Systeemtheorie en Regeltechniek

Maat: px
Weergave met pagina beginnen:

Download "Systeemtheorie en Regeltechniek"

Transcriptie

1 Systeemtheorie en Regeltehnie Oefenzitting Lineaire Tijds-invariante (LTI) Disrete tijdssystemen: Oplossen van de differentievergelijing

2 Hoe unnen we een system voorstellen? Vershillende mogelijheden: o o o o o Blo-diagram Toestandsbeshrijving / state spae representation Differentie- / differentiaalvergelijing Impulsresponsie Transferfuntie n i m ai * y[ i] bi *u[ i] ( ) i x[ ] A x[ ] B u[ ]. y[ ] C x[ ] D u[ ]. u[-2] x u[-] x u[] 2

3 Lineaire Homogene differentievergelijing n i Orde n ai * y[ i] ( ) Voorgestelde oplossing : lineaire ombinatie van termen van de vorm r Invullen van r in de differentievergelijing levert: n i i a i * r ( ) = arateristiee vgl Aan deze gelijheid is ehter enel voldaan als r een nulpunt van de bovenstaande n-degraads veeltermvgl is. 3

4 Lineaire Homogene differentievergelijing Dus voor nulpunten r j is de oplossing van de vorm: y[ ] n j * r j j Met r j een nulpunt van de arateristiee vgl. Ehter, voor m-voudige nulpunten zijn oo er oo oplossingstermen van de vorm j m * r,..., * r j (Verifieer dit op een simpel voorbeeld, bv. y[+2] - 4 y[+] + 4 y[] = ) 4

5 Lineaire Homogene differentievergelijing Een reële veeltermvgl an oo paren omplex toegevoegde nulpunten hebben: jφ -jφ rj R e, rj R e ( rj*) jrj jrj Omdat dan de oëffiiënten oo omplex toegevoegd moeten zijn, nl. j R e, R j -j j e ( j *) Kunnen beide oplossingstermen samengenomen worden en hershreven als volgt (formule van Euler): j * rj jrj 2 R R os( ) (Toon aan dat dit effetief zo is) 5

6 Lineaire Homogene differentievergelijing De oeffiienten n unnen bepaald worden adhv de beginvoorwaarden y[] y[n-] Deze leiden tot het stelsel: y[] n j... y[ n ] j n j * r j j * r n j n 6

7 Lineaire niet-homogene differentievergelijing General form: n i A linear ombination of inputs results in the same linear ombination of the outputs resulting from eah input individually. (~linearity) m ai * y[ i] bi *u[ i] ( ) i The equation an thus be solved for eah input individually and the results added together afterwards. The resulting partiular solutions an then be added to the general form of the homogenous solution. 7

8 Lineaire niet-homogene differentievergelijing n i ai * y[ i] b *u[ i] ( ) i Ingang u[] is gegeven, hoe bepalen we y[]? Mer op: totale oplossing y tot [] = y hom [] + y part [] aan de beginvoorwaarden y tot [], y8 tot [], voldaan is. m i. Bepaal eerst de algemene oplossing voor de overeenomstige homogene differentievergelijing y hom []. Bepaal de oeffiienten i nog niet! 2. Stel een geshite partiuliere oplossing y part [] voor (zie tabel) en bepaal via de methode van de onbepaalde oeffiienten (= substitutie van de partiuliere oplossing in de differentievergelijing) de parameters α i. 3. Bepaal de oeffiienten i van de homogene termen zodat

9 Lineaire niet-homogene differentievergelijing De reden waarom eerst de homogene oplossing gezoht moet worden: o o als deze termen van dezelfde vorm als de ingang u[] bevat, dan moet een partiuliere opl. voorgesteld worden met termen die een hogere graad in bevatten dan normaal. Anders zal door de partiuliere opl. niet aan de diff. vgl. voldaan unnen worden. 9

10 Lineaire niet-homogene differentievergelijing Voorbeeld: y[] - 4 y[-] + 4 y[-2] = 2. (Probeer zelf eerst uit!) o Homogene opl. van de vorm o Partiuliere opl. van de vorm a 2 + a 2 + a o o o We zetten a = a = omdat deze termen oo deel zijn van de homogene opl. (en hun oeffiienten dus later via en door de beginvwden bepaald zullen worden). Uiteindelije partiuliere opl. is dus uitsluitend van de vorm a Mer op dat als men enel een partiuliere opl. van de vorm 2 beshouwt, nooit aan de diff. vgl voldaan an zijn

11 Partiuliere oplossingen: (ursus p3.4)

12 Opgave Oefening Oefening 3.8 uit de ursus: Stel de differentievergelijing op voor de evolutie van het aantal onijnenparen als we de volgende veronderstellingen maen: o Een mannelij en vrouwelij onijn worden geboren bij el paar volwassen onijnen op het einde van iedere maand; o een pasgeboren paar onijnen heeft zijn eerste nageslaht op de ouderdom van twee maand o Eenmaal bijeen gebraht zal een paar onijnen bij elaar blijven en blijft het altijd produeren volgens de vorige twee veronderstellingen Wat is het aantal onijnenparen dat men beomt na 2 maand als men vertret met een pasgeboren paar op maand nul? Los hiervoor de opgestelde differentievergelijing op! 2

13 Oplossing Oefening In deze oplossing: y = # onijnenparen Differentievergelijing: (Fibonai) Y[] = y[-] + y[-2] Karateristiee veelterm: λ 2 λ = Nulpunten: 2 5,

14 Oplossing Oefening 4 Homogene oplossing: Beginvoorwaarden: Waardes van i : y ) 2 5 ( ) 2 5 ( ] [ 2 ) 2 5 ( ) 2 5 ( [] [] 2 2 y y ) 5 5 ( ), 5 5 ( 2

15 Opgave Oefening 2 Een LTI-systeem met een ingang u[] wordt gearateriseerd door de differentievergelijing y[] 4 y[-] + 4y[-2] = u[]. De aangelegde ingang is van de vorm u[] = *a os(φ) met a = 4 en φ = π. y[] =, y[] = 2. o Bepaal de uitgang y[] van het systeem. Los hiervoor de differentievergelijing op. Hint: de oplossing bestaat uit een homogeen en een partiulier deel. o Teen het blodiagram van het systeem o Bepaal de toestandsbeshrijving van het systeem (de resulterende matries A,B,C en D zijn nog nodig in oefening 4). o (Bepaal de begintoestanden x[] van het systeem. ) 5

16 Oplossing Oefening 2 Homogene oplossing: (dubbel nulpunt 2) y homogeen[ ] (2) 2(2) Partiuliere oplossing:!! mer op dat u[] = (-4)!! y part[ ] ( 4) ( 4) Part. Opl. Invullen in diff. vgl: ( 4) ( 4) 4 2 ( 4) ( 4) ( 4) 4 ( 4) ( 2)( 4) 2 ( 4) 6 ( )( 4) ( 4) (-4) (moet gelden!!!)

17 Oplossing Oefening 2 In het algemeen geldt voor oeffiienten d i, e i : ( i d i )*( 4) ( i e )* ( 4) i!! ( i d i ) en ( i e i ) Hierdoor unnen we de ingevulde diff.vgl. uit de vorige slide hershrijven tot 2 aparte vgln waaruit de 2 onbeenden gevonden unnen worden: 8 α, α

18 Oplossing Oefening 2 8 Totale oplossing ogeen part tot y y y (2) * (2) 4) ( * 9 4 4) ( 27 8 ] [ ] [ ] [ 2 hom Beginvoorwaarden: 9 6, y[], y[] 2

19 Oplossing Oefening 2 Blodiagram uit hershreven diff.vgl.: y[] = 4 y[-] - 4y[-2] + u[]. y[-2] x y[-] x 2 u[] y[] Toestandsbeshrijving: x[ ] A x[ ] B u[ ]. y[ ] C x[ ] D u[ ]. 9 A 4 C 4, B 4 4, D

20 Opgave Oefening 3 Modelleer het signaal u[] = *a os(φ) met a = 4 en φ = π als de uitgang van een autonoom LTI-systeem. o Bepaal de differentievergelijing van dit LTI-systeem. Hint: shrijf eerst u[], u[+], als een lineaire ombinatie van een aantal basisfunties. Een signaal van de vorm n *a os(φ + φ ) heeft 2(n+) mogelije basisfunties. Deze zijn: a os(φ),, n *a * os(φ) en a * sin(φ),, n *a *sin(φ). o Teen het blodiagram van het systeem o Bepaal de toestandsbeshrijving van het autonoom systeem (de resulterende matries F en G zijn nog nodig in oefening 4) o Bepaal de begintoestanden x[] van het systeem. Hint: gebrui hiervoor de toestandsbeshrijving. 2

21 Oplossing Oefening 3 2 Een autonoom (zonder ingang dus) LTI-systeem met een uitgang u[] an altijd gearateriseerd worden door een diff.vgl. van de vorm: We zoeen dus een lineair verband tussen u[], u[+],, u[+n]. ] [... ] [ ] [,... met, ] [ a oo : of ), ( i] * u[ a T n i i n u u U U n

22 Oplossing Oefening 3 Mer op dat u[].. u[+n], als we ze uitshrijven en vereenvoudigen, zelf lineaire ombinaties zijn van enele basisfunties. Voor u[] = (-4) zijn dit slehts 2 basisfunties: (-4) en (-4). Hierdoor is de vetor U te shrijven als U[] (n+)x = A (n+)x2 *b[] 2x met b[ ] ( 4) ( 4) 22

23 Oplossing Oefening 3 Dus : a T (zie oef. 2) A A b[] T a a T U[] a T (!) A Dit wil zeggen dat ele vetor a die in de nulruimte van A T ligt voldoet aan de voorwaarde a T U[] = en dus tot een geldige differentievergelijing leidt. 23

24 Oplossing Oefening 3 A T heeft dimensie 2x(n+) en heeft dus reeds een nulruimte voor n = 2. Als we dus u[].. u[+2] uitshrijven ifv voorheenvermelde basisfunties rijgen we: A T A T a 6a Zo rijgen we bv : u[ 2] a 2, a 8a 2 8 u[ ] 6u[] 24

25 Alternatieve Oplossing Oefening 3 Deze oefening on sneller opgelost worden door op te meren dat een uitgang van de vorm (-4)^ voor een autonoom systeem (met een lineaire homogene differentievergelijing dus) slehts mogelij is als de arateristiee vgl twee nulpunten -4 heeft, en dus een fator (r + 4) 2 bevat. Zo omen we voor een minimaal systeem ((r + 4) 2 =) oo diret bij de oplossing u[+2] + 8u[+] + 6 u[] =. 25

26 Oplossing Oefening 3 Blodiagram uit hershreven diff.vgl.: u[] = -8 u[-] 6u[-2]. u[-2] u[-] x x u[] Toestandsbeshrijving: x,2 [ ] F x,2 [ ]. F 6 8 u[ ] G x,2 [ ]. 26 G 6 8

27 Oplossing Oefening 3 Begintoestand x[] te vinden via toestandsbeshrijving: u[] G x[] u[ ] GF x[] x[] u[] GF x[]

28 Opgave Oefening 4 Een LTI-systeem met een ingang wordt gearateriseerd door de differentievergelijing y[] 4 y[-] + 4y[-2] = u[]. De aangelegde ingang is van de vorm u[] = *a os(φ) met a = 4 en φ = π (fr. Oefening 2 en 3). Modelleer als een asadeshaeling van twee systemen, gebrui hiervoor de blodiagrammen uit oefening 2 en 3. o Bepaal de toestandsbeshrijving van het resulterende systeem. Hint: Gebrui de matries A,B,C,D,F en G uit de vorige oefeningen om deze toestandsbeshrijving eenvoudig in blomatrixvorm neer te shrijven. Noem de resulterende matries van deze toestandsbeshrijving A* en C*. o Gebrui de nieuw beomen matrix A* om de uitgang van het autonoom systeem te bepalen. Hint: De uitgangen van dit autonoom systeem zijn volledig bepaald door de eigenwaardes van A* (de polen/ resonanties van het systeem) en de beginvoorwaarden en/of begintoestanden van het systeem. 28

29 Oplossing Oefening 4 Mbv blodiagrammen uit oef. 2 en 3: u[-2] u[-] x x 2 y[-2] y[-] x 3 x u[] + y[] Mbv toestandsbeshrijvingen uit oef. 2 en 3: x,2,3,4 y[ ] [ C ] * x A,2,3,4 * x [ ].,2,3,4 [ ]. 29 A * C F BG * DG A C

30 Oplossing Oefening 4 De uitgang van het volledige systeem wordt bepaald door de nulpunten van zijn arateristiee vgl (zie oef.). Deze an oo opgesteld worden als det(a * - λ*i 4 ) =. De nulpunten van de arateristiee vgl zijn dus oo de eigenwaardes van A *. De eigenwaardes van deze onderdriehoes-blodiagonaalmatrix zijn gelij aan de eigenwaardes van A en die van F. (resp. 2,2,-4,-4). De oplossing is dus van de vorm:.. 4 unnen dan bepaald worden via: y y [ ] (2) 2 (2) 3( 4) 4 ( * * [ ] C A x[] y[]... y[3]... 4 (en zijn uiteraard dezelfde als in oef 2.) 3 4)

31 e 3

32 e 32

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. - 239 - Naam:... Klas:... Hoofdstuk 12 : Vergelijkingen van de eerste graad met twee onbekenden. Eventjes herhalen!!! Voor een vergelijking van de eerste graad, herleid op nul, is het linkerlid een veelterm

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

The bouncing balls and pi

The bouncing balls and pi The bouncing balls and pi naar een idee van Dir Dancaert 9 september 05 Samenvatting Wisundecollega Dir Dancaert ontdete onlangs een merwaardig filmpje op het internet (https://wwwyoutubecom/user/numberphile

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Met passer en liniaal

Met passer en liniaal Met passer en liniaal De opgaven in deze opdracht gaan over het teenen met passer en liniaal. Een liniaal gebrui je om rechte lijnen te teenen, dat an dus een recht latje zijn. Je mag daarvoor oo je geodriehoe

Nadere informatie

102 < 11. Je kunt ook snel na 102 < 10, 5 ( = 110, 25).

102 < 11. Je kunt ook snel na 102 < 10, 5 ( = 110, 25). DE FORMULE VAN MACLAURIN. Inleiding: de wortel uit 0. Als je nou eens geen reenmachine had, hoe bereen je dan de wortel uit 0? Met proberen om je een heel eind. 0 > 0 omdat 0 > 0 en 0 < omdat reenen dat

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie

Introductie Coach-modelleren

Introductie Coach-modelleren Inhoud Introductie Coach-modelleren... Coach-modelleren versus Excel...4 Opgave: Kennismaing met Coach-Modelleren...4 Satellietbanen in COACH-Modelleren...5 Opgave: GPS-satelliet...5 Alleen voor de geïnteresseerden...7

Nadere informatie

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012

Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012 Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie

Nadere informatie

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:

Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1

4.1 Rijen. Inhoud. Convergentie van een reeks. Reeksen. a k. a k = lim. a k = s. s n = a 1 + a 2 + + a n = k=1 Reesen en Machtreesen Reesen en Machtreesen 4-0 Reesen en Machtreesen Inhoud. Rijen 2. Reesen Definities en enmeren Reesen met niet-negatieve termen Reesen met positieve en negatieve termen 3. Machtreesen

Nadere informatie

Convexe functies op R (niet in het boek)

Convexe functies op R (niet in het boek) Convee uncties op R (niet in het boe Een unctie : R R heet conve, als voor alle, R en ele λ [0,] geldt dat (λ + (-λ λ( + (-λ(. Voor een unctie op R beteent dit dat als je twee willeeurige punten op de

Nadere informatie

1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? f g 1

1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? f g 1 1. Gegeven x Y, waaraan is de fouriergetransformeerde gelijk? (a) X ỹ (b) x Y 2π (c) 2π X ỹ (d) X y Vanwege Volgt er Of dus antwoord (1a). x X 2π x f g 1 2π F G x Y X ỹ 2. 4 personen lenen eenzelfde bedrag

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1985-1986: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1985-1986: Eerste Ronde. Vlaamse Wiskunde Olmpiade 985-986: Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringsssteem werkt als volgt : een deelnemer start met 30 punten Per goed antwoord krijgt hij of zij

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Volatility estimation and visualization for stock/option traders Bachelorscriptie leerstoelen SST/SP

Volatility estimation and visualization for stock/option traders Bachelorscriptie leerstoelen SST/SP Volatility estimation and visualization for stoc/option traders Bachelorscriptie leerstoelen SST/SP Peter Bosschaart Jeroen Spoor Berend Steenhuisen 9 juni 2011 Inhoudsopgave 1 Introductie 3 2 Discretisatie

Nadere informatie

Uitwerking studie stimulerende toets Embedded Signal Processing (ESP)

Uitwerking studie stimulerende toets Embedded Signal Processing (ESP) Uitwerking studie stimulerende toets Embedded Signal Processing (ESP) Cursus code 259, Dinsdag 7 maart 29, 3:3h 7:h. U mag gebruiken: uw eigen aantekeningen, de uitgeprinte college sheets van Teletop en

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien:

Gaap, ja, nog een keer. In één variabele hebben we deze formule nu al een paar keer gezien: Van de opgaven met een letter en dus zonder nummer staat het antwoord achterin. De vragen met een nummer behoren tot het huiswerk. Spieken achterin helpt je niets in het beter snappen... 1 Stelling van

Nadere informatie

HOOFDSTUK 3: Netwerkanalyse

HOOFDSTUK 3: Netwerkanalyse HOOFDSTUK 3: Netwerkanalyse 1. Netwerkanalyse situering analyseren van het netwerk = achterhalen van werking, gegeven de opbouw 2 methoden manuele methode = reductie tot Thévenin- of Norton-circuit zeer

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Hoofdstuk 6 Matrices toepassen

Hoofdstuk 6 Matrices toepassen Hoofdstuk Matries toepassen Moderne wiskunde e editie vwo D deel Lesliematries ladijde a Van de dieren in de leeftijdsgroep van - jaar komen er, in de leeftijdsgroep - jaar Van de dieren in de leeftijdsgroep

Nadere informatie

Hoofdstuk 13 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden.

Hoofdstuk 13 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden. Hoofdstuk1: Stelsels van vergelijkingen met twee onbekenden - 9 - Hoofdstuk 1 : Stelsels van vergelijkingen van de eerste graad met twee onbekenden. Instap (boek pag ) Opgave: Zoek de afmetingen van alle

Nadere informatie

POD1 - Hoofdstuk 1: Inleiding

POD1 - Hoofdstuk 1: Inleiding POD1 - Hoofdstuk 1: Inleiding 2/59 POD1 - Hoofdstuk 1: Inleiding Stijn Lievens (Stijn.Lievens@hogent.be) Noemie Slaats (Noemie.Slaats@hogent.be) Lieven Smits (Lieven.Smits@hogent.be) Martine Van Der Weeen

Nadere informatie

Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding.

Algemeen: Beargumenteer je antwoorden. Vermeld zowel de gebruikte basisformules als de tussenstappen in de afleiding. 3NC0 Gecondenseerde materie 0 Tentamen, april 0 lgemeen: eargumenteer e antwoorden Vermeld zowel de gebruite basisformules als de tussenstappen in de afleiding Mogeli te gebruien formules: De Fermi-Dirac

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 6 van een vectorveld collegejaar college build slides Vandaag : : : : 14-15 6 22 september 214 51 1 2 3 4 5 Gradiënt van een vectorveld 1 VA vandaag Section 16.2 Hoofdstu 4 Definitie Een vectorveld

Nadere informatie

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche)

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) De onderwerpen sluiten aan bij het onderzoek in de afdeling Analyse (onderzoeksgroep klassieke analyse) en zijn zo gekozen

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche)

Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) Thesisonderwerpen binnen de onderzoeksgroep klassieke analyse (Walter Van Assche) De onderwerpen sluiten aan bij het onderzoek in de afdeling Analyse (onderzoeksgroep klassieke analyse) en zijn zo gekozen

Nadere informatie

Opgaven bij hoofdstuk 12

Opgaven bij hoofdstuk 12 32 Meerkeuze-opgaven Opgaven bij hoofdstuk 12 12.6 Van een lineaire tweepoort is poort 1 als ingang en poort 2 als uitgang op te vatten. Bij de Z-parametervoorstelling van deze tweepoort geldt dan: a:

Nadere informatie

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )

Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( ) Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

maplev 2010/7/12 14:02 page 55 #57 lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues, fsolve, avoid Module 3, 8, 14 en 25.

maplev 2010/7/12 14:02 page 55 #57 lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues, fsolve, avoid Module 3, 8, 14 en 25. maplev 2010/7/12 14:02 page 55 #57 Module 5 Oplossen van stelsels vergelijkingen Onderwerp Voorkennis Expressies Zie ook Stelsels vergelijkingen. lhs, rhs, assign, isolate, solve, identity, RootOf, allvalues,

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Stelsels van vergelijkingen

Stelsels van vergelijkingen Module 5 Stelsels van vergelijkingen 5.1 Definitie en voorbeelden Een verzameling van vergelijkingen in een aantal onbekenden waarvan men de gemeenschappelijke oplossing(en) zoekt, noemt men een stelsel

Nadere informatie

Meetkunde met b2 4ac. Jaap Top

Meetkunde met b2 4ac. Jaap Top Meetkunde met b2 4ac Jaap Top JBI-RuG & DIAMANT j.top@rug.nl 9 januari 2016 (KWG wintersymposium, Utrecht) 1 Doel: meetkunde gebruiken om meer inzicht te krijgen in het oplossen van (veelterm)vergelijkingen.

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

7. Hamiltoniaanse systemen

7. Hamiltoniaanse systemen 7. Hamiltoniaanse systemen In de moleculaire dynamica, maar ook in andere gebieden zoals de hemelmechanica of klassieke mechanica, worden oplossingen gezocht van het Hamiltoniaanse systeem van differentiaalvergelijkingen

Nadere informatie

2.1 Twee gekoppelde oscillatoren zonder aandrijving

2.1 Twee gekoppelde oscillatoren zonder aandrijving Hoofdstuk Twee gekoppelde oscillatoren.1 Twee gekoppelde oscillatoren zonder aandrijving We beschouwen als voorbeeld van een systeem van puntmassa s die gekoppeld zijn aan elkaar en aan twee vaste wanden

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Auteur: Bart Goris Promotor: Dr. Sandra Van Aert

Auteur: Bart Goris Promotor: Dr. Sandra Van Aert Kwantitatieve dite- en positiebepaling van atoomolommen uit een complexe eletronen uittreegolf gebrui maend van statistische parameterschattingstheorie Auteur: Bart Goris Promotor: Dr. Sandra Van Aert

Nadere informatie

CTB1002-D2 Lineaire Algebra 2

CTB1002-D2 Lineaire Algebra 2 CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

De comfortabele auto

De comfortabele auto De comfortabele auto 1e Matlab practicum Inleiding Wiskundige Systeemtheorie (156056) (inleveren tot en met vrijdag 13 Maart 2009, via Teletop). Dit is de eerste van twee verplichte Matlab/Simulink-practica

Nadere informatie

Oefeningen Digitale Elektronica (I), deel 4

Oefeningen Digitale Elektronica (I), deel 4 Oefeningen Digitale Elektronica (I), deel 4 Oefeningen op min en maxtermen, decoders, demultiplexers en multiplexers (hoofdstuk 3, 3.6 3.7) Wat moet ik kunnen na deze oefeningen? Ik kan de minterm en maxtermrealisatie

Nadere informatie

Hoofdstuk 7 : Delen van veeltermen

Hoofdstuk 7 : Delen van veeltermen - 19 - Hoofdstuk 7 : Delen van veeltermen Delen van veeltermen door een veelterm: (boek pag 16) Bepaal het quotient en de rest van de volgende delingen (oefeningen pag 19 nr. - 5-6) 1.. 18 9 + 11 + 6........................

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Zin en onzin van de normale benadering van de binomiale verdeling

Zin en onzin van de normale benadering van de binomiale verdeling Zin en onzin van de normale benadering van de binomiale verdeling Jef Hendricx 1, 18 november 26 In lassiee handboeen van statistie worden ansen van de binomiale verdeling bereend met tabellen. Voor grotere

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

Vergelijkingen in één onbekende

Vergelijkingen in één onbekende Module 3 Vergelijkingen in één onbekende 3.1 Lineaire vergelijkingen Dit zijn vergelijkingen die herleid kunnen worden tot de gedaante ax+b = 0 met a,b Ê en a 0 ax+b = 0 ax = b x = b a V = { b } a Voorbeelden

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Scalair en vectorieel product

Scalair en vectorieel product (HOOFDSTUK, ut Theory and problems of Vector Analyss, door Murray, R. Spegel, Schaum s Seres, McGraw-Hll, New Yor). Scalar en vectoreel product SCALAIR PRODUCT. Het scalar product (of nwendg product) van

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi2030wbmt 1 / 14 Niet-lineaire diff. vgl. en stabiliteit Niet-lineaire

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

3 Elektronische structuur van materialen

3 Elektronische structuur van materialen 3 Eletronische structuur van materialen (Aanvulling op hoofdstuen 7 en 8 van Rosenberg.) 3.1 Vrije eletron model In het voorgaande hebben we steeds de geometrische structuur van materialen besproen. Toch

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Tips & Tricks: Tip van de maand december 2011. NX CAE NX Nastran: Memory optimalisatie buffsize f06 output

Tips & Tricks: Tip van de maand december 2011. NX CAE NX Nastran: Memory optimalisatie buffsize f06 output Tips & Tricks: Tip van de maand december 2011 NX CAE NX Nastran: Memory optimalisatie buffsize f06 output Door: Christophe Vandevelde In de techtip van augustus hebben we het gehad over de hardware optimalisatie

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Analyse Differentiaalvergelijkingen Jens Bossaert 2013 Gottfried Leibniz Isaac Newton Inhoudsopgave 1 Terminologie 4 2 Algemene technieken 5 2.1 Factorisatie..............................................

Nadere informatie

routeplanner in diversiteitsland bel ACB kenniscentrum voor emancipatie en participatie b activeren om verbinding te maken emanciperen x inburgeren j

routeplanner in diversiteitsland bel ACB kenniscentrum voor emancipatie en participatie b activeren om verbinding te maken emanciperen x inburgeren j ACB enniscentrum voor emancipatie en participatie routeplanner in diversiteitsland emanciperen x inburgeren j participeren b activeren scholing h bel om verbinding te maen diversiteit gender integratie

Nadere informatie

2. Een eerste kennismaking met Maxima

2. Een eerste kennismaking met Maxima . Een eerste kennismaking met Maxima Als u nog niet eerder kennis heeft gemaakt met CAS (Computer Algebra System) software, dan lijkt Maxima misschien erg gecompliceerd en moeilijk, zelfs voor het oplossen

Nadere informatie

Tentamen CTB2210. ConstructieMechanica 3

Tentamen CTB2210. ConstructieMechanica 3 Subfaculteit iviele Technie Vermeld op bladen van uw wer: onstructiemechanica STUDIENUER : N : Tentamen T10 onstructieechanica 9 februari xxx van 09:00 1:00 uur Dit tentamen bestaat uit 5 opgaven. ls de

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Examen G0N34 Statistiek

Examen G0N34 Statistiek Naam: Richting: Examen G0N34 Statistiek 8 september 2010 Enkele richtlijnen : Wie de vragen aanneemt en bekijkt, moet minstens 1 uur blijven zitten. Je mag gebruik maken van een rekenmachine, het formularium

Nadere informatie

Propositionele logica en predikatenlogica. 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica :

Propositionele logica en predikatenlogica. 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica : HOOFDSTUK 4. LOGICA Opgaven Propositionele logica en predikatenlogica 1. Noteer volgende Nederlandse uitspraken formeel m.b.v. propositionele logica : a) Als de maan ichtbaar is en het niet sneeuwt, al

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Digitale systemen. Hoofdstuk 6. 6.1 De digitale regelaar

Digitale systemen. Hoofdstuk 6. 6.1 De digitale regelaar Hoofdstuk 6 Digitale systemen Doelstellingen 1. Weten dat digitale systemen andere stabiliteitsvoorwaarden hebben In deze tijd van digitalisatie is het gebruik van computers in regelkringen alom.denk maar

Nadere informatie

Oefenopgaven 1 Devices Opgave 1.1

Oefenopgaven 1 Devices Opgave 1.1 Oefenopgaven 1 Devices Opgave 1.1 Beschouw onderstaande transistor. De technologie is de 0.25µm technologie uit het boek, maar we nemen λ=0 en V DSAT =. (Opm.: De zinsnede is de 0.25µm technologie uit

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model. Wiskens&co Yoeri Dijkstra en Loes Knoben

Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model. Wiskens&co Yoeri Dijkstra en Loes Knoben Mengen van scheikundige stoffen en het oplossen van scheikundige reacties, een wiskundig model Wiskens&co Yoeri Dijkstra en Loes Knoben oktober 9 Inleiding In dit rapport zal gekeken worden naar verschillende

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters. 23 juli 2015. dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Systeemtheorie. De Brabanter Jos

Systeemtheorie. De Brabanter Jos Systeemtheorie De Brabanter Jos Deel I Inleiding 1 Hoofdstuk 1 Signalen en Systemen 1.1 Signalen en classificatie van signalen Een signaal wordt mathematisch voorgesteld als een functie van een onafhankelijke

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 10 De afgeleide functie: Rekenregels en Toepassingen (versie 22 augustus 2011) Inhoudsopgave 1 Definitie Betekenis van de afgeleide 1 2 Standaardafgeleiden

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos

9e editie. Moderne wiskunde. Uitwerkingen Op stap naar 4 havo. Dick Bos 9e editie Moderne wiskunde Uitwerkingen Op stap naar 4 havo Dik Bos Inhoud Hoofdstuk Getallen 000 - Rekenen met reuken 000 - Deimale getallen, proenten en fator 000-3 Kwadraten 000-4 Wortels 000-5 Mahten

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Een korte beschrijving van de inhoud

Een korte beschrijving van de inhoud Een korte beschrijving van de inhoud Lineaire algebra maakt een betrekkelijk eenvoudige behandeling van de meetkunde in een vlak of de ruimte mogelijk. Omgekeerd illustreren meetkundige toepassingen op

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Hoofdstuk 4 Analytishe Meetkunde 4.1 Enkele stellingen uit de lineaire algera. 4.1.1 Coördinaten in een vetorruimte Laat V een n-dimensionale vetorruimte 1 zijn over een lihaam L. Vetoren in V stellen

Nadere informatie