Reguliere Expressies en Automaten: Overzicht

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Reguliere Expressies en Automaten: Overzicht"

Transcriptie

1 Reguliere Expressies en Automten: Overzicht Alfetten Tekenrijtjes over een lfet Tlen over een lfet Reguliere Uitdrukkingen Reguliere Operties Herkenners voor Reguliere Ptronen Deterministische utomten Non-deterministische utomten Woordenlijsten ls utomt Non-deterministische utomten deterministische utomten De pomp-eigenschp vn reguliere tlen Trnsducers Opdrchten Reguliere Uitdrukkingen Jn vn Eijck p.1

2 Alfetten Een lfet Σ is een eindige verzmeling symolen. Vooreelden: Σ 1 = {0,1,2,3,4,5,6,7.8.9}. De tien-elements verzmeling vn de decimle cijfers. Σ 2 = {,,c,...,x,y,z}. De 26-elements verzmeling vn lle kleine letters vn het Nederlnds. Een niet-vooreeld: N = {0,1,2,...}. De verzmeling vn lle ntuurlijke getllen is geen lfet, wnt deze verzmeling is oneindig. Reguliere Uitdrukkingen Jn vn Eijck p.2

3 Tekenrijtjes over een lfet Een tekenrijtje vn lengte n( 0) over een lfet Σ is een geordend n-tl vn elementen vn Σ, geschreven zonder leestekens. Vooreeld: ls Σ = {,,c}, dn zijn,,, cc en c tekenrijtjes over Σ, met respectieve lengtes 1,2,2,3,4. Σ def = de verzmeling vn lle tekenrijtjes over Σ met een eindige lengte. Er is precies één tekenrijtje over Σ vn lengte 0. Dit rijtje heet het lege rijtje, en we geruiken er de nottie ε of {} voor. We spreken f dt tekenrijtjes ltijd eindig zijn (een eindige lengte heen). Reguliere Uitdrukkingen Jn vn Eijck p.3

4 Tlen over een lfet Een tl is een verzmeling tekenrijtjes over een lfet. Dus: een tl over lfet Σ is een deelverzmeling vn Σ. Vooreelden: De verzmeling {michel, jn}; een tl die slechts twee rijtjes evt. De verzmeling vn lle tekenrijtjes die estn uit letters vn het lfet {,...,z}. De verzmeling vn lle tekenrijtjes die estn uit tekens uit het lfet {0,..., 9} (lle decimle representties vn ntuurlijke getllen, met eventueel nullen voorop). Een niet-vooreeld: de verzmeling die estt uit het ene rijtje 0, (de decimle expnsie vn 1 7 ). Dit rijtje is oneindig. Reguliere Uitdrukkingen Jn vn Eijck p.4

5 Reguliere Uitdrukkingen (nottie egrep) ** een willekeurig ntl s, gevolgd door een willekeurig ntl s. Deze tl evt de tekenrijtjes,,,, mr niet de tekenrijtjes,, c, c. ()* een willekeurig ntl keren het tekenrijtje :,, mr niet,, of.. een willekeurig symool.* een willekeurige reeks symolen ˆ[ˆ]*$ een regel die geen evt..*q.* lle tekenrijtjes wrin ergens een q voorkomt. (c c)*: lle rijtjes die estn uit een willekeurig ntl mlen c of c. Dus: cc, c, cc zitten er in, niet. Reguliere Uitdrukkingen Jn vn Eijck p.5

6 Reguliere Operties Lege rijtje, ngeduid ls {} Los symool vn het lfet Σ, ij vooreeld Opeenvolging, ij vooreeld Keuze, ij vooreeld ( ) Itertie, ij vooreeld * Dt is lles. Andere operties kunnen nu ls fkorting worden ingevoerd. Uitgnde vn het lfet {,, c} heen we ij vooreeld: ˆ = ( c). = ( c) + = * = ({} c...*). Reguliere Uitdrukkingen Jn vn Eijck p.6

7 Herkenners voor Reguliere Ptronen Leeg rijtje: zeg j. Enkel symool : kijk of je een symool kunt inlezen. Zeg nee ls dt niet lukt, of het symool is geen. Zeg j ls het volgende symool een is. Opeenvolging AB: zeg j ls je eerst A kunt herkennen en vervolgens B, nders nee. Keuze (A B): zeg j ls je hetzij A, hetzij B kunt herkennen. Itertie A*: proeer A te herkennen zolng er nog invoer is. Dit is een herhlings-lus. Dit kn mchinl, met ehulp vn een eindige utomt: een mchine die invoer kn lezen, en j of nee kn zeggen, fhnkelijk vn de toestnd wrin hij is. Reguliere Uitdrukkingen Jn vn Eijck p.7

8 Deterministische utomten Doel: inlezen vn rijtjes, om te kijken of ze n een regulier ptroon voldoen. Begintoestnd: hier strt je. Toestndsovergng ij het lezen vn een enkel symool vn het lfet: voor elk symool hoogstens één overgng (dit heet determinisme). J-toestnden: toestnden wrij de utomt het rijtje ccepteert (ls lle invoer gelezen is). Nee-toestnden: toestnden wrij de utomt het rijtje verwerpt (ls lle invoer gelezen is). Reguliere Uitdrukkingen Jn vn Eijck p.8

9 Deterministische Automt voor (* * c*) Voor elk symool precies één overgng. c c c c c Reguliere Uitdrukkingen Jn vn Eijck p.9

10 Determinische Automt voor (* * c*) Voor elk symool hoogstens één overgng. c c Reguliere Uitdrukkingen Jn vn Eijck p.10

11 Non-deterministische utomt voor ( )* Reguliere Uitdrukkingen Jn vn Eijck p.11

12 Nog gemkkelijker: Reguliere Uitdrukkingen Jn vn Eijck p.12

13 Woordenlijsten ls utomt Woordenlijsten kunnen op verschillende mnieren ls utomt worden gepresenteerd. Vergelijk de volgende reguliere expressies. (p lp k lm) (l(p m) (p k)) Een utomt op sis vn de tweede stt sneller zoeken toe. Reguliere Uitdrukkingen Jn vn Eijck p.13

14 Non-deterministische Deterministische Automten Twee utomten zijn equivlent wnneer ze dezelfde tl ccepteren. Voor elke non-deterministische utomt is er een equivlente deterministische utomt te construeren. Voor overgngen met symoolrijtjes, ij vooreeld,, dienen tussenliggende toestnden te worden geïntroduceerd. Voor de rest vn de constructie is het hoofdidee: mk nieuwe toestnden die estn uit verzmelingen vn oude toestnden. Zorg dt de nieuwe utomt n lezen vn invoer in de verzmeling toestnden komt die in de oude utomt kunnen worden ereikt vnf strt met het lezen vn deze invoer. Reguliere Uitdrukkingen Jn vn Eijck p.14

15 Vooreeld vn Non-deterministische utomt {} 1 3 {} {} {} NB: {} stt voor het lege rijtje. Reguliere Uitdrukkingen Jn vn Eijck p.15

16 Omzetten nr Deterministische Versie {0,1,2,3} {0,1,2,3,4 } {2,3,4] {3,4} {} Reguliere Uitdrukkingen Jn vn Eijck p.16

17 Pomp-eigenschp vn reguliere tlen Als T een oneindige reguliere tl is. Dn zijn er rijtjes x,y,z te vinden met y ε, en [x,y n,z] in T, voor elke n 0. Idee: omdt T regulier is, is er een deterministische utomt die T herkent. Die utomt heeft een eindig ntl toestnden, zeg k. Omdt de tl oneindig is moeten er rijtjes in T zitten die lengte > k heen. Dus moet de utomt ij het herkennen vn zo n rijtje een toestnd q meer dn één keer ereiken. Mr dn evt de herkenningsprocedure een lus. Tijdens het doorlopen vn die lus wordt een niet-leeg rijtje ingelezen. Noem dt rijtje y, en klr. Reguliere Uitdrukkingen Jn vn Eijck p.17

18 De pompeigenschp geruiken We willen lten zien dt eplde tlen niet regulier zijn. De tl { p p is een priemgetl } is niet regulier. De tl { n n n 0 } is niet regulier. ww R (de tl vn lle even plindromen) is niet regulier. Verzin zelf nog meer vooreelden. Reguliere Uitdrukkingen Jn vn Eijck p.18

19 Trnsducers Een trnsducer is een utomt die tot tk heeft eindige invoer rijtjes om te zetten in eindige uitvoerrijtjes. In plts vn lleen een symool te lezen, zet de trnsducer het symool om in een rijtje. We nemen n dt een trnsducer deterministisch is (nders wordt de uitvoer onvoorspelr). Mk vn een deterministische utomt een trnsducer door elke pijl met een symool te vervngen door een pijl met een symool gevolgd door een rijtje w. Dus: vervng door :w. Vooreeld: :1 :{} Reguliere Uitdrukkingen Jn vn Eijck p.19

20 Trnsducers: vooreelden Progrmm s die ptronen omzetten in ndere ptronen zijn in feite trnsducers. Bij vooreeld: Het omzetten vn je eigen nm in hoofdletters, overl wr die nm voorkomt in een estnd. Het weglten vn regels uit een estnd die lleen spties evtten. Het comprimeren vn rijtjes vn meer dn één sptie in een regel door een enkele sptie. Je kunt trnsducers specificeren met sed (zie opdrchten verderop). Reguliere Uitdrukkingen Jn vn Eijck p.20

21 Opdrchten: Deterministische utomten construeren Geef (deterministische) utomten over het lfet 0,1 voor de volgende ntuurlijke tl determintoren: 1. Alle (dwz, de utomt die lleen rijtjes 1-en ccepteert) 2. Geen 3. Sommige 4. Niet lle 5. meer dn drie 6. hoogstens zeven 7. minstens drie en hoogstens zeven Reguliere Uitdrukkingen Jn vn Eijck p.21

22 Opdrchten: Reflectie op utomten 1. Is er een lgemeen recept te vinden voor hoe je de utomt voor Niet lle construeert uit die voor lle? 2. Net zo: is er een lgemeen recept om de utomt voor minstens drie en hoogstens zeven te construeren uit die voor minstens drie en hoogstens zeven? 3. Is het mogelijk een utomt te geven voor de determintor meer dn de helft? Als je denkt dt het kn, geef dn de utomt die het doet, en nders: geef zo nuwkeurig mogelijk n wrom je denkt dt het niet kn. Reguliere Uitdrukkingen Jn vn Eijck p.22

23 Opdrcht: Regulier of niet? De decimle expnsie vn 1 7 op: 1 7 = 0, (enz, d infinitum) vind je door de strtdeling 7/1\.. uit te voeren. Dt levert Lt T de tl zijn vn lle deelstukken genomen uit deze oneindige expnsie, dwz T = {w w is een deelrijtje vn 0, }. Dit is een tl over het lfet,, 0,..., 9. Is deze tl regulier? Zo j: geef een utomt die de tl herkent. Zo nee: geef n wrom de tl volgens jou niet regulier kn zijn. Reguliere Uitdrukkingen Jn vn Eijck p.23

24 Opdrchten: Trnsducers 1. Definiëer een trnsducer die klinkers vn medeklinkers onderscheidt. 2. Definiëer een trnsducer die je eigen nm omzet in hoofdletters, mr de rest vn de tekst ongemoeid lt. 3. Definiëer een trnsducer die je eigen nm vervngt door NN, mr de rest vn de tekst ongemoeid lt. 4. Definiëer een trnsducer die getllen in rische cijfers (1 tot en met 20) omzet in woorden ( een tot en met twintig ), en de rest vn de tekst ongemoeid lt. 5. Geef een trnsducer voor het comprimeren vn rijtjes vn meer dn één sptie in een regel door een enkele sptie. 6. Mk implementties in sed. Reguliere Uitdrukkingen Jn vn Eijck p.24

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten.

In dit hoofdstuk introduceren we de hoofdrolspelers van het college: eindige automaten. 9 2 Eindige utomten In dit hoofdstuk introduceren we de hoofdrolspelers vn het college: eindige utomten. 2.1 Deterministische eindige utomten We eginnen met een vooreeld. Vooreeld 2.1 Beschouw het volgende

Nadere informatie

Inhoudsopgave. Inhoud

Inhoudsopgave. Inhoud sopgve 1 Ptronen... 3 2 Vergelijk: tegelptronen... 4 3 Regulier versus context-vrij... 5 4 Lettergrepen: tl met één hnd... 6 5 Bouwpln voor lettergrepen... 7 6 Tlspel met lettergreepstructuur... 8 7 Spiegelwoorden...

Nadere informatie

Formeel Denken. Herfst 2004. Contents

Formeel Denken. Herfst 2004. Contents Formeel Denken Hermn Geuvers Deels geseerd op het herfst 2002 dictt vn Henk Brendregt en Bs Spitters, met dnk n het Discrete Wiskunde dictt vn Wim Gielen Herfst 2004 Contents 1 Automten 1 1.1 Automten

Nadere informatie

Getallenverzamelingen

Getallenverzamelingen Getllenverzmelingen Getllenverzmelingen Ntuurlijke getllen Het getlegrip heeft zih wrshijnlijk ontwikkeld op een wijze die overeenkomt met de mnier wrop u zelf de getllen geleerd het. De sis is het tellen.

Nadere informatie

Hoofdstuk 2: Bewerkingen in R

Hoofdstuk 2: Bewerkingen in R Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. Hoofdstuk : Bewerkingen in R - 7 Kls:... 1. Optellen, ftrekken, vermenigvuldigen en delen in R (oek pg 15): Som: 1. vn twee getllen

Nadere informatie

opgaven formele structuren procesalgebra

opgaven formele structuren procesalgebra opgven formele struturen proeslger Opgve 1. (opgve 3.3.7 op p.97 vn het ditt 2005) Een mier moet vn links voor onder nr rehts hter oven op een kuus, met ties (rehts), (hter), en (oven). Uitwerking vn opgve

Nadere informatie

Routeplanning middels stochastische koeling

Routeplanning middels stochastische koeling Routeplnning middels stochstische koeling Modellenprcticum 2008 Stochstische koeling of Simulted nneling is een combintorisch optimlistielgoritme dt redelijke resultten geeft in ingewikkelde situties.

Nadere informatie

Opdrachten bij hoofdstuk 2

Opdrachten bij hoofdstuk 2 Opdrchten ij hoofdstuk 2 2.1 Het vullen vn je portfolio In hoofdstuk 2 he je gezien op welke mnier je de informtie kunt verzmelen. An de hnd vn die informtie kun je de producten mken wrmee jij je portfolio

Nadere informatie

HOOFDSTUK 1 BASISBEGRIPPEN

HOOFDSTUK 1 BASISBEGRIPPEN I - 1 HOOFDSTUK 1 BASISBEGRIPPEN 1.1. Het egrip krcht 1.1.1. Definitie vn krcht Een stoffelijk punt is een punt wrn een zekere mss toegekend wordt. Dit punt is meestl de voorstellende vn een lichm. Zo

Nadere informatie

Het kwadraat van een tweeterm a+b. (a+b)²

Het kwadraat van een tweeterm a+b. (a+b)² Merkwrdig producten: Het kwdrt vn een tweeterm + (+)² Even herhlen Wnneer een getl of een lettervorm met zichzelf vermenigvuldigd wordt, dn duid je dt n door dt getl of die lettervorm één keer te schrijven

Nadere informatie

Ontleden? Leuk! Inleiding. Opzet van deze lesbrief. Door Henk Jongsma, hoofdauteur Op Niveau tweede fase

Ontleden? Leuk! Inleiding. Opzet van deze lesbrief. Door Henk Jongsma, hoofdauteur Op Niveau tweede fase Door Henk Jongsm, hoofduteur Op Niveu tweede fse Ontleden? Leuk! Inleiding Lstig soms, dt ontleden. Denk je net een regel te egrijpen, kom je weer een uitzondering tegen. En ls je denkt die uitzondering

Nadere informatie

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers?

Nakomelingen van rendieren kunnen een paar uur na de geboorte al met de kudde meerennen. Zijn rendieren nestvlieders of nestblijvers? Route A 1 Bosrendieren en korstmossen Rendieren zijn de enige herten wrvn zowel mnnetjes ls vrouwtjes een gewei drgen. Vroeger dcht men dt het gewei geruikt werd om sneeuw weg te schuiven zodt ze ij het

Nadere informatie

Zelfstudie practicum 1

Zelfstudie practicum 1 Zelfstudie prtium 1 1.8 Gegeven is de volgende expressie:. () Geef de wrheidstel vn deze expressie. () Minimliseer de gegeven expressie. () Geef een poort implementtie vn de expressie vn onderdeel ().

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

Hoofdstuk 0: algebraïsche formules

Hoofdstuk 0: algebraïsche formules Hoofdstuk 0: lgebrïsche formules Dit hoofdstuk hoort bij het eerste college infinitesimlrekening op 3 september 2009. Alle gegevens over de cursus zijn te vinden op http://www.mth.uu.nl/people/hogend/inf.html

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus

Voorbereidende opgaven Kerstvakantiecursus Voorbereidende opgven Kerstvkntiecursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt gebruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het beknopt

Nadere informatie

Praktische Opdracht Lineair Programmeren V5

Praktische Opdracht Lineair Programmeren V5 Prktische Opdrcht Lineir Progrmmeren V5 Bij deze prktische opdrcht g je n het werk met een ntl prolemen die je door middel vn Lineir Progrmmeren kunt oplossen. Je werkt lleen of in tweetllen. De prktische

Nadere informatie

Werkkaarten GIGO 1184 Elektriciteit Set

Werkkaarten GIGO 1184 Elektriciteit Set Werkkrten GIGO 1184 Elektriiteit Set PMOT 2006 1 Informtie voor de leerkrht Elektriiteit is één vn de ndhtsgeieden ij de nieuwe kerndoelen voor ntuur en tehniek: 42 De leerlingen leren onderzoek doen n

Nadere informatie

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1

Lijn, lijnstuk, punt. Verkennen. Uitleg. Opgave 1 Lijn, lijnstuk, punt Verkennen Opgve 1 Je ziet hier een pltje vn spoorrils vn een modelspoorn. De rils zijn evestigd op dwrsliggers. Hoe liggen de rils ten opziht vn elkr? Hoe liggen de dwrsliggers ten

Nadere informatie

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe?

1a Een hoeveelheid stof kan maar op één manier veranderen. Hoe? Oefenopgven over Stoffen en Mterilen Uitwerking en ntwoord op elke opgve stt n de ltste opgve. Gegevens kunnen worden opgezoht in de tellen hterin. Als de zwrteftor niet vermeld is mg je 9,81 N/kg nemen.

Nadere informatie

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2...

6.0 INTRO. 1 a Bekijk de sommen hiernaast en ga na of ze kloppen. 1 2 0 3 = 2 2 3 1 4 = 2 3 4 2 5 = 2 4 5 3 6 = 2 5 6 4 7 = 2... 113 6.0 INTRO 1 Bekijk de sommen hiernst en g n of ze kloppen. Schrijf de twee volgende sommen uit de rij op en controleer of deze ook ls uitkomst 2 heen. c Schrijf twee sommen op die veel verder in de

Nadere informatie

Voorbereidende opgaven Stoomcursus

Voorbereidende opgaven Stoomcursus Voorereidende opgven Stoomcursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-schriften die je gt geruiken tijdens de cursus. Als een som niet lukt, kijk dn even in het eknopt overzicht

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen.

Bekijk onderstaand algoritme recalg. Bepaal recalg(5) en laat zien hoe u het antwoord hebt verkregen. Vooreeldtentmen 1 Tentmen Dtstructuren en lgoritmen (T641 en T6741) OPGAVE 1 c d Bekijk onderstnd lgoritme recalg. Bepl recalg() en lt zien hoe u het ntwoord het verkregen. Wt erekent recalg in het lgemeen?

Nadere informatie

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm.

Pak jouw passer en maak de afstand tussen de passerpunten 3 cm. Psser en irkel Verkennen Opgve 1 Op de foto hiernst wordt met ehulp vn een psser een irkel getekend. Pk jouw psser en mk de fstnd tussen de psserpunten 3 m. Teken een punt M en zet drin de stlen punt vn

Nadere informatie

Discrete Wiskunde. D. Bruin J.M. Jansen

Discrete Wiskunde. D. Bruin J.M. Jansen Discrete Wiskunde D. Bruin J.M. Jnsen Opleiding Hogere Informtic Noordelijke Hogeschool Leeuwrden Nederlndse defensie cdemie, fculteit militire wetenschppen Juni 1999 + oktoer 2013 Discrete Wiskunde 2

Nadere informatie

Proeftentamen LAI (tweede deel), voorjaar 2006 Uitwerkingen

Proeftentamen LAI (tweede deel), voorjaar 2006 Uitwerkingen Proeftentmen LAI (tweede deel), voorjr 2006 Uitwerkingen 1. Lt zien: ls R een trnsitieve reltie op A is, dn is R 2 (dt wil zeggen R R) ook trnsitief. Lt vervolgens zien dt heel lgemeen geldt: ls R trnsitief

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Didactische ondersteuning van theoretische informatica

Didactische ondersteuning van theoretische informatica Didctische ondersteuning vn theoretische informtic Annelotte BOLLEN promotor: Prof. dr. Frnk NEVEN Acdemiejr 2004-2005 Eindverhndeling voorgedrgen tot het ekomen vn de grd licentit in de informtic fstudeervrint

Nadere informatie

Snelstartgids Access Online: Betalingen en Rapportage

Snelstartgids Access Online: Betalingen en Rapportage Snelstrtgids Access Online: Betlingen en Rpportge Snel op weg met Access Online Voor het geruik vn de pplictie De meest geruikte functies in overzichtelijke stppen Snelstrtgids Access Online: Betlingen

Nadere informatie

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS

Hoofdstuk 2 DE STELLING VAN PYTHAGORAS Hoofdstuk DE STELLING VAN PYTHAGORAS INHOUD. De stelling vn Pythgors formuleren 98. Meetkundige voorstellingen 06. De stelling vn Pythgors ewijzen 09. Rekenen met Pythgors. Construties.6 Pythgors in de

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

Computers & programmeren

Computers & programmeren Computers & progrmmeren { de progrmmeertl Python Theorie : werking vn een computer Exmen : schriftelijk (gesloten oek) Prcticum : de progrmmeertl Python Permnente evlutie Studieegeleiding: docent ssistenten

Nadere informatie

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. x x 36 6 = x = 1.5 Breuken. teller teller noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Stoomursus Tips: Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit tot wr je kunt en g verder

Nadere informatie

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle

ja, studentaccount is groter dan standaard account en nog steeds gratis. Wel moet je mail adres van school en website van school invoeren ter controle Werken met Prezi Infolok Prezi: www.prezi.om prijs ipd pp geshikt voor leerling voordeel Stp 1: het nmken vn een ount. - G nr de wesite. - Kies voor 'Sign Up. grtis j presentties en mindmppen j, studentount

Nadere informatie

Route F - Desert. kangoeroerat

Route F - Desert. kangoeroerat Route F - Desert Voor deze route, moet je eerst nr de Bush. Dr moet je even zoeken nr de tunnel die nr de Desert leidt. Geruik onderstnd krtje voor de Desert. Begin ij nummer 1. 1 Kngoeroertten Kngoeroertten

Nadere informatie

Efficiënt zoeken in grote tekstbestanden

Efficiënt zoeken in grote tekstbestanden Efficiënt zoeken in grote tekstbestnden Een gstles wiskunde voor hvo/vwo 3 en 4, verzorgd door de Universiteit Twente Mriëlle Stoeling en Mrk Timmer Google, Twitter, en Fcebook doorzoeken in een mum vn

Nadere informatie

Om welke reden heeft een kwak relatief grote ogen?

Om welke reden heeft een kwak relatief grote ogen? Route K - Volière en fznterie Strt ij de volière; de vrgen 1 t/m 6 gn over een ntl grote Europese vogels. De vrgen over de ndere dieren vn deze route hoeven niet in de juiste volgorde te stn. Dt komt omdt

Nadere informatie

Hoe maak je een huiswerkplanning?

Hoe maak je een huiswerkplanning? PLANNEN HOE MAAK JE EEN HUISWERKPLANNING? Hoe mk je een huiswerkplnning? Wt he je ern? In deze les leer je hoe je een huiswerkplnning mkt. Dt is hndig, wnt zo g je goed voorereid n de slg en kun je sneller

Nadere informatie

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet.

DOEL: Weten wat de gevolgen en risico s kunnen zijn van het plaatsen van (persoonlijke) informatie op internet. kennismking met i-respect.nl INTRODUCTIE GEMAAKT DOOR: Annèt Lmmers ONDERWERP: Een eerste kennismking met i-respect.nl en het onderwerp publiceren. DOEL: Weten wt de gevolgen en risico s kunnen zijn vn

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c

Opgave 1 Stel je eens een getal voor, bijvoorbeeld: 504,76. a b c Opgve 1 Stel je eens een getl voor, ijvooreeld: 504,76. Wt zijn de ijfers vn dit getl? Hoeveel is elk vn die ijfers wrd? Wt etekent de komm? Opgve 2 Bekijk het getl 6102,543. d e Hoeveel ijfers hter de

Nadere informatie

Hoofdstuk 4. Talen en Automaten. 4.1 Formele Talen Woorden

Hoofdstuk 4. Talen en Automaten. 4.1 Formele Talen Woorden Hoofdstuk 4 Tlen en Automten 4.1 Formele Tlen Dit hoofdstuk is geseerd op een hoofdstuk uit het dictt Formele Tlen en Automten 1, G. Rozenerg, H.J. Hoogeoom, en J. Engelfriet (voorjr 2000) 4.1.1 Woorden

Nadere informatie

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken.

Het reëel getal b is een derdewortel van het reëel getal a c. Een getal en zijn derdewortel hebben hetzelfde toestandsteken. Werkoek Alger (cursus voor 5u wiskunde) Hoofdstuk : Rekenen in R Nm:. 1. Derdewortel vn een reëel getl (oek pg 7) Een derdewortel vn het reëel getl is dus een getl wrvn de derdemcht gelijk is n. Vooreelden:

Nadere informatie

Natuurlijke getallen op een getallenas en in een assenstelsel

Natuurlijke getallen op een getallenas en in een assenstelsel Turf het ntl fouten en zet de resultten in een tel. Vlmingen Nederlnders resultt ntl resultt ntl 9 9 en nder tlstelsel U Ontijfer de volgende hiërogliefen met ehulp vn het overziht op p. in het leerwerkoek.........................

Nadere informatie

Inhoud Basiswiskunde Week 5_2

Inhoud Basiswiskunde Week 5_2 Inhoud Bsiswiskunde Week 5_2 3.5 Cyclometrische functies (vervolg, zie week 5_1) 5.1 t/m 5.3 Introductie Integrlen 5.4 Eigenschppen vn de eplde integrl 2 Bsiswiskunde_Week_5_2.n 5.1 t/m 5.3 Som-nottie

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 4 2 8 5 3 5 3 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4

Nadere informatie

1.0 Voorkennis. Voorbeeld 1:

1.0 Voorkennis. Voorbeeld 1: 1.0 Voorkennis Voorbeeld 1: 4 2 42 8 5 3 53 15 Als je twee breuken met elkr vermenigvuldigd moet je de tellers en de noemers vn beide breuken met elkr vermenigvuldigen. Voorbeeld 2: 3 3 1 5 4 8 3 5 4 24

Nadere informatie

INTERVIEWEN 1 SITUATIE

INTERVIEWEN 1 SITUATIE INTERVIEWEN drs. W. Bontenl 1 SITUATIE Een interview vlt te omshrijven ls een gesprek tussen één of meerdere personen - de interviewers - en een ndere persoon (of diverse nderen) - de geïnterviewden -

Nadere informatie

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM

REKENEN MACHTEN MET. 5N4p EEBII 2013 GGHM REKENEN MET MACHTEN Np EEBII 0 GGHM Inhoud Herhlin: Eponentiele roei... Netieve Mchten... Geroken mchten... Etr Oefeninen... 9 Hoere-mchts functies... 0 Overzicht vn de reels... Herhlin: Eponentiële roei

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

opgaven formele structuren deterministische eindige automaten

opgaven formele structuren deterministische eindige automaten opgaven formele structuren deterministische eindige automaten Opgave. De taal L over het alfabet {a, b} bestaat uit alle strings die beginnen met aa en eindigen met ab. Geef een reguliere expressie voor

Nadere informatie

MEETKUNDE 2 Lengte - afstand - hoeken

MEETKUNDE 2 Lengte - afstand - hoeken MTKUN 2 Lengte - fstnd - hoeken M7 Lengtemten en meetinstrumenten 186 M8 Lengte en fstnd 187 M9 Gelijke fstnden 194 M10 Hoeken meten en tekenen 198 185 M7 1 Titel Lengtemten en meetinstrumenten 579 Vul

Nadere informatie

Installatiehandleiding en gebruiksaanwijzing

Installatiehandleiding en gebruiksaanwijzing Instlltiehndleiding en geruiksnwijzing Dikin Altherm vereenvoudigde geruikersinterfce EKRUCBS Instlltiehndleiding en geruiksnwijzing Dikin Altherm vereenvoudigde geruikersinterfce Nederlnds Inhoudsopgve

Nadere informatie

Krommen en oppervlakken in de ruimte

Krommen en oppervlakken in de ruimte (HOOFDSTUK 60, uit College Mthemtis, door Frnk Ares, Jr. nd Philip A. Shmidt, Shum s Series, MGrw-Hill, New York; dit is de voorereiding voor een uit te geven Nederlndse vertling). Krommen en oppervlkken

Nadere informatie

Welke van de volgende beweringen over de kromme snavel is of welke zijn juist voor jonge flamingo's? Maak het hokje met een juiste bewering zwart.

Welke van de volgende beweringen over de kromme snavel is of welke zijn juist voor jonge flamingo's? Maak het hokje met een juiste bewering zwart. Route I 1 Flmingo's Flmingo's zeven met hun kromme snvel voedsel uit het wter. Jonge flmingo's heen een rehte snvel. De jonge dieren zeven niet zelf voedsel uit het wter, mr worden door de ouders gevoerd.

Nadere informatie

Inhoud. 1 Handgereedschappen 6. 2 Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 128

Inhoud. 1 Handgereedschappen 6. 2 Verbindingen Elektrische techniek Pompen Verbrandingsmotoren 128 Inhoud 1 Hndgereedshppen 6 2 Verindingen 34 3 Elektrishe tehniek 66 4 Pompen 88 5 Verrndingsmotoren 128 1 Hndgereedshppen 1.1 Opdrht 1.1 Gereedshppen 1 Doel N deze opdrht kun je diverse hndgereedshppen

Nadere informatie

wedstrijden, dus totaal 1 n ( n 1)

wedstrijden, dus totaal 1 n ( n 1) Hoofdstuk : Comintoriek.. Telprolemen visuliseren Opgve :. ;. voordeel: een wegendigrm is compcter ndeel: ij een wegendigrm moet je weten dt je moet vermenigvuldigen terwijl je ij een oomdigrm het ntl

Nadere informatie

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde

Opgave 1 Je ziet hier twee driehoeken op een cm-rooster. Beide driehoeken zijn omgeven door eenzelfde Oppervlkte vn riehoeken Verkennen Opgve 1 Je ziet hier twee riehoeken op een m-rooster. Beie riehoeken zijn omgeven oor eenzelfe rehthoek. nme: Imges/hv-me7-e1-t01.jpg file: Imges/hv-me7-e1-t01.jpg Hoeveel

Nadere informatie

WELK LICHTSCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING?

WELK LICHTSCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING? ICK KEUZEHULP WELK LICHTCHERM MOET IK GEBRUIKEN VOOR INLOOPBEVEILIGING? Voor inloopeveiliging geldt onder meer de norm EN 13855. Dit is de norm voor het eplen vn de veiligheidsfstnd. Deze fstnd is fhnkelijk

Nadere informatie

Hoofdstuk 4 : Ongelijkheden

Hoofdstuk 4 : Ongelijkheden Werkoek Alger (cursus voor u wiskunde) hoofdstuk : Oplossen ongelijkheden vn e gr met on in Nm:. Hoofdstuk : Ongelijkheden - -. Ongelijkheden Vul in met of : 0,... 0,07 we zeggen dt 0,... is dn 0,07 -,...

Nadere informatie

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel

Rapportage Enquête ondergrondse afvalinzameling Zaltbommel Rpportge Enquête ondergrondse fvlinzmeling Zltommel Enquête ondergrondse fvlinzmeling Zltommel VERSIEBEHEER Versie Sttus Dtum Opsteller Wijzigingen Goedkeuring Door Dtum 0.1 onept 4-11-09 VERSPREIDING

Nadere informatie

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel.

De tijdens de training aangeboden ski-imitaties gebruiken we zowel als middel maar ook als doel. 15 Ski-eroics Hoofdstuk 15, Pgin 1 vn 5 15.1 Inleiding Het is elngrijk om SneeuwFit triningen gevrieerd te houden. Proeer het nod vn ctiviteiten zo verschillend mogelijk te houden. Een vooreeld hiervn

Nadere informatie

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is:

Integralen. DE ONBEPAALDE INTEGRAAL VAN f(x) wordt genoteerd met f(x)dx, en is de meest algemene zogenaamde primitieve van f(x) dat is: Integrlen DE ONBEPAALDE INTEGRAAL VAN f() wordt genoteerd met f()d, en is de meest lgemene zogenmde primitieve vn f() dt is: f()d = F() + C wrij F() elke functie is zodnig dt F'() = f() en C een willekeurige

Nadere informatie

INFORMATIE. hart. verwennend WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT

INFORMATIE. hart. verwennend WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT INFORMATIE hrt WEEKEND EEN LANG WEEKEND OP EEN TOPLOCATIE VOOR BALANS EN VITALITEIT COLOFON INHOUD INITIATIEFNEEMSTER Jessy Jnsen www.jessyjnsen.nl Hvelte Inleiding 05 HrtVerwennend voor Jou & Visie 07

Nadere informatie

Cafitesse 60. Gebruiksaanwijzing Mode d emploi Bedienungsanleitung Operator manual Instrucciones de servicio. Januari 2007 Article no. 700.403.

Cafitesse 60. Gebruiksaanwijzing Mode d emploi Bedienungsanleitung Operator manual Instrucciones de servicio. Januari 2007 Article no. 700.403. Cfitesse 60 Geruiksnwijzing Mode d emploi Bedienungsnleitung Opertor mnul Instrucciones de servicio Jnuri 2007 Article no. 700.403.422-B Cfitesse_C60_NL.indd A 18-12-2007 16:46:31 Cfitesse_C60_NL.indd

Nadere informatie

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN

KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN KATHOLIEKE UNIVERSITEIT LEUVEN SUBFACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN HUB HANDELSWETENSCHAPPEN ELEMENTAIR ALGEBRAÏSCH REKENEN Een zelfhulpgids voor letterrekenen Rekenregels Uitgewerkte voorbeelden

Nadere informatie

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven

Praktische opdracht Optimaliseren van verpakkingen Inleidende opgaven Prktische opdrcht Optimliseren vn verpkkingen Inleidende opgven V, WB Opgve 1 2 Gegeven is de functie f ( x) = 9 x. Op de grfiek vn f ligt een punt P ( p; f ( p)) met 3 < p < 0. De projectie vn P op de

Nadere informatie

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150

Inhoud leereenheid 13. Integreren. Introductie 125. Leerkern 126. Samenvatting 149. Zelftoets 150 Inhoud leereenheid 3 Integreren Introductie 5 Leerkern 6 Integrl ls oppervlkte 6 De functie ls fgeleide vn zijn oppervlktefunctie 3 3 Primitieven 33 4 Beplde en oneplde integrl 35 5 Oneigenlijke integrlen

Nadere informatie

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk.

Je gaat naar de winkel en koopt 4 pakken melk van 1,40 per stuk. Opgve 1 Je gt nr de winkel en koopt 4 pkken melk vn 1,40 per stuk. Hoeveel etl je in totl? Wt he je met de getllen 4 en 1,40 gedn om het ntwoord te vinden? Hoe doe je dt zonder rekenmhine? Opgve 2 Je gt

Nadere informatie

Rekenen in Ê. Module De optelling. Definitie

Rekenen in Ê. Module De optelling. Definitie Module 1 Rekenen in Ê 1.1 De optelling Definitie Het resultt vn de optelling vn reële getllen en b noemen we de som vn en b en noteren we met +b. De getllen en b zelf noemen we de termen vn de som. Voorbeelden

Nadere informatie

Anti-Spyware Enterprise Module software

Anti-Spyware Enterprise Module software Anti-Spywre Enterprise Module softwre versie 8.0 Hndleiding Wt is de Anti-Spywre Enterprise Module? De McAfee Anti-Spywre Enterprise Module is een invoegtoepssing voor VirusScn Enterprise 8.0i, wrmee de

Nadere informatie

2 De kracht van vectoren

2 De kracht van vectoren De krcht vn vectoren Dit is een ewerking vn Meetkunde met coördinten lok Punten met gewicht vn d Goddijn ten ehoeve vn het nieuwe progrmm (015) wiskunde vwo. Opgven met dit merkteken kun je zonder de opouw

Nadere informatie

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur

Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Donderdag 20 mei 13.30 16.30 uur Wiskunde B Profi Exmen VWO Voorereidend Wetenschppelijk Onderwijs Tijdvk Donderdg 20 mei 3.30 6.30 uur 9 99 Dit exmen estt uit 5 vrgen. Voor elk vrgnummer is ngegeven hoeveel punten met een goed ntwoord

Nadere informatie

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller

Wiskunde voor 2 havo. Deel 1. Versie 2013. Samensteller Wiskunde voor 2 hvo Deel 1 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons lientie.

Nadere informatie

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet.

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet. Hndleiding edatenq Mndelijkse enquête toerisme en hotelwezen Inleiding edatenq is een toepssing die de ondernemingen de mogelijkheid iedt om hun sttistische ngiften in te vullen en door te sturen vi internet.

Nadere informatie

GBK Leden profiel beheer

GBK Leden profiel beheer GBK Leden profiel eheer Op de nieuwe GBK site kn het eigen leden profiel ijgehouden worden. Op dit profiel kn iogrfische informtie worden ingevoerd, werk kn n een portfolio worden toegevoegd, er kunnen

Nadere informatie

JOB-monitor 2016 Vragenlijst

JOB-monitor 2016 Vragenlijst JOB-monitor 2016 Vrgenlijst (versie met wijzigingen t.o.v. 2014) JOB in smenwerking met ReserchNed 2015 JOB. Geen vn de mterilen die onderdeel uitmken vn de JOB-monitor 2016 mogen zonder voorfgnde schriftelijke

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk I. Lineire Algebr Les 4 Eigenwrden en eigenvectoren In het voorbeeld vn de verspreiding vn de Euro-munten hebben we gezien hoe we de mix vn munten n floop vn n jr uit de n-de mcht A n vn de overgngsmtrix

Nadere informatie

De route van de Ocean start in de Bush. Volg de bordjes naar de Ocean. De vragen staan in chronologische volgorde.

De route van de Ocean start in de Bush. Volg de bordjes naar de Ocean. De vragen staan in chronologische volgorde. Route L - Oen 1 De route vn de Oen strt in de Bush. Volg de ordjes nr de Oen. De vrgen stn in hronologishe volgorde. Kwllen Dt er lngs de Nederlndse kust kwllen voorkomen, is lgemeen ekend. De oorkwl kun

Nadere informatie

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b

is het koppel dat overeenkomt met het eindpunt van λ.op ax by = a a b x y = a b = x y a b ax by bx + ay = a b 1 Tweedimensionle Euclidische ruimte 11 Optelling, verschil en sclire vermenigvuldiging = ( b, ) b, is de verzmeling vn lle koppels reële getllen { } Zols we ons de reële getllen kunnen voorstellen ls

Nadere informatie

Hoofdstuk 5: Vergelijkingen van de

Hoofdstuk 5: Vergelijkingen van de Werkoek Alger (ursus voor 5u wiskunde) Hoofdstuk 5 : Vergelijkingen vn de e grd met één onekende Nm:. Hoofdstuk 5: Vergelijkingen vn de - 45 - e grd met één onekende. Instp (oek pg 7). Vn een rehthoek

Nadere informatie

Werkloosheid, armoede, schooluitval en criminaliteit. Er zal veel belastinggeld nodig zijn om al die problemen op te lossen.

Werkloosheid, armoede, schooluitval en criminaliteit. Er zal veel belastinggeld nodig zijn om al die problemen op te lossen. vk Mtshppijleer them Multiulturele smenleving onderwerp Het multiulturele drm vn P. Sheffer ntwoorden ij de vrgen over het rtikel kls Hvo 5 dtum jnuri 2014 1 2 3 4 5 6 7 8 De vrg hoe de slehte werk-, woon-

Nadere informatie

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet.

edatenq is een toepassing die de ondernemingen de mogelijkheid biedt om hun statistische aangiften in te vullen en door te sturen via internet. Inleiding edatenq is een toepssing die de ondernemingen de mogelijkheid iedt om hun sttistishe ngiften in te vullen en door te sturen vi internet. Het etreft een door de FOD Eonomie volledig eveiligde

Nadere informatie

Iepen en iepziekte. Gemeente Den Haag Dienst Stadsbeheer. Colofon. Uitgave Gemeente Den Haag Dienst Stadsbeheer Postbus 12651 2500 DP Den Haag

Iepen en iepziekte. Gemeente Den Haag Dienst Stadsbeheer. Colofon. Uitgave Gemeente Den Haag Dienst Stadsbeheer Postbus 12651 2500 DP Den Haag Gemeente Den Hg Dienst Stdsbeheer Colofon Iepen en iepziekte Uitgve Gemeente Den Hg Dienst Stdsbeheer Postbus 12651 2500 DP Den Hg Vormgeving Teres Jonkmn (BNO) Druk Fcilitire dienst - Multimedi Deze brochure

Nadere informatie

7 Databases 1 RELATIONELE DATABASES

7 Databases 1 RELATIONELE DATABASES Hoofdstuk 7 Dtses 7.1 7 Dtses N verwerking vn dit hoofdstuk: kun je uitleggen wt een dtse systeem is; ken je de vershillen tussen een één-op-één reltie, een één-op-veel reltie en een veel-op-veel reltie;

Nadere informatie

Handleiding voor het maken van Papierarchitectuur, PA.

Handleiding voor het maken van Papierarchitectuur, PA. Hnleiing voor het mken vn Ppierrhitetuur, PA. Inleiing PA is het mken vn 3D ojeten uit een plt stuk ppier of krton. Eerst wort een ontwerp gemkt op ppier of krton. Door het snijen en vouwen vn het ontwerp

Nadere informatie

Bijlage 2 Gelijkvormigheid

Bijlage 2 Gelijkvormigheid ijlge Gelijkvormigheid eze bijlge hoort bij het hoofdstuk e krcht vn vectoren juli 0 Opgven gemrkeerd met kunnen worden overgeslgen. Uitgve juli 0 olofon 0 ctwo uteurs d Goddijn, Leon vn den roek, olf

Nadere informatie

fonts: achtergrond PostScript Fonts op computers?

fonts: achtergrond PostScript Fonts op computers? fonts: chtergrond PostScript Fonts op computers? Tco Hoekwter tco.hoekwter@wkp.nl bstrct Dit rtikel geeft een korte inleiding in de interne werking vn PostScript computerfonts en hun coderingen. Dit rtikel

Nadere informatie

Wiskunde voor 1 havo/vwo

Wiskunde voor 1 havo/vwo Wiskunde voor 1 hvo/vwo Deel 2 Versie 2013 Smensteller 2013 Het uteursreht op dit lesmteril erust ij Stihting Mth4All. Mth4All is derhlve de rehtheende zols edoeld in de hieronder vermelde retive ommons

Nadere informatie

PROCEDURE SCHADEMELDING - VASTGOED -

PROCEDURE SCHADEMELDING - VASTGOED - PROCEDURE SCHADEMELDING - VASTGOED - Afdeling Finnciën Gemeente Molenwrd Procedure Schdemelding Vstgoed versie 1.0 - pg. 1 Gemeente Molenwrd Inhoud Inleiding 1. Algemene beplingen 1.1 Schde melding 1.2.Schde

Nadere informatie

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl

Hoe zichtbaar ben jij mobiel? MOBIELpakket. Oplossingen voor ondernemende kappers die kiezen. 2012 www.wiewathaar.nl Hoe zichtbr ben jij mobiel? MOBIELpkket Oplossingen voor ondernemende kppers die kiezen 2012 www.wiewthr.nl Reviews? Voordelen 27% Nederlnders vindt reviewsites ls WieWtHr.nl erg nuttig* Wiewthr.nl is

Nadere informatie

Cirkels en cilinders

Cirkels en cilinders 5 irkels en cilinders it kun je l 1 middelpunt en strl in een cirkel nduiden 2 de oppervlkte vn vlkke figuren berekenen 3 het volume vn een prism berekenen Test jezelf Elke vrg heeft mr één juist ntwoord.

Nadere informatie

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde.

1.3 Wortels. = a. x = 1.5 Breuken. teller teller. noemer noemer. Delen: vermenigvuldig met het omgekeerde. Voorereidende opgven Emenursus Tips: MEER DAN 0 JAAR ERVARING Mk de volgende opgven het liefst voorin in één vn de A4-shriften die je gt geruiken tijdens de ursus. Als een som niet lukt, werk hem dn uit

Nadere informatie

Junior Wiskunde Olympiade 2012-2013: de tweede ronde

Junior Wiskunde Olympiade 2012-2013: de tweede ronde Junior Wiskunde Olympide 0-03: de tweede ronde Volgende enderingen kunnen nuttig zijn ij het oplossen vn sommige vrgen.,44 3,73 5,36 π 3,46.ls + =en =3,dnis gelijkn () 5 () 6 () 3 () 9 (E) 3.Hetgetl (

Nadere informatie

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a

Een feestmaal. Naam: -Ken jij nog een ander speciaal feest? Typ of schrijf het hier. a Werkbld Een feestml Nm: Ieder lnd en iedere cultuur kent specile dgen. Dn gn fmilies bij elkr op bezoek. Op die specile dgen is er meestl extr ndcht voor het eten. Hier zie je wt voorbeelden vn feesten

Nadere informatie

e u z e B L O K K E N K L A S V M B O

e u z e B L O K K E N K L A S V M B O K e u z e B L O K K E N K L A S 1 2 V M B O V M B O BLOK 1 Dinsdg 3 de en 4 de uur 10 septemer tot en met 1 oktoer (4 lessen) Jeugd d Vliegen/vliegeren e g Powerpoint/Prezi/Wordle h TomTom(1) Redy stedy

Nadere informatie

Nieuwe internet radio eigenschap

Nieuwe internet radio eigenschap XXXXX XXXXX XXXXX /XW-SMA3/XW-SMA4 Nieuwe internet rdio eigenschp EN NL Deze drdloze luidspreker is ontworpen om te genieten vn Pndor*/internetrdio. Om nr Pndor/internetrdio te kunnen luisteren, kn het

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie