Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen

Maat: px
Weergave met pagina beginnen:

Download "Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen"

Transcriptie

1 de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar ste semester 26 januari 216 Aanvullingen van de Wiskunde / Partiële Differentiaalvergelijkingen 1. Gegeven een homogene lineaire partiële differentiaalvergelijking van eerste orde: a 1 (x 1,, x n x a n (x 1,, x n x n =. (1 (a Wat is het geassocieerde differentiaalstelsel aan deze vergelijking? (b Toon dat een eerste integraal van het geassocieerde stelsel aanleiding geeft tot een oplossing van (1. (c Als y = f(x 1,, x n een oplossing is van (1, dan is f(x 1,, x n = c een eerste integraal van het geassocieerde stelsel. Toon aan! 2. Zij [a, b] (, 2π en f : [, 2π] R de trapfunctie die op [a, b] de waarde 1 aanneemt, en daarbuiten. Toon aan dat f in kwadratisch gemiddelde kan benaderd worden door continue functies. eid hieruit af dat elke trapfunctie op [, 2π] in kwadratisch gemiddelde kan benaderd worden door continue functies.. Onderstel dat {p, p 1, } een orthogonale rij veeltermen is over [a, b] ten opzichte van een gewichtsfunctie r. Bewijs dat p n n enkelvoudige nulpunten heeft, allemaal gelegen in het interval (a, b. 4. Bespreek het Sturm-iouville probleem y + λy = met randvoorwaarden y( = en y(1 = y (1. Gebruik de oplossingen om een orthogonaal stel functies te bepalen over het interval [, 1]. Tijd: 1 uur minuten; Vragen 1 e: 15 punten; vragen en 4: 1 punten. Dit examen telt mee voor 5 % van het totaal.

2 de Bachelor EIT 2de en de Bachelor Wiskunde Academiejaar ste semester 26 januari 216 Oefeningen Aanvullingen van de Wiskunde 1. Gegeven is de partiële differentiaalvergelijking Hierin is p = z x (y zp + (x yq = z x. z en q =. Bepaal het integraaloppervlak dat gaat door de kromme k met y vergelijking { y + z = yz = x Beschouw de periodieke functie f (periode 2π gedefinieerd door (a Bepaal de Fourierreeks van f. f(x = x 2, π < x π. (b Gebruik deze reeks om de som te bepalen van de numerieke reeks ( 1 n+1. Een snaar is bevestigd tussen de punten x = en x =. Op het ogenblik t = wordt de snaar in beweging gebracht door haar een initiële snelheid v(x te geven volgens (figuur 1 v x b < ɛ v(x = 2ɛ elders, met b ergens op de snaar en ɛ klein genoeg zodat ɛ < b < ɛ. Zoek de verplaatsing u(x, t b ɛ b + ɛ x Figuur 1: De snaar krijgt lokaal een snelheid op t =, afgebeeld door het vectorveld. in functie van de tijd t en ruimte x, als je weet dat de golfvergelijking gegeven wordt door 2 u x = 1 2 u 2 c 2 t. 2 Vereenvoudig de oplossing met behulp van de formules van Simpson. heruitvinden met behulp van complexe analyse. (Je mag die zelf Tijd: 2 uur minuten; Vragen 1 e: 8 punten; vraag : 14 punten. Totaal: punten. Dit examen telt mee voor 5 % van het totaal.

3 Oplossingen 1. Differentiaalvergelijking: (y zp + (x yq = z x. Homogene vergelijking: Geassocieerd stelsel: (y z Ψ x + (x y Ψ y dx y z = Eerste integralen (methode der multiplicatoren: α = 1, β = 1, γ = 1 dy x y = + (z x Ψ z =. dz z x. 1. α(y z + β(x y + γ(z x = y z + x y + z x = 2. α dx + β dy + γ dz = dx + dy + dz = d(x + y + z x + y + z = c 1. α = x, β = z, γ = y 1. α(y z + β(x y + γ(z x = x(y z + z(x y + y(z x = 2. α dx + β dy + γ dz = x dx + z dy + y dz = 1 2 d(x2 + 2yz x 2 + 2yz = c 2. Verband tussen c 1 en c 2 : (1, ( x = c 1 (5 (2, (4 x 2 = c 2 (6 (5, (6 c 2 = (c 1 2. x + y + z = c 1 (1 x 2 + 2yz = c 2 (2 y + z = ( yz = x 2 (4 De oplossing is dus x 2 + 2yz = (x + y + z 2

4 2. a We berekenen eerst de Fourierreeks van f. Omdat f een even functie is, is deze van de vorm f(x = a 2 + a n cos nx. Dus a = 2 π f(x dx = 2 π x 2 dx = 2 π a n = 2 f(x cos nx dx = 2 π π = 2 [[ 2 sin nx ] π sin nx x 2x π n }{{} n = = 2 [[ cos nx ] π cos nx 2x 2 π = 2 [ 4π cos nπ [ 2 sin nx ] π ] π n = b Voor x = hebben we dan 4 cos nπ = 4( 1n } {{ } = [ x ] π x 2 cos nx dx ] dx ] dx = 2π2 f(x = a 2 + a n cos nx = π2 + 4( 1 n cos nx. en dus = π2 + 4( cos cos cos cos + π 2 12 =

5 . a Rand- en beginvoorwaardeprobleem: modelvergelijking met 2 u x = 1 2 u x, t 2 c 2 t 2 u(, t = u(, t = t u(x, = x (x, = v(x x t b Scheiden van veranderlijken. we zoeken oplossingen van de vorm u(x, t = X(xT (t die voldoen aan de randvoorwaarden: X (xt (t = 1 c 2 X(xT (t x, t met X(T (t = X(T (t =, t. Hieruit volgt dat X( = X( =. Anders is X(t =, voor elke t, en dan is u de nuloplossing. We kunnen de partiële differentiaalvergelijking nu herschrijven als X (x X(x = 1 c 2 T (t T (t = λ. De linker- en rechtertermen kunnen alleen aan elkaar gelijk zijn voor alle x en t als ze gelijk zijn aan een constante λ. We krijgen zo twee deelproblemen: X (x = λx(x en T (t = c 2 λt (t. c Het plaatsafhankelijk probleem. X (x = λx(t, met X( = X( =. Dit is een Sturm-iouville probleem, en we bepalen de eigenwaarden en bijhorende eigenfuncties. Als λ =, dan is X (x =, en dus X(x = Ax + B. Invullen van de randvoorwaarden X( = X( = geeft A = B =, en we vinden dus enkel de nuloplossing. Als λ >, dan vinden we X(x = A cosh( λx + B sinh( λx. Invullen van de randvoorwaarden X( = X( = geeft A = B =, en we vinden dus enkel de nuloplossing. Stel λ = k 2 <. We vinden nu X(x = A cos(kx + B sin(kx.

6 De randvoorwaarde X( = levert A =. Uit de randvoorwaarde X( = volgt dat B sin(k =. Hieruit volgt dat B = en dan is de oplossing de nuloplossing, tenzij dat sin(k =, of k = nπ. We vinden als eigenwaarden met bijhorende eigenfuncties λ n = n2 π 2, ( nπx X n (x = sin. d Het tijdsafhankelijk probleem. De gevonden eigenwaarden λ n vullen we in in de differentiaalvergelijking voor T. Hieruit halen we e De totale oplossing. u(x, t = X n (xt n (t = T (t = n2 π 2 c2 T (t ( nπc ( nπc T n (t = A cos t + B sin t. ( nπx ( nπc ( nπc ( nπc A n sin sin t + B n sin t sin t is een oplossing die voldoet aan de randvoorwaarden. Als we B n = nemen, dan voldoet die ook aan de randvoorwaarden. De coëfficiënten A n bepalen we via de overblijvende beginvoorwaarde (x, = v(x, en de orthogonaliteit van de eigenfuncties over [, ]: t t (x, t = nπc ( nπx ( nπc A n sin cos t t (x, = nπc ( nπx A n sin nπc A n = v(x sin ( nπx dx sin ( nπx 2 dθ A n = nπc = = b+ɛ v sin ( nπx b ɛ 2ɛ dx sin ( nπx 2 dθ [ ( ( ] v nπ(b ɛ nπ(b + ɛ cos cos π 2 cɛ ( v nπb ( nπɛ π 2 cɛ sin sin waarbij we gebruik maakten een van de formules van Simpson: cos(α β cos(α + β = 2 sin(α sin(β. De eindoplossing is dus u(x, t = v ( 1 nπb ( nπɛ ( nπx ( nπc π 2 cɛ n sin sin sin sin 2 t 4

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 3de Bachelor EIT - de Bachelor Fysica Academiejaar 014-015 1ste semester 7 januari 015 Aanvullingen van de Wiskunde 1. Gegeven is een lineaire partiële differentiaalvergelijking van orde 1: a 1 (x 1,,

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde 1ste semester 23 januari 2007 Aanvullingen van de Wiskunde 1. Gegeven zijn twee normen 1 en 2 op een vectorruimte V. Wanneer zegt men dat de 1 fijner is dan 2? Wat is dan het verband tussen convergentie

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde de Bachelor EIT Academiejaar -4 se semeser 8 januari 4 Aanvullingen van de Wiskunde. Gegeven een homogene lineaire parile differeniaalvergelijking van eerse orde: a x,, x n u x a n x,, x n u x n. a Wa

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differtiaalvergelijking Fourierreeks Partiële differtiaalvergelijking zijn vergelijking waarin e onbekde functie van twee of meer variabel z n partiële afgeleide(n) voorkom. Dit in

Nadere informatie

Wiskunde: Voortgezette Analyse

Wiskunde: Voortgezette Analyse de Bach. IR Wet.: Architectuur Academiejaar 0-04 ste zittijd, januari 04 Wiskunde: Voortgezette Analyse. Gegeven is de reeks n x (x + ) n+ Toon aan dat de reeks puntsgewijs convergeert over R. Toon aan

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen 1ste Bachelor Fysica en Sterrenkunde Academiejaar 014-015 1ste semester 1 oktober 014 Wiskundige Technieken 1. Beschouw een scalaire functie f : R R en een vectorveld

Nadere informatie

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen

Hoofdstuk 10: Partiële differentiaalvergelijkingen en Fourierreeksen Hoofdstuk : Partiële differentiaalvergelijkingen en Fourierreeksen Partiële differentiaalvergelijkingen zijn vergelijkingen waarin een onbekende functie van twee of meer variabelen en z n partiële afgeleide(n)

Nadere informatie

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx )

f even en g oneven = f g oneven. f(x) dx = 2 Stel dat f een even functie is en dat de Fourierreeks voor f gelijk is aan a n cos nπx + b n sin nπx ) .4. Ev onev functies. E functie f heet ev als voor elke x in het domein van f ook x tot dat domein behoort f( x) = f(x) voor alle x in het domein van f. En e functie f heet onev als voor elke x in het

Nadere informatie

Tentamen Gewone Differentiaal Vergelijkingen II

Tentamen Gewone Differentiaal Vergelijkingen II Tentamen Gewone Differentiaal Vergelijkingen II.0.007 Jullie mogen een willekeurige van de vier opgaven als bonusopgave bekijken. (Dus drie opgaven volledig en goed gedaan is al een 10.) Opgave 1 Bekijk

Nadere informatie

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm :

11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : 11.3. Inhomogene randwaardeproblemen. We beschouwen eerst inhomogene Sturm- Liouville randwaardeproblemen van de vorm : L[y] := [p(x)y ] + q(x)y = µr(x)y + f(x), < x < 1 (1) a 1 y() + a 2 y () =, b 1 y(1)

Nadere informatie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie

Hoofdstuk 11: Randwaardeproblemen en Sturm-Liouville theorie Hoofdstuk : Randwaardeproblemen en Sturm-Liouville theorie.. Tweepunts randwaardeproblemen. Bij het oplossen van partiële differentiaalvergelijkingen met behulp van de methode van scheiden van variabelen

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 12 januari 2010 ste Bachelor Ingenieurswetenschappen Academiejaar 9- ste semester januari Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentiaalvergelijkingen Technische Universiteit Delft Roelof Koekoek wi23wbmt Roelof Koekoek (TU Delft Differentiaalvergelijkingen wi23wbmt 1 / 12 Fourierreeksen van even en oneven functies a 2 + (

Nadere informatie

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm

5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm 5.8. De Bessel differentiaalvergelijking. Een differentiaalvergelijking van de vorm x y + xy + (x ν )y = met ν R (1) heet een Bessel (differentiaal)vergelijking. De waarde van ν noemt men ook wel de orde

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L,

10.6. Andere warmteproblemen. We hebben warmteproblemen bekeken van de vorm. 0 < x < L, t > 0. w(0, t) = 0, w(l, t) = 0, t 0. u(x, 0) = f(x), 0 x L, .6. Andere warmteproblem. We hebb warmteproblem bekek van de vorm α 2 u xx = u t, < x u(, t) =, u(, t) =, t u(x, ) = f(x), x, waarbij de temperatuur aan de beide uiteind constant bovdi gelijk is.

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar ste semester 10 januari 2008 ste Bachelor Ingenieurswetenschappen Academiejaar 007-008 ste semester 0 januari 008 Analyse I. Bewijs de stelling van Bolzano-Weierstrass: elke oneindige begrensde deelverzameling van R heeft minstens

Nadere informatie

1 WAAM - Differentiaalvergelijkingen

1 WAAM - Differentiaalvergelijkingen 1 WAAM - Differentiaalvergelijkingen 1.1 Algemene begrippen Een (gewone) differentiaalvergelijking heeft naast de onafhankelijke veranderlijke (bijvoorbeeld genoteerd als x), eveneens een onbekende functie

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur

Examen G0O17D Wiskunde II (6sp) maandag 10 juni 2013, 8:30-12:30 uur Examen GO7D Wiskunde II (6sp maandag juni 3, 8:3-:3 uur Bachelor Biochemie & Biotechnologie Bachelor hemie, Bachelor Geologie Schakelprogramma Master Biochemie & Biotechnologie en Schakelprogramma Master

Nadere informatie

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 3. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. ste Bachelor Ingenieurswetenschappen Academiejaar 8-9 ste semester januari 9 Analyse I. Formuleer en bewijs de formule van Leibniz voor de n-de afgeleide van het product van twee functies f en g.. Onderstel

Nadere informatie

Analyse, Deel III Samenvatting Martijn Boussé

Analyse, Deel III Samenvatting Martijn Boussé Analyse, Deel III Inhoudsopgave I Lineaire Differentiaalvergelijkingen... 2 I.I Algemene theorie... 2 I.II Lineaire differentiaalvergelijkingen constante coëfficiënten... 3 I.III Lineaire differentiaalvergelijking

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica

Examen G0O17E Wiskunde II (3sp) maandag 10 juni 2013, 8:30-11:30 uur. Bachelor Geografie en Bachelor Informatica Examen GO7E Wiskunde II (3sp maandag juni 3, 8:3-:3 uur Bachelor Geografie en Bachelor Informatica Auditorium De Molen: A D Auditorium MTM3: E-Se Auditorium MTM39: Sh-Z Naam: Studierichting: Naam assistent:

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 6-7 ste semester november 6 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Onderstel dat f : [a, b] R continu is over

Nadere informatie

Analyse I. f(x)dx + f(x)dx =

Analyse I. f(x)dx + f(x)dx = 1ste Bachelor Ingenieurswetenschappen/ Wiskunde/Natuurkunde Academiejaar 1-11 1ste semester, 18 januari 11 Analyse I 1. f en g zijn numerieke functies, f is differentieerbaar in a en g is differentieerbaar

Nadere informatie

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen

Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben

Nadere informatie

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN

34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 34 HOOFDSTUK 1. EERSTE ORDE DIFFERENTIAALVERGELIJKINGEN 1.11 Vraagstukken Vraagstuk 1.11.1 Beschouw het beginwaardeprobleem = 2x (y 1), y(0) = y 0. Los dit beginwaardeprobleem op voor y 0 R en maak een

Nadere informatie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie

Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie Oefeningen Analyse III & Aanvullingen Wiskunde Oefensessie 1 Lineaire differentiaalvergelijkingen & MAPLE Modeloplossingen Versie 1-11 Leuven, Oktober 1 nico.scheerlinck@cs.kuleuven.be In deze bundel wordt

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 4- ste semester 3 oktober 4 Tussentijdse evaluatie Analyse I. Toon aan dat een niet-stijgende begrensde rij convergent is.. Geef de definitie van een verdichtingspunt.

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I 1ste Bachelor Wiskunde Academiejaar 1-1 1ste semester, november 1 Tussentijdse evaluatie Analyse I 1. Onderstel dat f : [a, b] R een continue functie is. (i) Bewijs dat er een x 1 en x in [a, b] bestaan

Nadere informatie

Eerste orde partiële differentiaalvergelijkingen

Eerste orde partiële differentiaalvergelijkingen Eerste orde partiële differentiaalvergelijkingen Vakgroep Differentiaalvergelijkingen 1995, 2001, 2002 1 Eerste orde golf-vergelijking De vergelijking au x + u t = 0, u = u(x, t), a ɛ IR (1.1) beschrijft

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I ste Bachelor Wiskunde Academiejaar 5-6 ste semester 9 oktober 5 Tussentijdse evaluatie Analyse I. Geef de definitie van een Cauchy rij. Toon aan dat elke Cauchy rij begrensd is. Toon aan dat een numerieke

Nadere informatie

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm :

10.8. De Laplace vergelijking. De warmtevergelijking in meerdimensionale ruimten heeft de volgende vorm : 1.8. De Lplce vergelijking. De wrmtevergelijking in meerdimsionle ruimt heeft de volgde vorm : in R 2 : α 2 (u xx + u yy ) = u t in R 3 : α 2 (u xx + u yy + u zz ) = u t. Hierbij stelt u(x, y, t) de tempertuur

Nadere informatie

Differentiaalvergelijkingen Technische Universiteit Delft

Differentiaalvergelijkingen Technische Universiteit Delft Differentilvergelijkingen Technische Universiteit Delft Roelof Koekoek wi2030wbmt Roelof Koekoek (TU Delft) Differentilvergelijkingen wi2030wbmt 1 / 1 De Lplce vergelijking De tweedimensionle wrmtevergelijking

Nadere informatie

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal?

A = b c. (b) Bereken de oppervlakte van het parallellogram dat opgespannen wordt door b en c. Voor welke p is deze oppervlakte minimaal? Oplossing Tussentijdse toets Wiskunde II Vraag Zij A de matrix met kolomvectoren met p een vast reëel getal A = a b c a =, b =, c = p a Voor welke p R zijn de vectoren lineair afhankelijk? b Bereken de

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode

Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode Examenvragen Wiskundige Analyse I 1ste bach ir wet, eerste examenperiode 2008-2009 Een vloeistoftank met een capaciteit van 500 liter bevat aanvankelijk 100 liter water, waarin 30 kilogram zout is opgelost.

Nadere informatie

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom

. Maak zelf een ruwe schets van f met A = 2, ω = 6π en ϕ = π 6. De som van twee trigonometrische polynomen is weer een trigonometrisch polynoom 8. Fouriertheorie Periodieke functies. Veel verschijnselen en processen hebben een periodiek karakter. Na een zekere tijd, de periode, komt hetzelfde patroon terug. Denk maar aan draaiende of heen en weer

Nadere informatie

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).

x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt). 76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking Proeftentamen 3 Functies van één veranderlijke (15126 De uitwerkingen van de opgaven dienen duidelijk geformuleerd en overzichtelijk

Nadere informatie

Aanvullingen van de Wiskunde

Aanvullingen van de Wiskunde Aanvullingen van de Wiskunde S. Caenepeel Oefeningen Oefeningen 134 bij IR-WISK 11088 Aanvullingen van de Wiskunde Derde Bachelor Ingenieurswetenschappen Electronica en Informatietechnologie, Derde Bachelor

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 11 collegejaar college build slides Vandaag : : : : 17-18 11 23 oktober 2017 35 De sterrennacht Vincent van Gogh, 1889 1 2 3 4 5 Verband met de stelling van n 1 VA intro ection 16.7 Definitie Equation

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar

De golfvergelijking in drie dimensies. Golfvergelijking in een dimensie: trillende snaar De golfvergelijking in drie dimensies In drie dimensies wordt de golfvergelijking 2 Ψ t 2 = c2 ( 2 ) Ψ x 2 + 2 Ψ y 2 + 2 Ψ z 2 waar c een constante is die de snelheid van de golven aangeeft. Dit is de

Nadere informatie

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle.

Doe de noodzakelijke berekeningen met de hand; gebruik Maple ter controle. De n-de term van de numerieke rij (t n ) (met n = 0,, 2,...) is het rekenkundig gemiddelde van zijn twee voorgangers. (a) Bepaal het Z-beeld F van deze numerieke rij en het bijhorende convergentiegebied.

Nadere informatie

Hoofdstuk 1: Inleiding

Hoofdstuk 1: Inleiding Hoofdstuk 1: Inleiding 1.1. Richtingsvelden. Zie Stewart, 9.2. 1.2. Oplossingen van enkele differentiaalvergelijkingen. Zelf doorlezen. 1.3. Classificatie van differentiaalvergelijkingen. Differentiaalvergelijkingen

Nadere informatie

WI1708TH Analyse 2. College 5 24 november Challenge the future

WI1708TH Analyse 2. College 5 24 november Challenge the future WI1708TH Analyse 2 College 5 24 november 2014 1 Programma Vandaag 2 e orde lineaire differentiaal vergelijking (17.1) 2 1 e orde differentiaal vergelijking Definitie Een 1 e orde differentiaal vergelijking

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Examenvragen Wiskundige Analyse I, 1ste examenperiode

Examenvragen Wiskundige Analyse I, 1ste examenperiode Examenvragen Wiskundige Analyse I, ste examenperiode 24-25 Vraag (op 6pt) Vraag.. Waar of vals (.5pt) De Wronskiaanse determinant van twee LOF oplossingen y en y 2 van de differentiaalvergelijking cosh(x)y

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Tentamen Simulaties van biochemische systemen - 8C110 9 April uur

Tentamen Simulaties van biochemische systemen - 8C110 9 April uur Tentamen Simulaties van biochemische systemen - 8C0 9 April 200-900-200 uur Vier algemene opmerkingen: Het tentamen bestaat uit 6 opgaven verdeeld over pagina s Op pagina staat voor iedere opgave het maximale

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 12 collegejaar college build slides Vandaag : : : : 17-18 12 4 september 217 3 ail Training Vessel 263 tad Amsterdam 1 2 3 4 stelling van Gauss stelling van Green Conservatieve vectorvelden 1 VA

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur.

Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, uur. Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft Tentamen Differentiaalvergelijkingen, (wi1 909TH) woensdag 1 februari 2017, 18.30-20.30 uur. Het gebruik

Nadere informatie

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem

Examen Wiskundige Analyse I 1ste bach ir wet. dinsdag 5 januari Vraag 1.1. Waar of vals (1pt) Het beginvoorwaardenprobleem Examen Wiskundige Analyse I ste bach ir wet dinsdag 5 januari 206 Vraag.. Waar of vals (pt) Het beginvoorwaardenprobleem 32x 3 y = (y ) 3, y() = 2, y () = 4 bezit een unieke oplossing, die geldig is in

Nadere informatie

(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door

(10 pnt) Bepaal alle punten waar deze functie een relatief extreem of een zadelpunt heeft. Opgave 3. Zij D het gebied gegeven door Calculus 3. Tentamen Calculus 3, 8 April 11 Opgave 1. Zij f(x, y, z) = xy z 3xz en g(x, y, z) = x 3 +z sin(y) y sin(z). i) (5 pnt) Laat zien dat p = (, 1, 1) op de oppervlakken {f(x, y, z)} = en {g(x,

Nadere informatie

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN

168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 168 HOOFDSTUK 5. REEKSONTWIKKELINGEN 5.7 Vraagstukken Vraagstuk 5.7.1 Beschouw de differentiaalvergelijking d2 y d 2 = 2 y. (i) Schrijf y = a k k. Geef een recurrente betrekking voor de coëfficienten a

Nadere informatie

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix

1e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari y = u sin(vt) dt. wordt voorgesteld door de matrix e bachelor ingenieurswetenschappen Modeloplossing examen oefeningen analyse I, januari 9. Opgave: Bereken dt ( q) als p = (, ), q = (, ) en p u+v x = e t dt T : (u, v) (x, y) : u y = u sin(vt) dt Oplossing:

Nadere informatie

Oplossingen Wiskundige Analyse III. Bert De Deckere

Oplossingen Wiskundige Analyse III. Bert De Deckere Oplossingen Wiskundige Analyse III Bert De Deckere Inhoudsopgave 1 Velden 3 1.1 Transformatie divergentie............................... 3 Krommen 4.1 Constante kromming..................................

Nadere informatie

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen

Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen Hoofdstuk 3: Tweede orde lineaire differentiaalvergelijkingen De inhoud van hoofdstuk 3 zou grotendeels bekende stof moeten zijn. Deze stof is terug te vinden in Stewart, hoofdstuk 17. Daar staat alles

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1

IJkingstoets Wiskunde-Informatica-Fysica 29 juni Nummer vragenreeks: 1 IJkingstoets Wiskunde-Informatica-Fysica 29 juni 206 Nummer vragenreeks: IJkingstoets wiskunde-informatica-fysica 29 juni 206 - reeks - p. /0 Oefening Welke studierichting wil je graag volgen? (vraag

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN TENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D020. Datum: Vrijdag 26 maart 2004. Tijd: 14.00 17.00 uur. Plaats: MA 1.41 Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf

Nadere informatie

Vectoranalyse voor TG

Vectoranalyse voor TG college 1 collegejaar college build slides Vandaag : : : : 14-15 1 25 september 214 28 1 2 3 4 otatie Green De wet van Faraday 1 VA vandaag 4.5.6 ection 16.7 telling Vergeleijking (4.62) Theorem 6 Het

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINHOVEN Faculteit Wiskunde en Informatica. Het gebied is een ringvormig gebied met als rand de twee cirkels met vergelijking x + y 9 respectievelijk x + y 5. Laat A lnx + y dxdy.

Nadere informatie

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen

Lineaire gewone & partiele 1ste en 2de orde differentiaalvergelijkingen Lineaire gewone & partiele 1ste en de orde differentiaalvergelijkingen Basisbegrippen Een differentiaalvergelijking is een vergelijking waarin minstens een afgeleide van een onbekende reeelwaardige functie

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

WPO Differentiaalmeetkunde I

WPO Differentiaalmeetkunde I 1 Vrije Universiteit Brussel Academiejaar 006-007 Prof. Dr. R. Kieboom Dr. G. Sonck WPO Differentiaalmeetkunde I Krommen in R n 1. Neem R met een orthonormale basis en a R + 0. Voor elk punt p o, gelegen

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

WI1708TH Analyse 3. College 2 12 februari Challenge the future

WI1708TH Analyse 3. College 2 12 februari Challenge the future WI1708TH Analyse 3 College 2 12 februari 2015 1 Programma Vandaag Partiële afgeleiden (14.3) Hogere orde partiële afgeleiden (14.3) Partiële differentiaal vergelijkingen (14.3) 2 Functies van twee variabelen

Nadere informatie

Wiskunde voor informatici 2 Oefeningen

Wiskunde voor informatici 2 Oefeningen Wiskunde voor informatici Oefeningen Reinout Stevens resteven@vub.ac.be Prof: Ann Dooms Assistent: Arnout Van Messem 5 Juni 8 Gedachtenstroom In dit document staan de meeste oplossingen van de cursus Wiskunde

Nadere informatie

Relevante vragen , eerste examenperiode

Relevante vragen , eerste examenperiode Relevante vragen 2006 2007, eerste examenperiode OEFENING y = x 2 2, y = x, z = x 2 + y 2, z = x + 6 omvatten, indien we ons tot het gedeelte binnen de parabolische cilinder beperken, twee verschillende

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

1 Uitwendige versus inwendige krachten

1 Uitwendige versus inwendige krachten H1C8 Toegepaste mechanica, deel FORMULRIUM STERKTELEER 1 G. Lombaert en L. Schueremans 1 december 1 1 Uitwendige versus inwendige krachten Relaties tussen belasting en snedekrachten: n(x) = dn p(x) = dv

Nadere informatie

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8

TOELATINGSEXAMEN ANALYSE BURGERLIJK INGENIEUR EN BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 BURGERLIJK INGENIEUR ARCHTECT - 3 JULI 2003 BLZ 1/8 1. De functie f(x) = e kx + ax + b met a, b en k R en k < 0 heeft een schuine asymptoot y = x voor x + en voldoet aan de vergelijking Bepaal a, b en

Nadere informatie

Faculteit Wiskunde en Informatica VECTORANALYSE

Faculteit Wiskunde en Informatica VECTORANALYSE 2 Faculteit Wiskunde en Informatica Aanvulling 5 VECTORANALYE 2WA5 2006/2007 Hoofdstuk 5 De stellingen van tokes en Green 5. Inleiding In dit hoofdstuk worden de stellingen van tokes en van Green 2 behandeld.

Nadere informatie

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30

Hertentamen WISN102 Wiskundige Technieken 2 Di 17 april 13:30 16:30 Hertentamen WIN12 Wiskundige Technieken 2 Di 17 april 13:3 16:3 Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele onbelangrijke

Nadere informatie

TW2040: Complexe Functietheorie

TW2040: Complexe Functietheorie TW2040: Complexe Functietheorie week 4.9, maandag K. P. Hart Faculteit EWI TU Delft Delft, 13 juni, 2016 K. P. Hart TW2040: Complexe Functietheorie 1 / 41 Outline III.6 The Residue Theorem 1 III.6 The

Nadere informatie

Mathematical Modelling

Mathematical Modelling 1 / 94 Mathematical Modelling Ruud van Damme Creation date: 15-09-09 2 / 94 Overzicht 1 Herhaling 2 Deels oud, deels nieuw integreren 3 Lijnintegralen 3 / 94 Waarschuwing vooraf! Dit college heeft een

Nadere informatie

Overzicht Fourier-theorie

Overzicht Fourier-theorie B Overzicht Fourier-theorie In dit hoofdstuk geven we een overzicht van de belangrijkste resultaten van de Fourier-theorie. Dit kan als steun dienen ter voorbereiding op het tentamen. Fourier-reeksen van

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (15126) op dinsdag 4 januari 211, 8.45 11.45 uur. De uitwerkingen van de opgaven

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Tussentijdse evaluatie Analyse I

Tussentijdse evaluatie Analyse I 1ste Bachelor Wiskunde Academiejaar 1-14 1ste semester, 1 oktober 1 Tussentijdse evaluatie Analyse I 1. (a) Toon aan dat elke begrensde numerieke rij een convergente deelrij heeft (b) Geef de definitie

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D00. Datum: vrijdag 3 juni 008. Tijd: 09:00-:00. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #1 Uitwerking.

Math D2 Gauss (Wiskunde leerlijn TOM) Deelnemende Modules: /FMHT/ / A. Oefententamen #1 Uitwerking. Math D Gauss Wiskunde leerlijn TOM) Deelnemende Modules: 14-144/FMHT/14161/14144-1A Oefententamen #1 Uitwerking Vraagstuk 1 Bereken de oppervlakte integraal F ˆn d, waarbij Fx, y, z) x î + y ĵ z ˆk en

Nadere informatie

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013,

Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 2013, Radboud Universiteit Nijmegen Tentamen Calculus 1 NWI-NP003B 4 januari 013, 8.30 11.30 Het gebruik van een rekenmachine, telefoon en boek(en) is niet toegestaan. Geef precieze argumenten en antwoorden.

Nadere informatie

Differentiaalvergelijkingen Hoorcollege 11

Differentiaalvergelijkingen Hoorcollege 11 Differentiaalvergelijkingen Hoorcollege 11 Partiële differentiaalvergelijkingen: De Eendimensionale Golfvergelijking; De Tweedimensionale Laplacevergelijking A. van der Meer DV HC11 p. 1/17 De eendimensionale

Nadere informatie

Tuyaux 3de Bachelor Wiskunde WINAK

Tuyaux 3de Bachelor Wiskunde WINAK Tuyaux 3de Bachelor Wiskunde WINAK Eerste Semester 2011-2012 Inhoudsopgave 1 Inleiding 2 2 Maattheorie 3 2.1 Theorie....................................... 3 2.2 Oefeningen.....................................

Nadere informatie

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur

Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Hertentamen Wiskundige Technieken 1 Donderdag 4 jan 2018, 9-12 uur Normering voor 4 pt vragen (andere vragen naar rato): 4pt Goed begrepen en goed uitgevoerd met voldoende toelichting, eventueel enkele

Nadere informatie

Airyfunctie. b + π 3 + xt dt. (2) cos

Airyfunctie. b + π 3 + xt dt. (2) cos LaTeX opdracht Bewijzen en Redeneren 1ste fase bachelor in Fysica, Wiskunde Werk de volgende opdracht individueel uit. U moet hier alleen aan werken. Geef ook geen files door aan anderen. Ingediende opdrachten

Nadere informatie

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004)

FYSICA-BIOFYSICA : FORMULARIUM (oktober 2004) ste bachelor GENEESKUNDE ste bachelor TANDHEELKUNDE ste bachelor BIOMEDISCHE WETENSCHAPPEN FYSICA-BIOFYSICA : FORMULARIUM (oktober 004) Kinematica Eenparige rechtlijnige beweging : x(t) = v x (t t 0 )

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1

Resultaten IJkingstoets Bio-ingenieur 1 september Nummer vragenreeks: 1 Resultaten IJkingstoets Bio-ingenieur september 8 Nummer vragenreeks: Resultaten IJkingstoets Bio-ingenieur september 8 - p. / Aan de KU Leuven namen in totaal 8 aspirant-studenten deel aan de ijkingstoets

Nadere informatie