Kern 1 Rekenen met binomiale kansen

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Kern 1 Rekenen met binomiale kansen"

Transcriptie

1 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Hoofdstuk De binomiale verdeling uitwerkingen Kern Rekenen met binomiale kansen a Omdat er steeds twee mogelijkheden zijn: zwart óf wit. b Omdat de ballen na trekken weer worden teruggelegd, zijn de kansen steeds weer gelijk. c 8 en 8 2 a Binomiaal, kans op succes = b Binomiaal, kans op succes = c Niet binomiaal, de kans op een onvoldoende is niet voor iedereen even groot. a P( witte ballen) = = P( witte bal) = + + = P(2 witte ballen) = + + = P( witte ballen) = = 2 2 aantal witte ballen 2 kans a geen geen geen b P(alle vier gooien ze ) = = 29 c P(niemand mag een pion opzetten) = = 2 29 P( mag een pion opzetten) = = 29 P(2 mogen een pion opzetten) = = 29 2 P( mogen een pion opzetten) = = 29 a P(geen enkel gen beschadigd) =, 99997, 997 b P(minstens één gen beschadigd) = P(geen enkel gen beschadigd) =,997 =,297 Noordhoff Uitgevers bv

2 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen 27 8 a E(aantal witte ballen) = = b Iedere trekking verwacht je 2 witte ballen. Met drie trekkingen wordt dat dus 2 = 7 a Binomiaal. n =, p =, E(X) = 2 = b Niet binomiaal. c Binomiaal. n =, p =, E(X) = = 2 2 d Niet binomiaal. De kans op een onvoldoende is niet voor iedereen even groot. 8 a 9. b In een volgende steekproef van stemgerechtigden zou de uitkomst weer anders kunnen zijn. c Voor een betrouwbare schatting moet je een grotere steekproef nemen. 9 a De kans op een gezin met vier meisjes is hetzelfde als de kans op een gezin met jongens. Die is,7%, in plaats van de,8% voor een gezin met jongens. b E(aantal jongens) =, ,7 2 +,22 +,8 = 2, c Dan is het binomiaal, dus geldt E(X) = n p = 2 = 2 Noordhoff Uitgevers bv 2

3 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Kern 2 Binomiale kansen Omdat bij trekken met terugleggen de kansen niet veranderen. Bij trekken zonder terugleggen is voor iedere trekking de kans op succes anders. a zwart 2 andere bloedgroep 2 b (, ) 2 wit c P( witte ballen) = ( ) ( ) 2 d P( witte ballen) = ( ) 2, 27 =, bloedgroep O 2 a Zie afbeelding rechtsboven. b (, ) betekent kinderen met bloedgroep O (, ) betekent kind met bloedgroep O (en met een andere bloedgroep) (2, ) betekent 2 kinderen met bloedgroep O (, ) betekent kinderen met bloedgroep O (, 2) betekent kinderen met bloedgroep O (, ) betekent kinderen met bloedgroep O (, ) betekent kinderen met bloedgroep O c P( kinderen met bloedgroep O) = ( ) ( ) 729 =,78 9 d P(2 kinderen met bloedgroep O) = ( ) 2 ( ), 29 2 a Binomiaal, met n = 2 en p =, b Niet binomiaal c Binomiaal, met n = 2 en p =,2 d Binomiaal, met n = 2 en p onbekend. 2 2 a P(Z = 2) = ( ) ( ),99 2 P(Z = ) = ( ) ( ),799 P(Z = ) = ( ) ( ),7 Noordhoff Uitgevers bv

4 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen b, +,99 +,99 +,799 +,7 = 8 8 a P( successen) =,,, 7, P( succes) =,, 7,977,2 P( successen) =,2 P( successen) =, P( successen) =,7, P( successen) =, P(7 successen) =, P(8 successen) =, b c Zie afbeelding rechts. X de P( X ) betekent de kans op maximaal drie successen (lichtgrijs in figuur). P(X ) betekent de kans op tenminste vier successen (donkergrijs in figuur). Samen zijn de kansen. P( X ),89 en P(X ),9. kans a Het aantal opnieuw bruikbare potjes X is binomiaal verdeeld met n = en p =,. 2 8 P(X = 2) =,, 9, b P( X 2) =,, 9,, 9,, 9, a P(X = 2) =, 2,7, b P(X 2) =, 2, 7 +, 2, 7 +, 2, 7, c P(X = ) =, 2,7, 2 2 d P(X = ) =, 2,7,7 8 a P(X = ) =, 2, 7,78 b P(X = ) =, 2,7, 2 P(X = 2) =, 2,7, 29 2 Noordhoff Uitgevers bv

5 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen c P(X = ) =, 2, 7,8 P(X ) = P(X = ) + P(X = ) + P(X = 2) + P(X = ) =,78 +, +,29 +,8 =,92 d P(X > ) = P(X ) =,92 =,7 9 a r P(X = r),9,2,82,9,78,8,,,9,9,7 b E(X) =, = c P(X < ) = P(X ) = binomcdf(,., ) =, d P(X ) = P(X 9) = binomcdf(,., 9) =,282 Noordhoff Uitgevers bv

6 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Kern Cumulatieve kansen 2 a b r P(X = r) P(X r) 2,9,9,7,22,2,,9,88,9,997,9999, c P(hoogstens vier zessen) = P(X ) =, a P(X ) = P(X ) =,9 =,989 P(X 2) = P(X ) =,22 =,78 P(X ) = P(X 2) =,8 =, b P(X = ) = P(X ) P(X ) =,22,9 =, P(X = 2) = P(X 2) P(X ) =,8,22 =,8 P(X = ) = P(X ) P(X 2) =,,8 =, 22 a r 2 P(X r),,,,,9, b P(X ) = P(X ) =, =,999 2 a binomcdf(2,., ) =,927 b binomcdf(22,.,8) =,27 c binomcdf(,., 2) =,9999 d binomcdf(9,.8, 8) =, 2 a P(X 2 n = 2 en p =,) = binomcdf(2,., 2) =,79 b P(X n = 2 en p =,) = P(X 2) = binomcdf(2,., 2) =,7 2 a r = b r = 7 c Bedenk dat P(X r) = P(X r )=,88 P(X r ) =,2. Hieruit volgt dat r = 8, dus r = 9. P(X r ) =,. Hieruit volgt dat r =, dus r = 2. 2 a P(X n = 7 en p =,) = binomcdf(7,., ) =,7 b P(X k n = 7 en p =,) <, P(X k n = 7 en p =,) >,9 k 2 k Bij minstens regendagen gaat de winst verloren. Noordhoff Uitgevers bv

7 Netwerk e editie havo A Hoofdstuk De binomiale verdeling uitwerkingen Kern Trekken zonder terugleggen 27 a aantal hartenkaarten 2 kans met terugleggen,29,29,, kans zonder terugleggen,8,2,, b Omdat het om een betrekkelijk klein aantal kaarten gaat. Bij trekken zonder terugleggen, worden de kansen voor elke trekking anders. 28 a P(tweemaal dezelfde kleur) = + = b Als ze drie toverballen trekt, zijn er zeker twee van dezelfde kleur. Ze is dus hoogstens eurocent kwijt. 29 a Die kans is P(2 rode) + P(2 witte) + P(2 blauwe) = + +, 292 b Ze heeft dan na twee trekkingen niet dezelfde kleur. De gevraagde kans is,292 =,78. c Nu heeft ze na vier trekkingen er zeker twee van dezelfde kleur. Ze is dan maximaal eurocent kwijt. a aantal slechte schakelaars 2 kans met terugleggen,,29,8,, kans zonder terugleggen,,298,88,9, b Pas bij de vierde decimaal. c Dat komt omdat het hier om een groot aantal elementen gaat. Het verwijderen van een enkel element beïnvloedt de kans op succes nauwelijks. a P(2 appels rot) P(X = 2 n = en p = b P(X 2) =,999 c P(X 2) = P(X ) =, =,) = binompdf(,., 2) =, 2 a P(X n = en p =,7) = P(X ) = binomcdf(,.7, ) =,29 b P(X = 2 n = en p =,7) =,9 Noordhoff Uitgevers bv 7

Uitwerkingen Hst. 10 Kansverdelingen

Uitwerkingen Hst. 10 Kansverdelingen Uitwerkingen Hst. 0 Kansverdelingen. Uittellen: 663 ; 636 ; 366 ; 654 (6 keer) ; 555 0 mogelijkheden met som 5.. Som geen 5 = 36 som 5 Som 5: 4, 3, 3, 4 4 mogelijkheden dus 3 mogelijkheden voor som geen

Nadere informatie

3.1 Het herhalen van kansexperimenten [1]

3.1 Het herhalen van kansexperimenten [1] 3.1 Het herhalen van kansexperimenten [1] Voorbeeld: Op een schijf staan een zestal afbeeldingen in even grote vakjes: 3 keer appel, 2 keer banaan, 1 keer peer. Sandra draait zes keer aan de schijf. a)

Nadere informatie

Hoofdstuk 1 Tellen en kans uitwerkingen

Hoofdstuk 1 Tellen en kans uitwerkingen Kern Permutaties en combinaties a R W B G W B G R B G R W G R W B B G W G B W B G R G B R W G R G W R B W B R R W b Het aantal verschillende kleuringen is gelijk aan 4 4 a 5 4 5 npr 70 b 5 4... 6 5 4 4

Nadere informatie

Hoofdstuk 5 Rekenen met kansen uitwerkingen

Hoofdstuk 5 Rekenen met kansen uitwerkingen Kern Rekenen met kansen a 0 29 870 eindknopen. b De teller van de breuk geeft aan hoeveel mogelijkheden er zijn voor de betreffende kleur. De noemer van de breuk geeft weer hoeveel mogelijkheden er in

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

11.1 Kansberekeningen [1]

11.1 Kansberekeningen [1] 11.1 Kansberekeningen [1] Kansdefinitie van Laplace: P(gebeurtenis) = Aantal gunstige uitkomsten/aantal mogelijke uitkomsten Voorbeeld 1: Wat is de kans om minstens 16 te gooien, als je met 3 dobbelstenen

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

13.1 Kansberekeningen [1]

13.1 Kansberekeningen [1] 13.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

Paragraaf 7.1 : Het Vaasmodel

Paragraaf 7.1 : Het Vaasmodel Hoofdstuk 7 Kansrekening (V4 Wis A) Pagina 1 van 8 Paragraaf 7.1 : Het Vaasmodel Les 1 : Kansen Herhalen kansen berekenen Hoe bereken je de kans als je een aantal keren achter elkaar een experiment uitvoert?

Nadere informatie

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5:

Hoofdstuk 11: Kansverdelingen 11.1 Kansberekeningen Opgave 1: Opgave 2: Opgave 3: Opgave 4: Opgave 5: Hoofdstuk : Kansverdelingen. Kansberekeningen Opgave : kan op manieren 5 kan op! manieren 555 kan op manier 0 0 som 5) Opgave : som 5) som 5) som ) som ) c. som 0) d. som 0) som ) Opgave : som ) som )

Nadere informatie

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) =

Hoe bereken je een kans? Voorbeeld. aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Hoe bereken je een kans? P(G) = aantal gunstige uitkomsten aantal mogelijke uitkomsten Voorbeeld Je gooit met twee dobbelstenen. Hoe groot is de kans dat de som van de ogen 7 is? Regels Een kans is een

Nadere informatie

Kansberekeningen Hst

Kansberekeningen Hst 1 Kansberekeningen Hst. 1 1. P(,) + P(,) + P(,) = 1 1 1 1 1 1 5 + + = 16 b. P(10) = P(,,) + P(,,) = 1 1 1 1 1 1 1 6 + = 6 c. P(min stens keer een ) =1 P(max imaal keer een ) = 1 binomcdf (1, 1,) 0,981

Nadere informatie

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c

6 5 x 4 x x 3 x x x 2 x x x x 1 x x x x x x 5 4 x 3 x 2 x opgave a opgave b opgave c Hoofdstuk : Het kansbegrip.. Kansen Opgave : De kans dat ze gooit is groter, want ze kan op zes manieren gooien: -, 2-, -, -, -2, -. Ze kan op manieren 9 gooien: -, -, -, -. Opgave 2: e. Opgave : 9 0 2

Nadere informatie

Lesbrief hypothesetoetsen

Lesbrief hypothesetoetsen Lesbrief hypothesetoetsen 00 "Je gaat het pas zien als je het door hebt" Johan Cruijff Willem van Ravenstein Inhoudsopgave Inhoudsopgave... Hoofdstuk - voorkennis... Hoofdstuk - mens erger je niet... 3

Nadere informatie

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456

VB: De hoeveelheid neemt nu met 12% af. Hoeveel was de oorspronkelijke hoeveelheid? = 1655 oud = 1655 nieuw = 0,88 x 1655 = 1456 Formules, grafieken en tabellen Procenten - altijd afronden op 1 decimaal tenzij anders vermeld VB: Een hoeveelheid neemt met 12% toe to 1456. Hoeveel was de oorspronkelijke hoeveelheid? Oud =? Nieuw =

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

Hoofdstuk 6 Discrete distributies

Hoofdstuk 6 Discrete distributies Hoofdstuk 6 Discrete distributies Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Discrete distributies p 1/33 Discrete distributies binomiale verdeling

Nadere informatie

Samenvatting Wiskunde A

Samenvatting Wiskunde A Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een examen in dit geval voor

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 5 Dinsdag 28 September 1 / 25 1 Kansrekening Indeling: Bernouilli verdelingen Binomiale verdelingen Voorwaardelijke kansen Voor software R: van http://sourceforge.net

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

Vraag Antwoord Scores

Vraag Antwoord Scores Vraag Antwoord Scores 500 meter schaatsen maximumscore 3 P( X < 39,00 μ = 39,72 en σ = 0, 43) moet berekend worden Beschrijven hoe deze kans berekend kan worden Deze kans is 0,05 dus is het antwoord 5%

Nadere informatie

Hoofdstuk 7 Examentraining. Kern 1 Statistiek

Hoofdstuk 7 Examentraining. Kern 1 Statistiek Uitwerkingen Wiskunde A Netwerk VWO 6 Hoofdstuk 7 Examentraining www.uitwerkingensite.nl Hoofdstuk 7 Examentraining Kern Statistiek a Noem de percentielscore S en het aantal goede antwoorden g. S 7 4 Op

Nadere informatie

Eindexamen wiskunde A 1-2 havo 2001-II

Eindexamen wiskunde A 1-2 havo 2001-II Eindexamen wiskunde A - havo 00-II 4 Antwoordmodel Opgave Bibliotheek De eerste 5000 leveren collectienorm 00 De volgende 45 000 leveren collectienormtoename 450 De volgende 0 000 leveren collectienormtoename

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a c d e Hoofdstuk - De inomiale verdeling. Succes en mislukking ladzijde 9 zoon dochter DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters Het aantal mogelijkheden

Nadere informatie

Binomiale verdelingen

Binomiale verdelingen Binomiale verdelingen Les 1: Kans en combinatoriek (Deze les sluit aan bij paragraaf 1 van Hoofdstuk 2 Binomiale en normale verdelingen van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

7.0 Voorkennis , ,

7.0 Voorkennis , , 7.0 Voorkennis Een gokkast bestaat uit een drietal schijven die ronddraaien. Op schijf 1 staan: 5 bananen, 4 appels, 3 citroenen en 3 kersen; Op schijf 2 staan: 7 bananen, 3 appels, 2 citroenen en 3 kersen;

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 4: Rekenregels (deze les sluit aan bij de paragraaf 8 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit

HOOFDSTUK 6: Kansrekening. 6.1 De productregel. Opgave 1: a. 3 van de 4 knikkers zijn rood. P(rood uit II. Opgave 2: a. P(twee wit HOOFDSTUK : Kansrekening. De productregel Opgave : van de knikkers zijn rood rood uit II ) d. 0, e. 0, Opgave : 0 twee wit 0, ) 0 0 ) 0 0 ) 0 0 blauw en rood 0, wit en groen 0, d. geen blauw 7 0, ) 0 0

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten.

Som 23 kan met 6665 en som 24 met Dus totaal gunstige uitkomsten. G&R vwo C deel C von Schwartzenberg / Som kan met! (op = manieren) (op! manieren) (op manier)! =, = en Dus totaal + + = 0 gunstige uitkomsten Dubbel onderstreept betekent: "niet alleen" in de genoteerde

Nadere informatie

Uitleg significantieniveau en toetsen van hypothesen

Uitleg significantieniveau en toetsen van hypothesen Uitleg significantieniveau en toetsen van hypothesen Het significantieniveau (meestal aangegeven met de letter α) stelt de kans voor, dat H 0 gelijk heeft, maar H 1 gelijk krijgt. Je trekt dus een foute

Nadere informatie

wiskunde A havo 2015-I

wiskunde A havo 2015-I wiskunde A havo 205-I Gifgebruik in de aardappelteelt maximumscore 3 32 24,5 Per jaar = 0,83 (kg) ( nauwkeuriger) minder 9 Dit geeft 24,5 0,83 8 Het antwoord: 8 (kg) ( nauwkeuriger) 32 24,5 Per jaar =

Nadere informatie

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO

EXAMENTOETS TWEEDE PERIODE 5HAVO MLN/SNO EXAMENTOETS TWEEDE PERIODE 5HAVO wiskunde A MLN/SNO Onderwerp: Statistiek - Blok Datum: donderdag 1 januari 010 Tijd: 8.30-10.45 NB 1: Bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN aangeven.

Nadere informatie

draagvermogentoename van =75 1 Het draagvermogen is = 875 (kg) 1 Alleen hellingsgetal uitgerekend: maximaal 1 punt

draagvermogentoename van =75 1 Het draagvermogen is = 875 (kg) 1 Alleen hellingsgetal uitgerekend: maximaal 1 punt 1 maximumscore 4 De diameter van de velg is 14 2,54 = 35,56 (cm) 1 De bandhoogte is 0,65 18,5 = 12,025 (cm) 1 De bandhoogte is tweemaal nodig 1 De diameter van de band is 35,56 + 2 12,025 = 59,61 (dus

Nadere informatie

Eindexamen wiskunde B1 havo 2000-II

Eindexamen wiskunde B1 havo 2000-II Eindexamen wiskunde B havo 000-II Temperatuurverloop de aanduidingen bij de beide assen (bijvoorbeeld tijd (in uren); temperatuur (in C); getallen langs de assen) De evenwichtsstand op de goede hoogte

Nadere informatie

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen?

6. Op tafel liggen 10 verschillende boeken. Op hoeveel verschillende manieren kunnen 3 jongens daar ieder 1 boek uit kiezen? 1. Iemand heeft thuis 12 CD s in een rekje waar er precies 12 inpassen. a. Op hoeveel manieren kan hij ze in het rekje leggen. b. Hij wil er 2 weggeven aan zijn vriendin, hoeveel mogelijkheden? c. Hij

Nadere informatie

3 Kansen vermenigvuldigen

3 Kansen vermenigvuldigen 3 Kansen vermenigvuldigen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Vermenigvuldigen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Hoofdstuk 5 - De binomiale verdeling

Hoofdstuk 5 - De binomiale verdeling Moderne wiskunde 9e editie Havo A deel Hoofdstuk - De inomiale verdeling ladzijde 0 a zoon dochter c DDZZZ; DZDZZ; DZZDZ; DZZZD; ZDDZZ; ZDZDZ; ZDZZD; ZZDDZ; ZZDZD; ZZZDD zoons A 0 dochters d e Het aantal

Nadere informatie

Hoofdstuk 6 Examenaanpak. Kern 1 Modelleren

Hoofdstuk 6 Examenaanpak. Kern 1 Modelleren Uitwerkingen Wiskunde A Netwerk VWO 6 Hoofdstuk 6 Examenaanpak www.uitwerkingenste.nl Hoofdstuk 6 Examenaanpak Kern Modelleren a De vrouwen van 8 jaar vallen in de categorie 5 9. Hoe de verdeling binnen

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 28 juli 2014 Tijd: 14.00-17.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

De verstrooide professor

De verstrooide professor Inleiding De verstrooide professor Edward Omey HU - Stormstraat 2 000 russel edward.omey@hubrussel.be In hun nota bestuderen Guido Herweyers en Ronald Rouseau (G. Herweyers en R. Rousseau, Een onverwacht

Nadere informatie

Oefeningen statistiek

Oefeningen statistiek Oefeningen statistiek Hoofdstuk De wereld van de kansmodellen.. Tabel A en tabel B zijn de kansverdelingen van model X en van model Y. In beide tabellen is een getal verloren gegaan. Kan jij dat verloren

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

3 Discrete kansverdelingen

3 Discrete kansverdelingen 3 Discrete kansverdelingen 1 Inhoudsopgave 3.0 Verschillende mogelijkheden 3 3.1 Kansverdelingen 4 3. Verwachtingswaarde en standaardafwijking 6 3.3 Zonder terugleggen 3.4 Wel/Niet 4 3.5 De variantie 31

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 24 juni 2013 Tijd: 19.00-22.00 uur Aantal opgaven: 7 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

ICT - De hypergeometrische verdeling

ICT - De hypergeometrische verdeling ladzijde 9 a P( X = ) = 5 3 5 35 3 ( ) ( ) = 3 7 387 5 5 c De steekproefgrootte is 5 dus n = 5. De fractie witte allen is 5 = 3 dus p = 3. 5 Met VU-Statistiek krijg je: De volledige verdeling van X vind

Nadere informatie

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang?

Bij het oplossen van een telprobleem zijn de volgende 2 dingen belangrijk: Is de volgorde van de gekozen dingen van belang? 4. tellen & kansen 4.1 Tellen Herkennen Je kunt een vraag over telproblemen herkennen aan signaalwoorden: - hoeveel mogelijkheden, manieren, routes, volgordes etc. zijn er?, - bereken het aantal mogelijkheden/manieren

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Eindexamen wiskunde C vwo I

Eindexamen wiskunde C vwo I Eindexamen wiskunde C vwo 20 - I Beoordelingsmodel Autobanden maximumscore 3 Bij belastingsindex 66 is het gewicht 299 kg ( nauwkeuriger) Bij belastingsindex 88 is het gewicht 562 kg ( nauwkeuriger) Het

Nadere informatie

Lesbrief Hypergeometrische verdeling

Lesbrief Hypergeometrische verdeling Lesbrief Hypergeometrische verdeling 010 Willem van Ravenstein If I am given a formula, and I am ignorant of its meaning, it cannot teach me anything, but if I already know it what does the formula teach

Nadere informatie

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling

Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Toetsende Statistiek, Week 2. Van Steekproef naar Populatie: De Steekproevenverdeling Moore, McCabe & Craig: 3.3 Toward Statistical Inference From Probability to Inference 5.1 Sampling Distributions for

Nadere informatie

Errata Moderne wiskunde 9e editie VWO A/C deel 2 uitwerkingen

Errata Moderne wiskunde 9e editie VWO A/C deel 2 uitwerkingen Errata Moderne wiskunde 9e editie VWO A/C deel uitwerkingen Onderstaande verbeteringen zijn gebaseerd op de eerste druk van deze titel. In bijdrukken worden fouten hersteld. Het is dus goed mogelijk, dat

Nadere informatie

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend!

o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! Examentoets 2 6VWO-A Statistiek woensdag 20 januari 2010 o Geef bij de beantwoording van de vragen ALTIJD JE BEREKENINGEN. Als je alleen een antwoord geeft worden er GEEN PUNTEN toegekend! o Geef bij gebruik

Nadere informatie

Uitwerkingen voortoets/oefentoets E3 maart/april 2009 MLN

Uitwerkingen voortoets/oefentoets E3 maart/april 2009 MLN Uitwerkingen voortoets/oefentoets E3 maart/april 009 MLN UITZENDBUREAU a H 0 : p=0. ( op is een kans van 0% wel 0.) is de bewering van het uitzendbureau H : p 0. (Helena is het er niet mee eens en denkt

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 7 Dinsdag 11 Oktober 1 / 33 2 Statistiek Vandaag: Populatie en steekproef Maten Standaardscores Normale verdeling Stochast en populatie Experimenten herhalen 2 / 33 3

Nadere informatie

Faculteit, Binomium van Newton en Driehoek van Pascal

Faculteit, Binomium van Newton en Driehoek van Pascal Faculteit, Binomium van Newton en Driehoek van Pascal 1 Faculteit Definitie van de faculteit Wisnet-hbo update aug. 2007 (spreek uit k-faculteit) is: k Dit geldt voor elk geheel getal k groter dan 0 en

Nadere informatie

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk : Kansen en beslissingen. Beslissen op grond van een steekproef. Opgave : a. normalcdf,,8,), 78 b. a invnorm.,8,) 7, c. normalcdf,.,.8, ), 7 y normalcdf,.,.8, X ) kijk in de tabel voor welke

Nadere informatie

Eindexamen wiskunde B1 havo 2007-I

Eindexamen wiskunde B1 havo 2007-I Eindexamen wiskunde B havo 007-I Beoordelingsmodel De wet van Moore maximumscore 3 Van 96 tot 975 is 4 jaar Het aantal transistors volgens de formule is dus 4 7 4 = 5, dus 5 transistors in 975 maximumscore

Nadere informatie

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen.

1 Kansbomen. Verkennen. Uitleg. Theorie en Voorbeelden. Beantwoord de vragen bij Verkennen. 1 Kansbomen Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-a Kansrekening Kansbomen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.math4all.nl MAThADORE-basic HAVO/VWO

Nadere informatie

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant

wordt niet verworpen, dus het gemiddelde wijkt niet significant af van 400 wordt niet verworpen, dus het beïnvloedt de levensduur niet significant Hoofdstuk Het toetsen van hypothesen.. Beslissen op grond van een steekproef Opgave : a. hij gebruikt totaal meer schuurmiddel dan nodig is en dat kost dus extra geld b. de klanten gaan klagen als er te

Nadere informatie

Gifgebruik in de aardappelteelt

Gifgebruik in de aardappelteelt Gifgebruik in de aardappelteelt Opgave 1. jaar gifgebruik 1998 32 kg/ha 2007 24,5 kg/ha Van 2007 naar 2015 is een periode van 8 jaar. Maak eventueel een verhoudingstabel. In 9 jaar neemt het gifgebruik

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

15.1 Beslissen op grond van een steekproef [1]

15.1 Beslissen op grond van een steekproef [1] 15.1 Beslissen op grond van een steekproef [1] Voorbeeld 1: Een vulmachine vult flessen met een inhoud van X ml. X is normaal verdeeld met μ = 400 en σ = 4 Er wordt een steekproef genomen van 40 flessen.

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

Gokautomaten (voor iedereen)

Gokautomaten (voor iedereen) Gokautomaten (voor iedereen) In een fruitautomaat draaien de schijven I, II en III onafhankelijk van elkaar. Door een hendel kan elke schijf tot stilstand worden gebracht. In de tabel zie je wat op elke

Nadere informatie

Eindexamen vwo wiskunde C 2013-I

Eindexamen vwo wiskunde C 2013-I Eindexamen vwo wiskunde C 03-I 4 Beoordelingsmodel Lichaamsoppervlak maximumscore 3 Voor het aandeel van armen en handen geldt,0 8,5 00% 5,7% 8,5 Voor het aandeel van benen en voeten geldt 38,8 3,65 00%,6%

Nadere informatie

Notatieafspraken Grafische Rekenmachine, wiskunde A

Notatieafspraken Grafische Rekenmachine, wiskunde A Notatieafspraken Grafische Rekenmachine, wiskunde A Bij deze verstrek ik jullie de afspraken voor de correcte notatie bij het gebruik van de grafische rekenmachine. Verder krijg je een woordenlijst met

Nadere informatie

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang:

Voor de beoordeling zijn de volgende passages van de artikelen 41, 41a en 42 van het Eindexamenbesluit van belang: wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 06 Tijdvak Het correctievoorschrift bestaat uit: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

Eindexamen wiskunde A havo 2009 - I

Eindexamen wiskunde A havo 2009 - I Beoordelingsmodel Autobanden maximumscore 4 De diameter van de velg is 4,54 = 35,56 (cm) De bandhoogte is 0,65 8,5 =,05 (cm) De bandhoogte is tweemaal nodig De diameter van de band is 35,56 +,05 = 59,6

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Opgaven voor Kansrekening Opgave 1. Je hebt 4 verschillende wiskunde boeken, 6 psychologie boeken en 2 letterkundige boeken. Hoeveel manieren zijn er om deze twaalf boeken op een boord te plaatsen als:

Nadere informatie

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1

1BA PSYCH Statistiek 1 Oefeningenreeks 3 1 Juno KOEKELKOREN D.1.3. OEFENINGENREEKS 3 OEFENING 1 In onderstaande tabel vind je zes waarnemingen van twee variabelen (ratio meetniveau). Eén van de waarden van y is onbekend. Waarde x y 1 1 2 2 9 2

Nadere informatie

Keuze onderwerp: Kansrekening 5VWO-wiskunde B

Keuze onderwerp: Kansrekening 5VWO-wiskunde B Keuze onderwerp: Kansrekening 5VWO-wiskunde B Blaise Pascal (1623-1662) Pierre-Simon Laplace (1749-1827) INHOUDSOPGAVE 1. Permutaties & Combinaties... 3 Rangschikking zonder herhaling (permutaties)...

Nadere informatie

OEFENPROEFWERK HAVO A DEEL 2

OEFENPROEFWERK HAVO A DEEL 2 OEFENPROEFWERK HAVO A DEEL 2 HOOFDSTUK 6 STATISTIEK EN BESLISSINGEN OPGAVE 1 Hieronder zijn vier boxplots getekend. a Welke boxplot hoort bij een links-scheve verdeling? Licht toe. b Hoe ligt bij boxplot

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 23 januari 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel

Nadere informatie

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde A. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 11 juni 2012 Tijd: 19.00-22.00 uur Aantal opgaven: 8 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van

Nadere informatie

Correctievoorschrift HAVO 2017

Correctievoorschrift HAVO 2017 Correctievoorschrift HAVO 207 tijdvak 2 oud programma wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Aanleveren

Nadere informatie

Correctievoorschrift HAVO. wiskunde B1

Correctievoorschrift HAVO. wiskunde B1 wiskunde B Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 20 04 Tijdvak 2 inzenden scores Verwerk de scores van de alfabetisch eerste vijf kandidaten per school in het programma Wolf vul

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN. Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Kansrekening (2WS2), Vrijdag 24 januari 24, om 9:-2:. Dit is een tentamen met gesloten boek. De uitwerkingen van de opgaven

Nadere informatie

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1

Wiskunde D Online uitwerking oefenopgaven 4 VWO blok 3 les 1 Paragraaf De kansdefinitie Opgave a) Als de kikker verspringt, gaat hij van zwart naar wit, of andersom Hij zit dus afwisselend op een zwart en een wit veld Op een willekeurig moment is de kans even groot

Nadere informatie

. Dan geldt P(B) = a. 1 4. d. 3 8

. Dan geldt P(B) = a. 1 4. d. 3 8 Tentamen Statistische methoden 4052STAMEY juli 203, 9:00 2:00 Studienummers: Vult u alstublieft op het meerkeuzevragenformulier uw Delftse studienummer in (tbv automatische verwerking); en op het open

Nadere informatie

Zin en onzin van normale benaderingen van binomiale verdelingen

Zin en onzin van normale benaderingen van binomiale verdelingen Zin en onzin van normale benaderingen van binomiale verdelingen Johan Walrave, docent EHSAL 0. Inleiding Voordat het grafisch rekentoestel in onze school ingevoerd werd, was er onder de statistiekdocenten

Nadere informatie

Kangoeroewedstrijd editie Wallaroe: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallaroe: jaargang 2013, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Stapel A: + 5 + 5 + 0 = 2 Stapel B: + + 5 + 0 = 7 Stapel C: + 5 + 5 + 5 = 6 Stapel D: + + + 0 = 3 Stapel E: 5 + 5 + 5 + 5 = 20 Dus is stapel A het meeste waard. Kangoeroewedstrijd editie Wallaroe: jaargang

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 20 tijdvak 2 tevens oud programma wiskunde C wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel

Nadere informatie

werkcollege 6 - D&P9: Estimation Using a Single Sample

werkcollege 6 - D&P9: Estimation Using a Single Sample cursus 9 mei 2012 werkcollege 6 - D&P9: Estimation Using a Single Sample van frequentie naar dichtheid we bepalen frequenties van meetwaarden plot in histogram delen door totaal aantal meetwaarden > fracties

Nadere informatie

Opgaven voor Kansrekening

Opgaven voor Kansrekening Wiskunde 1 voor kunstmatige intelligentie Opgaven voor Kansrekening Opgave 1. Een oneerlijke dobbelsteen is zo gemaakt dat 3 drie keer zo vaak valt als 4 en 2 twee keer zo vaak als 5. Verder vallen 1,

Nadere informatie

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e.

10. De simultane kansverdeling van twee stochasten X en Y is gegeven door de volgende (onvolledige) tabel: X / /4 1. d. 0 e. Tentamen Statistische methoden MST-STM 1 april 2011, 9:00 12:00 Studienummers: Vult u alstublieft op het MC formulier uw Delftse studienummer in; en op het open vragen formulier graag beide, naar volgend

Nadere informatie

Correctievoorschrift HAVO. Wiskunde A1,2 (nieuwe stijl)

Correctievoorschrift HAVO. Wiskunde A1,2 (nieuwe stijl) Wiskunde A, (nieuwe stijl) Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 0 Tijdvak Inzenden scores Uiterlijk op juni de scores van de alfabetisch eerste vijf kandidaten per school op

Nadere informatie

Hoofdstuk 4 Hypothese toetsen

Hoofdstuk 4 Hypothese toetsen a b Hoofdstuk 4 Hypothese toetsen 4. Werken met steekproeven bladzijde 84 (a) de onderzoeker ondervraagt alleen mannen (b) hij ondervraagt slechts mensen die een winkelwagen hebben gepakt (c) hij doet

Nadere informatie

Eindexamen wiskunde A havo 2011 - I

Eindexamen wiskunde A havo 2011 - I Zuinig rijden Tijdens rijlessen leer je om in de auto bij foto 20 km per uur van de eerste naar de tweede versnelling te schakelen. Daarna ga je bij 40 km per uur naar de derde versnelling, bij 60 km per

Nadere informatie

Eindexamen wiskunde B1 vwo 2008-I

Eindexamen wiskunde B1 vwo 2008-I Eindeamen wiskunde B vwo 008-I Landing In deze opgave bekijken we een eenvoudig wiskundig model van de baan van een vliegtuig bij de landing. Een vliegtuig vliegt op een hoogte van 8 km. Op een afstand

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

Kunstrijden op de schaats. Opmerking Als 3! + 4! berekend is, maximaal 2 scorepunten voor deze vraag toekennen.

Kunstrijden op de schaats. Opmerking Als 3! + 4! berekend is, maximaal 2 scorepunten voor deze vraag toekennen. Beoordelingsmodel Vraag Antwoord Scores Kunstrijden op de schaats maximumscore 4 De Zweedse kunstrijders kunnen op 3! manieren geplaatst worden De overige kunnen op 4! manieren geplaatst worden Er zijn

Nadere informatie

Eindexamen wiskunde B1 havo 2002-II

Eindexamen wiskunde B1 havo 2002-II Eindexamen wiskunde B havo 00-II 4 Antwoordmodel Pompen 8000 = 60 de tekening van het lijnstuk met eindpunten (0, ) en (, 0) h (t) = 0,006t 0, De snelheid is 0 als h (t) = 0 h (t) = 0 geeft t = 00 h(00)

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 28 mei uur

Examen VWO. wiskunde B1. tijdvak 1 woensdag 28 mei uur Eamen VWO 2008 tijdvak woensdag 28 mei 3.30-6.30 uur wiskunde B Dit eamen bestaat uit 9 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een goed antwoord

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correctievoorschrift VWO 2008 tijdvak 2 wiskunde A Het correctievoorschrift bestaat uit: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2007-I

Eindexamen wiskunde A1-2 vwo 2007-I Eindexamen wiskunde A-2 vwo 2007-I Beoordelingsmodel Restzetels maximumscore 4 5 329 + 9080 + 875 33 60 33 60 stemmen is minder dan de helft van 67 787 stemmen 0 + 5 + 5 20 20 zetels is meer dan de helft

Nadere informatie