Tentamen Gewone Differentiaal Vergelijkingen II

Maat: px
Weergave met pagina beginnen:

Download "Tentamen Gewone Differentiaal Vergelijkingen II"

Transcriptie

1 Tentamen Gewone Differentiaal Vergelijkingen II Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk de lineaire differentiaal vergelijking y y = 0. (a) Geef de algemene oplossing aan. (Expliciet, dus geen machtreeks!) (b) Bepaal de (unieke) oplossing die voldoet aan y(0) = 1, y (0) = y (0) = 0. (c) Los de differentiaalvergelijking door een machtreeks rond x = 0 op. Eerst algemeen en dan met de beginvoorwarden van (b). (d) Gebruik dit om 1 (3n)! te berekenen. (Geef een expliciete uitdrukking aan, maar je hoeft deze niet numeriek uit te rekenen.) Opgave Bepaal de Greense functie voor het randwaardeprobleem Hint: Substitueer x = e t. u + 1 u = f, u(1) = u() = 0. 4x Zie vervolg op achterkant!! 1

2 Opgave 3 (a) Bepaal de eigenwaarden 0 < λ 0 < λ 1 < en eigenfuncties voor het eigenwaarde probleem u + λu = 0 op [0, 1], u(0) = u (0), u(1) = 0. (b) Laat zien dat ( π λ n = n) + nπ + β, n = 0, 1,,..., waar βn 0. Opgave 4 Bekijk de differentiaalvergelijking van Legendre (α C vast): (z 1)u (z) + zu (z) α(α + 1)u(z) = 0. We zoeken een ontwikkeling voor de oplossing rond z = van de vorm u λ (z) = u k z λ k. (1) (a) Bepaal een inductivee conditie op de coëfficienten u k. (b) Laat zien dat λ {α, α 1}. (c) Bekijk het geval λ = α. Geef een expliciete formule voor u k. Gebruik hiervoor ( ) ( ) x x(x 1) (x n + 1) x :=, := 1, n n! 0 waar x C, n N. Welke conditie is er op α? (d) Bewijs dat de reeks (1) met λ = α voor z > 1 convergeert. (e) Laat zien dat u α een veelterm is als α N. (De Legendre polynomen.) (f) Als u α de boven bepaalde oplossing is, laat zien dat ook u α 1 een oplossing is. Wat is nu de conditie op α?

3 Oplossingen Oplossing 1 Dus: (a) Inzetten van y(x) = e kx levert k 3 = 1, en dus k 1 = 1, k = 1 + i 3, k 3 = 1 i 3 y(x) = c 1 e x + c e k x + c 3 e k 3x. = k. (b) De beginvoorwarden leveren de condities c 1 + c + c 3 = 1, c 1 + c k + c 3 k 3 = 0, c 1 + c (k ) + c 3 (k 3 ) = 0. Merk op dat (k ) = k 3 = k en (k 3 ) = k. Door optellen en van elkaar aftrekken van de tweede en derde vergelijking krijgen we c 1 + c (k + k ) + c 3 (k + k ) = 0, c (k k ) + c 3 (k k ) = 0. De tweede van deze levert c = c 3, en met k +k = 1 volgt uit de eerste dat c 1 c c 3 = c 1 c = 0, dus c 1 = c = c 3 en daarom c 1 = c = c 3 = 1/3. Dus y(x) = 1 ( e x + e kx + e ) k 3x 3 ( ( )) = 1 e x + e x 3 cos 3 x. () (c) Met geldt y(x) = a n x n y (x) = n(n 1)(n )a n x n 3 = (n + 3)(n + )(n + 1)a n+3 x n. n=3 Inzetten van de reeksen voor y en y in y = y en vergelijking van coefficienten geeft (n + 3)(n + )(n + 1)a n+3 = a n n N 0. We kunnen dus a 0, a 1, a willekeurig kiezen en verder geldt a 3n+k = k! (3n)! a k n 1, k {0, 1, }, ofwel a 3n = a 0 (3n)!, a 3n+1 = a 1 (3n)!, a 3n+ = a (3n)! 3 n 1.

4 Dus y(x) = a 0 x 3n (3n)! + a 1 ( x 3n+1 (3n + 1)! + a x + Natuurlijk geldt y(0) = a 0, y (0) = a 1, y (0) = a. De beginvoorwaarden van (b) leiden dus op (d) Met x = 1 krijgen we y(x) = x 3n (3n)!. 1 (3n)! = y(1), n=1 ) x 3n+. (3) (3n + )! waar y(x) de oplossing van y = y is die aan y(0) = 1, y (0) = y (0) = 0 voldoet. Door in () x = 1 te zetten krijgen we ( ( )) 1 (3n)! = e 1 3 cos. 3 (Dit is , wat op acht cijfers na de komma gelijk is aan 1 + 1/3! + 1/6! + 1/9!). Oplossing We zoeken eerst de algemene oplossing van u (x) + 1 u(x) = 0. 4x Met de substitutie x = e t, dus u(x) = v(t), hebben we du dx = dv dt dt dx = v (t) 1 x, d u dx = 1 x v (t) + 1 x v (t), dus v v et e + v = 0, t 4et of gewoon v v +v/4 = 0. De charakteristieke veelterm k k +1/4 heeft de dubbele nulpunt k = 1/, de oplossingen zijn dus v(t) = e t/ (c 1 + c t), Hiermee is u(x) = x(c 1 + c ln x). u(1) = c 1, u() = (c 1 + c ln ). De homogene randvoorwarden u(1) = u() = 0 leiden dus op c 1 = c = 0, er geldt dus eenduidigheid voor het inhomogene randwaardeprobleem. De oplossingen u 1 (x) = ln x x u (x) = (ln x ln ) x 4

5 voldoen aan u 1 (1) = u () = 0. De Wronski determinante u 1 u u 1u is gelijk aan ln, en dus is de Greensche functie G(x, ξ) = 1 { ln u1 (ξ)u (x) als 1 ξ x u 1 (x)u (ξ) als 1 x ξ { xξ (ln x ln ) ln ξ als 1 ξ x = ln (ln ξ ln ) ln x als 1 x ξ Oplossing 3 (a) De algemene oplossing van u + λu = 0 (waar λ > 0) is u(x) = c 1 cos( λx) + c sin( λx). Nu zijn u(0) = c 1 en u (0) = λc, dus moet c 1 = c, c = c. Dus u(x) = c( λ cos( λx) + sin( λx)). De voorwaarde u(1) = 0 leidt op λ cos( λ) + sin( λ) = 0, ofwel λ = tan λ. (b) We zoeken de oplossingen x 1, x,... van x = tan x. Op (0, π/) geldt tan x > 0 en bestaat dus geen oplossing. Een tekening van f 1 (x) = x, f (x) = tan x maakt duijdelijk dat x = tan x precies een oplossing x n in elk interval (π/ + nπ, 3π/ + nπ), n N 0 heeft, dus x n = π + nπ + β n met β n (0, π). Verder geldt dat x n voor n steeds dichter bij de linke rand van het interval (π/ + nπ, 3π/ + nπ) ligd, dus β n 0. De beweringen over λ n = x n volgenen meteen. Oplossing 4 (Alles resultaten) (a) Uit (1) volgt u λ (z) = u k (λ k)z λ k 1, u λ(z) = u k (λ k)(λ k 1)z λ k, en dus u k ((λ k)(λ k 1) + (λ k) α(α + 1)) z λ k u k ((λ k)(λ k 1))z λ k = 0. Door vergelijking van coefficienten krijgen we voor k = 0 en k = 1 en voor λ {, 3,...}: k= u 0 (λ(λ + 1) α(α + 1)) = 0, (4) u 1 ((λ 1)λ α(α + 1)) = 0, u k ((λ k)(λ k + 1) α(α + 1)) = u k (λ k + )(λ k + 1). (5) 5

6 (b) We kunnen u 0 en u 1 onafhankelijk kiezen. We kijken alleen naar de oplossing met u 0 = 1, u 1 = 0. (Een oplossing met u 0 = 0, u 1 = 1 kunnen we in een oplossing met u 0 = 1 transformeren als we λ door λ+1 vervangen.) Dan volgt uit (4) de conditie λ {α, α 1}. (c) Met λ = α wordt (5) Met u 0 = 1, u 1 = 0 krijgen we (α k + )(α k + 1) u k = u k ((α k)(α k + 1) α(α + 1)) (α k + )(α k + 1) = u k. k(α + 1 k) u(z) = i=0 z α i α(α ) (α i + )(α 1)(α 3) (α i + 1) ( i)( i ) ( )(α 1)(α 3) (α i + 1) We zijn dat α {1, 3,...} moet gelden. 6

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar 215-216 1ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm :

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : 11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : L[y] := [p(x)y ] + q(x)y = µr(x)y + f(x), < x < 1 (1) a 1 y() + a 2 y () =, b 1 y(1)

Nadere informatie

Tentamenopgaven over hfdst. 1 t/m 4

Tentamenopgaven over hfdst. 1 t/m 4 Ttamopgav over hfdst. 1 t/m 4 1. donderdag 31 oktober 1996 Bepaal de oplossing van het beginwaardeprobleem y + 4y = 4 cos 2x, y(0) = 1, y (0) = 0. 2. donderdag 31 oktober 1996 Bepaal de algeme oplossing

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u

== Hertentamen Analyse 1 == Dinsdag 25 maart 2008, u == Hertentamen Analyse == Dinsdag 5 maart 8, 4-7u Schrijf op ieder vel je naam en studentnummer, de naam van de docent (S Hille, O van Gaans) en je studierichting Geef niet alleen antwoorden, leg elke

Nadere informatie

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten)

18.I.2010 Wiskundige Analyse I, theorie (= 60% van de punten) 8.I.00 Wiskundige Analyse I, theorie 60% van de punten) Beantwoord elk van de vragen I,II,III en IV op één van de dubbele geruite bladen. Schrijf op elk van die dubbele geruite bladen, bovenaan de eerste

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Tentamen Functies en Reeksen

Tentamen Functies en Reeksen Tentamen Functies en Reeksen 6 november 204, 3:30 6:30 uur Schrijf op ieder vel je naam en bovendien op het eerste vel je studentnummer, de naam van je practicumleider (Arjen Baarsma, KaYin Leung, Roy

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi23wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi23wbmt 1 / 12 Fourierreeksen van even en oneven functies a 2 + (

Nadere informatie

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2

ax + 2 dx con- vergent? n ln(n) ln(ln(n)), n=3 (d) y(x) = e 1 2 x2 e 1 2 t2 +t dt + 2 Radboud Universiteit Nijmegen Tentamen Calculus NWI-NPB 8 januari 3, 8.3.3 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden. Maak uw redenering

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n.

3. Bepaal de convergentie-eigenschappen (absoluut convergent, voorwaardelijk convergent, divergent) van de volgende reeksen: n=1. ( 1) n (n + 1)x 2n. Radboud Universiteit Tentamen Calculus A NWI-WP025 25 januari 208, 8.30.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Analyse, Deel III Samenvatting Martijn Boussé

Analyse, Deel III Samenvatting Martijn Boussé Analyse, Deel III Inhoudsopgave I Lineaire Differentiaalvergelijkingen... 2 I.I Algemene theorie... 2 I.II Lineaire differentiaalvergelijkingen constante coëfficiënten... 3 I.III Lineaire differentiaalvergelijking

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013

Wiskundige Technieken 1 Uitwerkingen Tentamen 4 november 2013 Wiskundige Technieken Uitwerkingen Tentamen 4 november 0 Normering voor 4 pt vragen andere vragen naar rato): 4pt pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met of onbelangrijke rekenfoutjes

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Geef niet alleen antwoorden, maar bewijs al je beweringen.

Geef niet alleen antwoorden, maar bewijs al je beweringen. Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks.

n 2 + 3n + 6 4n 3 3 n + 8n n + 3n + 16 n=1 Indien convergent, bepaal dan ook de waarde van de reeks. Radboud Universiteit Nijmegen Tentamen Calculus NWI-NP004B januari 05,.30 5.30 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1

n 2 + 2n + 4 3n 2 n + 4n n + 2n + 12 n=1 Radboud Universiteit Nijmegen Tentamen Calculus 2 NWI-NP004B 6 april 205, 8.00 2.00 Het gebruik van een rekenmachine/gr, telefoon, boek, aantekeningen e.d. is niet toegestaan. Geef precieze argumenten

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Analyse I. f(x)dx + f(x)dx =

Analyse I. f(x)dx + f(x)dx = 1ste Bachelor Ingenieurswetenschappen/ Wiskunde/Natuurkunde Academiejaar 1-11 1ste semester, 18 januari 11 Analyse I 1. f en g zijn numerieke functies, f is differentieerbaar in a en g is differentieerbaar

Nadere informatie

Wiskunde: Voortgezette Analyse

Wiskunde: Voortgezette Analyse de Bach. IR Wet.: Architectuur Academiejaar 0-04 ste zittijd, januari 04 Wiskunde: Voortgezette Analyse. Gegeven is de reeks n x (x + ) n+ Toon aan dat de reeks puntsgewijs convergeert over R. Toon aan

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008 ste Bachelor Ingenieurswetenschappen Academiejaar 007-008 ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens

Nadere informatie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie Oefeningen Analyse III & Aanvullingen Wiskunde Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie 1-11 Leuven, Oktober 1 nico.scheerlinck@cs.kuleuven.be In deze bundel wordt

Nadere informatie

TENTAMEN ANALYSE 1. dinsdag 3 april 2007,

TENTAMEN ANALYSE 1. dinsdag 3 april 2007, TENTAMEN ANALYSE. dinsdag april 2007, 4.00-7.00. Het tentamen bestaat uit twee gedeelten: de eerste vijf opgaven gaan over de stof van het eerste gedeelte van het college. De laatste vijf opgaven gaan

Nadere informatie

Tentamen Lineaire Algebra

Tentamen Lineaire Algebra Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

Inhoud college 5 Basiswiskunde Taylorpolynomen

Inhoud college 5 Basiswiskunde Taylorpolynomen Inhoud college 5 Basiswiskunde 4.10 Taylorpolynomen 2 Basiswiskunde_College_5.nb 4.10 Inleiding Gegeven is een functie f met punt a in domein D f. Gezocht een eenvoudige functie, die rond punt a op f lijkt

Nadere informatie

Differentiaalvergelijkingen

Differentiaalvergelijkingen Notities bij de nascholing Differentiaalvergelijkingen Eekhoutcentrum 11 mei 2005 Bart Windels Differentiaalvergelijkingen 1 1 Algemeenheden Zij I een open interval van R (eventueel onbegrensd) en y :

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde

Zelftest wiskunde voor Wiskunde, Fysica en Sterrenkunde In onderstaande zelftest zijn de vragen gebundeld die als voorbeeldvragen zijn opgenomen in de bijhorende overzichten van de verwachte voorkennis wiskunde. Naast de vragen over strikt noodzakelijke voorkennis,

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

I. Gewone lineaire differentiaalvergelijkingen.

I. Gewone lineaire differentiaalvergelijkingen. I. Gewone lineaire differentiaalvergelijkingen. In dit hoofdstuk bespreken we een aantal zaken m.b.t. gewone lineaire differentiaalvergelijkingen. Het gaat om vergelijkingen van het type p N (z)y (N) (z)

Nadere informatie

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen

Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen Oefenopgaven wi3097: Numerieke methoden voor differentiaalvergelijkingen 1 Introductie Taylor polynoom, floating point getal, afrondfout Orde symbool Landau 1. Laat f(x) = x 3. Bepaal het tweede orde Taylor

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden.

Technische Universiteit Delft Tentamen Calculus TI1106M - Uitwerkingen. 2. Geef berekeningen en beargumenteer je antwoorden. Technische Universiteit elft Tentamen Calculus TI06M - Uitwerkingen Opmerkingen:. Het gebruik van de rekenmachine is NIET toegestaan.. Geef berekeningen en beargumenteer je antwoorden. 3. Bij iedere vraag

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 6-7 ste semester november 6 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Onderstel dat f : [a, b] R continu is over

Nadere informatie

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar De golfvergelijking in drie dimensies In drie dimensies wordt de golfvergelijking 2 Ψ t 2 = c2 ( 2 ) Ψ x 2 + 2 Ψ y 2 + 2 Ψ z 2 waar c een constante is die de snelheid van de golven aangeeft. Dit is de

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 4- ste semester 3 oktober 4 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Geef de definitie van een verdichtingspunt.

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Opgave a. We berekenen eerst een normaal v van V en een normaal w van W. v = (b a) (c a) = ((2)(1) ( 2)( 2), ( 2)( 1) ( 1)(1), ( 1)( 2) (2)( 1))

Opgave a. We berekenen eerst een normaal v van V en een normaal w van W. v = (b a) (c a) = ((2)(1) ( 2)( 2), ( 2)( 1) ( 1)(1), ( 1)( 2) (2)( 1)) Calculus 3. Uitwerking opgav 1 april. Opgave a. We berek eerst e normaal v van V e normaal w van W. Dus b a = 2, 4, 1 3, 2, 1 = 1, 2, 2, c a = 2,, 2 3, 2, 1 = 1, 2, 1, v = b a c a = 21 2 2, 2 1 11, 1 2

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D2. Datum: dinsdag 29 april 28. Tijd: 14: 17:. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem Examen Wiskundige Analyse I ste bach ir wet dinsdag 5 januari 206 Vraag.. Waar of vals (pt) Het beginvoorwaardenprobleem 32x 3 y = (y ) 3, y() = 2, y () = 4 bezit een unieke oplossing, die geldig is in

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

Examenvragen Wiskundige Analyse I, 1ste examenperiode

Examenvragen Wiskundige Analyse I, 1ste examenperiode Examenvragen Wiskundige Analyse I, ste examenperiode 24-25 Vraag (op 6pt) Vraag.. Waar of vals (.5pt) De Wronskiaanse determinant van twee LOF oplossingen y en y 2 van de differentiaalvergelijking cosh(x)y

Nadere informatie

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. ste Bachelor Ingenieurswetenschappen Academiejaar 8-9 ste semester januari 9 Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u

== Modeluitwerking tentamen Analyse 1 == Maandag 14 januari 2008, u == Modeluitwerking tentmen Anlyse == Mndg 4 jnuri 8, 4.-7.u. Formuleer de Tussenwrdestelling. Als f :, b] R continu is en s R ligt tussen f en fb, dn bestt er een c, b] met fc = s. b Toon n, dt de vergelijking

Nadere informatie

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L,

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L, .6. Andere warmteproblem. We hebb warmteproblem bekek van de vorm α 2 u xx = u t, < x u(, t) =, u(, t) =, t u(x, ) = f(x), x, waarbij de temperatuur aan de beide uiteind constant bovdi gelijk is.

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

6. Lineaire operatoren

6. Lineaire operatoren 6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.6, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 2 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 38 Outline 1 Rekenregels 2 K. P. Hart TW2040: Complexe

Nadere informatie

Tentamen Numerieke Wiskunde dinsdag, 28 januari 2014,

Tentamen Numerieke Wiskunde dinsdag, 28 januari 2014, Tentamen Numerieke Wiskunde dinsdag, 8 januari 04, 3.30 6.30. Zet op ieder vel dat je inlevert je naam en op et eerste vel bovendien nog je studentnummer.. Je mag et dictaat gebruiken, de uitwerkingen

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur.

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, 18.30-20.30 uur. Het gebruik

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Tentamen Numerieke Wiskunde (WISB251)

Tentamen Numerieke Wiskunde (WISB251) 1 Tentamen Numeriee Wisunde WISB51 Maa één opgave per vel en schrijf op ieder vel duidelij je naam en studentnummer. Laat duidelij zien hoe je aan de antwoorden omt. Onderstaande formules mag je zonder

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde de Bachelor EIT Academiejaar -4 se semeser 8 januari 4 Aanvullingen van de Wiskunde. Gegeven een homogene lineaire parile differeniaalvergelijking van eerse orde: a x,, x n u x a n x,, x n u x n. a Wa

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010 ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op dinsdag 26 augustus 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014)

Examen Analyse 2 : Theorie (zonder Maple). (7 januari 2014) Examen Analyse 2 : Theorie (zonder Maple). (7 januari 204). Maclaurin reeksen. Geef met bewijs de Maclaurin reeksontwikkeling van de logaritmische functie ln( + x). Geef ook het convergentie-interval van

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Basiswiskunde, 2DL03, woensdag 1 oktober 2008, uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Basiswiskunde, DL3, woensdag oktober 8, 9.. uur. Geef op het eerste vel met uitwerkingen aan welk programma (Schakelprogramma

Nadere informatie

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek

Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Opgaven bij de cursus Relativiteitstheorie wiskunde voorkennis Najaar 2018 Docent: Dr. H. (Harm) van der Lek Uitwerkingen worden beschikbaar gesteld op de dinsdagavond voorafgaande aan het volgende college

Nadere informatie

wiskunde B pilot vwo 2017-II

wiskunde B pilot vwo 2017-II Twee machten van maimumscore 5 f' ( ) = ln() + ln() Uit f' ( ) = volgt dat = Dus + = ( = ) Hieruit volgt = a+ a, met a =, moet minimaal zijn De vergelijking a = moet worden opgelost Dit geeft Hieruit volgt

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (526) op donderdag 23 oktober 28, 9. 2. uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Differentiaalvergelijkingen voor WbMT. wi2051wbmt. Dr. Roelof Koekoek

Differentiaalvergelijkingen voor WbMT. wi2051wbmt. Dr. Roelof Koekoek Differentiaalvergelijkingen voor WbMT wi25wbmt Dr Roelof Koekoek Het boek William E Boyce & Richard C DiPrima Elementary Differential Equations and Boundary Value Problems Tenth Edition, Wiley, 22, ISBN

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Basiswiskunde, 2DL03, woensdag 3 oktober 2007. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Algemeen deel. Bij het vermenigvuldigen met van de ongelijkheid moet u rekening houden met twee gevallen, te weten > 0 en < 0 en u moet

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.10, donderdag K. P. Hart Faculteit EWI TU Delft Delft, 23 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 46 Outline 1 2 3 K. P. Hart TW2040: Complexe Functietheorie

Nadere informatie