis de goede antwoorden aan. weinig slaap. buitenlucht goede voeding. ontspanning veel fruit eten DE HUID 1 Bouw en functie O: 12/1 Wt is goed voor een mooie, gezonde huid? Kruis de goede ntwoorden n. weinig slp uitenlucht goede voeding ontspnning veel fruit eten innen zitten ptt met myonise eten in

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid.

Vraag 2. a) Geef in een schema weer uit welke onderdelen CCS bestaat. b) Met welke term wordt onderstaande processchema aangeduid. Tentmen Duurzme Ontwikkeling & Kringlopen, 1 juli 2009 9:00-12:00 Voordt je begint: schrijf je nm en studentnummer bovenn ieder vel begin iedere vrg op een nieuwe bldzijde ls je een vkterm wel kent in

Nadere informatie