Combinatoriek groep 2

Maat: px
Weergave met pagina beginnen:

Download "Combinatoriek groep 2"

Transcriptie

1 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een directe formule geeft a n in termen van n. Bijvoorbeeld: a n = 2 n. Een recursieve definitie geeft aan hoe je elke term a n kunt berekenen uit de vorige termen (de recurrente betrekking). Om de rij vast te leggen, moeten er bij een recursieve definitie ook één of meer beginwaarden gegeven zijn. Een voorbeeld van een recursief gedefinieerde rij: a 0 = 1, a 1 = 2, a n+2 = 3a n+1 2a n voor alle n 0. Als je van deze rij a 10 wilt berekenen, dan moet je eerst a 3 berekenen uit a 1 en a 2, dan a 4 uit a 2 en a 3, dan a 5, enzovoorts, totdat je bij a 10 bent. Met wat doorzettingsvermogen lukt dat wel, maar wat als je a 2009 wilt weten? Het is dan handiger om een directe formule te hebben. Je kunt altijd proberen om een vermoeden van een directe formule te krijgen door een flink aantal termen uit te rekenen. Als je vermoeden aan de beginwaarden en aan de recurrente betrekking voldoet, dan moet dit de juiste formule zijn. (Er is immers maar één rij die aan de recurrente betrekking en de beginwaarden voldoet, want die leggen samen de rij vast.) Voor het voorbeeld hierboven krijgen we bijvoorbeeld: a 0 = 1, a 1 = 2, a 3 = = 4, a 4 = = 8 en a 5 = = 16. Hieruit krijgen we het vermoeden dat a n = 2 n. Dit voldoet duidelijk aan de beginwaarden. Het voldoet ook aan de recurrente betrekking: als a n+1 = 2 n+1 en a n = 2 n, dan geldt a n+2 = 3a n+1 2a n = 3 2 n n = (3 1) 2 n+1 = 2 n+2. Hiermee hebben we bewezen dat a n = 2 n een directe formule is voor de rij a 0, a 1, a 2,.... Deze strategie werkt als er een duidelijk patroon in de termen van de rij zit, maar dat is lang niet altijd zo. Er is ook een techniek die altijd werkt om de oplossing te vinden van een bepaald type recursie. Het gaat dan om homogene lineaire recurrente betrekkingen van orde 2, waarbij twee beginwaarden gegeven zijn. 1

2 Een algemene lineaire homogene recurrente betrekking van orde 2 met constante coëfficiënten B en C ziet er als volgt uit: a n+2 = Aa n+1 + Ba n voor alle n 0. (1) Voor gegeven beginwaarden a 0 en a 1 ligt de rij uniek vast, want je kunt dan a 2 berekenen uit a 0 en a 1, en dan ook a 3 uit a 2 en a 1, etc. Om de directe formule te vinden, bekijken we eerst de recurrente betrekking zonder beginvoorwaarden en proberen we of een meetkundige rij a n = λ n voldoet voor een zekere λ. Als we deze directe formule in (1) invullen, zien we dat moet gelden: λ n+2 = Aλ n+1 + Bλ n voor alle n 0. (2) We halen alles naar links en vervolgens λ n buiten haakjes: λ n (λ 2 Aλ B) = 0 voor alle n 0. In het bijzonder moet dit voor n = 0 gelden, dus in ieder geval moet λ 2 Aλ B = 0. (3) Als we omgekeerd een λ vinden die aan deze zogenaamde karakteristieke vergelijking (3) voldoet, dan verkrijgen we na vermenigvuldiging met λ n vergelijking (2) weer terug, waaruit volgt dat a n = λ n daadwerkelijk een oplossing is van de oorsponkelijke recurrente betrekking zonder beginvoorwaarden. Het polynoom in (3) heet het karakteristiek polynoom. Door te ontbinden of de abc-formule te gebruiken, vind je over het algemeen twee oplossingen van de karakteristieke vergelijking, zeg λ 1 en λ 2. De meetkundige rijen a n = λ n 1 en a n = λ n 2 voldoen dan allebei aan de recurrente betrekking (1). Maar nu voldoet ook de oplossing a n = Cλ n 1 + Dλ n 2 voor alle constanten C en D. Als we dit invullen voor a n en a n+1, krijgen we namelijk Aa n+1 + Ba n = A(Cλ n Dλ n+1 2 ) + B(Cλ n 1 + Dλ n 2) = C(Aλ n Bλ n 1) + D(Aλ n Bλ n 2) = Cλ n Dλ n+2 2. Nu hebben we oneindig veel oplossingen voor de recurrente betrekking, want we mogen C en D nog vrij kiezen. Zo krijgen we oneindig veel verschillende rijen, maar er is er maar één die ook nog eens voldoet aan de gegeven beginwaarden a 0 en a 1. Je moet dus C en D zo bepalen dat de directe formule de juiste waarden geeft voor a 0 en a 1. Samengevat is dit het stappenplan om een recurrente betrekking van orde 2 op te lossen: 2

3 Stap 1. Bepaal de karakteristieke vergelijking. Voor een recurrente betrekking van de vorm a n+2 = Aa n+1 + Ba n is dit λ 2 Aλ B = 0. (Maar let op: de recurrente betrekking is niet altijd precies in deze vorm gegeven.) Stap 2. Bepaal de twee oplossingen λ 1 en λ 2 van de karakteristieke vergelijking. Stap 3. Bepaal constanten C en D zodat a 0 = C + D en a 1 = Cλ 1 + Dλ 2. Stap 4. De directe formule is nu a n = Cλ n 1 + Dλ n 2. Stap 5. Controleer je oplossing op rekenfouten door a 2 op twee manieren uit te rekenen: met behulp van de gegeven recurrente betrekking en met behulp van de directe formule die je hebt gevonden. Opmerking: in stap 2 vind je niet altijd twee verschillende reële oplossingen. Verderop kijken we nog even naar wat er gebeurt als er slechts één oplossing is. Maar het kan natuurlijk ook gebeuren dat de vergelijking helemaal geen reële oplossingen heeft. In dat geval heeft de vergelijking twee complexe oplossingen, waarmee je hetzelfde stappenplan kunt uitvoeren. Over het rekenen met complexe getallen leer je meer in de trainingsweek. Dit heb je voor de opgaven hieronder nog niet nodig. Voorbeeld. Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 0, a 1 = 1, a n+2 = a n+1 + 2a n voor alle n 0. Oplossing. Er geldt hier A = 1 en B = 2, dus de karakteristieke vergelijking is λ 2 λ 2 = 0. We kunnen deze ontbinden als (λ 2)(λ + 1) = 0. Deze vergelijking heeft twee oplossingen: λ 1 = 2 en λ 2 = 1. De algemene oplossingen van de recurrente betrekking (zonder beginwaarden) zijn dus a n = C 2 n + D ( 1) n. Voor n = 0 moet gelden 0 = a 0 = C + D en voor n = 1 moet gelden 1 = a 1 = 2C D. Als we deze twee vergelijkingen bij elkaar optellen, krijgen we 1 = 3C, dus C = 1. Hieruit volgt D = 1. De directe formule 3 3 voor deze rij is dus a n = 1 3 2n 1 3 ( 1)n voor alle n 0. We controleren nog even of we geen rekenfout hebben gemaakt. Volgens de recurrente betrekking geldt a 2 = a 1 + 2a 0 = 1. Volgens de directe formule geldt a 2 = = en dat klopt. 3

4 Bij de opgaven die nu volgen moet je steeds kiezen: gebruik je de standaardtechniek voor homogene lineaire recurrente betrekkingen van orde 2, of reken je een aantal termen uit en probeer je daaruit een vermoeden voor een directe formule te vinden? Opgave 1 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 3, a 1 = 4, a n+2 = a 2 n (n + 1)a n+1 voor alle n 0. Opgave 2 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 3, a 1 = 1, a n+2 = 3a n a n voor alle n 0. Opgave 3 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 2, a 1 = 4, a n+2 = 6a n a n+1 voor alle n 0. Opgave 4 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 10, a n+1 = 50 a n voor alle n 0. 4

5 Opgave 5 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 2, a 1 = 12, a n+2 9a n = 0 voor alle n 0. Opgave 6 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 0, a n+1 = 2a n + 3 voor alle n 0. Als de karakteristieke vergelijking twee dezelfde oplossingen heeft, dus als λ 1 = λ 2, dan moet je het stappenplan een beetje aanpassen. Behalve de meetkundige rij a n = λ n 1 voldoet dan ook de rij a n = nλ n 1 aan de recurrente betrekking. Dit kunnen we als volgt bewijzen. Schrijf de recurrente betrekking in de vorm a n+2 = Aa n+1 + Ba n. De karakteristieke vergelijking is dan λ 2 Aλ B = 0. Stel dat deze twee dezelfde oplossingen λ = r heeft. Dan kunnen we hem schrijven als (λ r) 2 = 0, oftewel λ 2 2rλ + r 2 = 0. Er geldt dus A = 2r en B = r 2. Nu vullen we in de recurrente betrekking a n+1 = (n + 1)r n+1 en a n = nr n in: a n+2 = 2ra n+1 r 2 a n = 2r(n + 1)r n+1 r 2 nr n = (2(n + 1) n)r n+2 = (n + 2)r n+2. We zien dat a n = nr n aan de recurrente betrekking voldoet. De directe formule die ook aan de beginwaarden voldoet, wordt in dit geval van de vorm a n = Cλ n 1 + Dnλ n 1. Je kunt C en D opnieuw uit de beginwaarden afleiden. Twee stappen van het stappenplan worden dus anders: Stap 3a. Bepaal constanten C en D zodat a 0 = C en a 1 = Cλ 1 + Dλ 1. Stap 4a. De directe formule is nu a n = Cλ n 1 + Dnλ n 1. Opgave 7 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: 5

6 a 0 = 4, a 1 = 18, a n+2 = 4a n+1 4a n voor alle n 0. Opgave 8 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 10, a n+1 = a n + n voor alle n 0. Opgave 9 Laat x 1 en x 2 de nulpunten zijn van x 2 6x + 1. Bewijs dat voor iedere gehele niet-negatieve n geldt dat x n 1 + x n 2 geheel is en niet deelbaar door 5. Inhomogene lineaire recurrente betrekkingen van orde 2 Behalve homogene lineaire recurrente betrekkingen van orde 2 (die we met een standaardtechniek altijd op kunnen lossen) bestaan er ook inhomogene. Een algemene lineaire inhomogene recurrente betrekking van orde 2 met constante coëfficiënten B en C ziet er als volgt uit: a n+2 Aa n+1 Ba n = f(n) voor alle n 0. (4) Hierbij is f(n) een of andere functie van n. Dit kan van alles zijn. Ook voor dit type recursie hebben we een standaardtechniek. Hiervoor lossen we eerst de homogene variant van de recurrente betrekking op, dus de betrekking a n+2 Aa n+1 Ba n = 0. (5) We hebben hierboven geleerd hoe dat moet. We krijgen een oplossing a n die nog van twee constantes C en D afhangt. We gaan nu niet meteen de beginwaarden invullen om C en D te bepalen. We laten gewoon C en D even staan en noemen dit de algemene oplossing van de homogene recurrente betrekking (5). De volgende stap is om een particuliere oplossing van de inhomogene recurrente betrekking te vinden. Dat wil zeggen één oplossing a n van (4). Hier is niet een techniek voor die altijd werkt, maar over het algemeen is het een goed idee om iets te kiezen dat lijkt op de functie 6

7 f(n). Dus als f(n) een polynoom is, kies je een polynoom met dezelfde graad, en als f(n) een exponentiële functie is, kies je een exponentiële functie met hetzelfde grondtal. Alle oplossingen van de inhomogene recurrente betrekking worden nu gegeven door de som van de algemene oplossing van de homogene recurrente betrekking en de particuliere oplossing van de inhomogene recurrente betrekking. Hierin zitten nog steeds de constanten C en D die je vrij mag kiezen. Die kun je nu zo kiezen dat aan de beginwaarden voldaan wordt. Het stappenplan op een rijtje: Stap 1. Bepaal de algemene oplossing van de homogene recurrente betrekking, met daarin de constanten C en D. Stap 2. Probeer een particuliere oplossing van de inhomogene recurrente betrekking te vinden. Probeer hiervoor dingen die lijken op het inhomogene stuk van je betrekking. Stap 3. Tel de twee oplossingen van de vorige twee stappen op en kies C en D zodat aan de beginwaarden voldaan wordt. Stap 4. Controleer je oplossing op rekenfouten door a 2 op twee manieren uit te rekenen: met behulp van de gegeven recurrente betrekking en met behulp van de directe formule die je hebt gevonden. Voorbeeld. Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 0, a 1 = 1, a n+2 + 2a n+1 3a n = 2 n voor alle n 0. Oplossing. De bijbehorende homogene recurrente betrekking is a n+2 + 2a n+1 3a n = 0, met karakteristieke vergelijking λ 2 + 2λ 3 = 0, ofwel (λ 1)(λ + 3) = 0. De algemene oplossing is dus a n = C + D( 3) n. Voor de particuliere oplossing proberen we iets wat lijkt op 2 n, dus bijvoorbeeld a n = E 2 n. Dit vullen we in: E 2 n+2 + 2E 2 n+1 3E 2 n = 2 n. Delen door 2 n geeft: 4E + 4E 3E = 1, 7

8 dus E = 1. De particuliere oplossing a 5 n = 1 5 2n voldoet dus. De algemene oplossing voor onze inhomogene recurrente betrekking is dus a n = 1 5 2n + C + D( 3) n. Nu vullen we de beginwaarden in: 0 = a 0 = 1 + C + D en 1 = a 5 1 = 2 + C 3D. Hieruit lossen we op C = 0 5 en D = 1. Uiteindelijk wordt onze oplossing dus 5 a n = 1 5 2n 1 5 ( 3)n. Ten slotte controleren we of we geen rekenfout hebben gemaakt door a 2 op twee manieren uit te rekenen. Volgens de recursie geldt a 2 = = 1. Volgens de directe formule geldt a 2 = 4 9 = Opgave 10 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 0, a 1 = 1, a n+2 6a n+1 + 8a n = 3n voor alle n 0. Opgave 11 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 3, a 1 = 2, a n+2 3a n+1 + 2a n = 4n + 1 voor alle n 0. Opgave 12 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: a 0 = 1, a 1 = 2, a n+2 6a n+1 + 9a n = 3 n+1 voor alle n 0. Opgave 13 Zij gegeven de rij a 0, a 1, a 2,... die als volgt met recursie is gedefinieerd: 8

9 a 0 = 1, a 1 = 3, a n+2 = 4a n+1 a n voor alle n 0. Bewijs dat er voor alle n 0 gehele getallen c en d bestaan zodat a n = c 2 + 2d 2. 9

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen.

Volledige inductie. Hoofdstuk 7. Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen. Hoofdstuk 7 Volledige inductie Van een deelverzameling V van de verzameling N van alle natuurlijke getallen veronderstellen we het volgende: (i) 0 V (ii) k N k V k + 1 V Dan is V = N. Men ziet dit als

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

3. Stelsels van vergelijkingen

3. Stelsels van vergelijkingen . Stelsels van vergelijkingen We gaan de theorie van de voorgaande hoofdstukken toepassen op stelsels van lineaire vergelijkingen. Een voorbeeld: bepaal alle oplossingen (x,, ) van het stelsel vergelijkingen

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

De partitieformule van Euler

De partitieformule van Euler De partitieformule van Euler Een kennismaking met zuivere wiskunde J.H. Aalberts-Bakker 29 augustus 2008 Doctoraalscriptie wiskunde, variant Communicatie en Educatie Afstudeerdocent: Dr. H. Finkelnberg

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

kwadratische vergelijkingen

kwadratische vergelijkingen kwadratische vergelijkingen In deze paragraaf: 'exact berekenen van oplossingen', 'typen kwadratische vergelijkingen' en 'de abc-formule en de discriminant'. de abc-formule Voor een tweedegraads vergelijking

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Bestaat er dan toch een wortel uit 1?

Bestaat er dan toch een wortel uit 1? Bestaat er dan toch een wortel uit 1? Complexe getallen en complexe functies Jan van de Craats Universiteit van Amsterdam, Open Universiteit CWI Vacantiecursus 2007 Wat zijn complexe getallen? Wat zijn

Nadere informatie

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel)

Wortels met getallen en letters. 2 Voorbeeldenen met de (vierkants)wortel (Tweedemachts wortel) 1 Inleiding Wortels met getallen en letters WISNET-HBO update sept 2009 Voorkennis voor deze les over Wortelvormen is de les over Machten. Voor de volledigheid staat aan het eind van deze les een overzicht

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Set 1 Inleveropgaven Kansrekening (2WS20)

Set 1 Inleveropgaven Kansrekening (2WS20) 1 Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Set 1 Inleveropgaven Kansrekening (2WS20) 2014-2015 1. (Het sleutelprobleem) In een denkbeeldige wedstrijd kunnen deelnemers auto s

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen

Opmerking. TI1300 Redeneren en Logica. Met voorbeelden kun je niks bewijzen. Directe en indirecte bewijzen Opmerking TI1300 Redeneren en Logica College 2: Bewijstechnieken Tomas Klos Algoritmiek Groep Voor alle duidelijkheid: Het is verre van triviaal om definities te leren hanteren, beweringen op te lossen,

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Oplossingen Oefeningen Bewijzen en Redeneren

Oplossingen Oefeningen Bewijzen en Redeneren Oplossingen Oefeningen Bewijzen en Redeneren Goeroen Maaruf 20 augustus 202 Hoofdstuk 3: Relaties. Oefening 3..2 (a) Persoon p is grootouder van persoon q. (b) (p, q) O o O r P : [ (p, r) O (r, q) O ]

Nadere informatie

Les 1 Kwadraat afsplitsen en Verzamelingen

Les 1 Kwadraat afsplitsen en Verzamelingen Vwo 5 / Havo 4 Wis D Hoofdstuk 8 : Complexe getallen Pagina van Les Kwadraat afsplitsen en Verzamelingen Definities Verzamelingen Er zijn verschillende verzamelingen N = Natuurlijke getallen =,2,,.. Z

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade

Katernen. regionale training. tweede ronde. Nederlandse Wiskunde Olympiade Katernen voor de regionale training ten behoeve van de tweede ronde van de Nederlandse Wiskunde Olympiade NEDERLANDSE WISKUNDE OLYMPIADE Birgit van Dalen Julian Lyczak Quintijn Puite Inhoudsopgave Katern

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1

Kettingbreuken. 20 april 2010 1 K + 1 E + 1 T + 1 T + 1 I + 1 N + 1 G + 1 B + 1 R + 1 E + 1 U + 1 K + E + 1 N 1 2 + 1 0 + 1 A + 1 P + 1 R + 1 I + 1 Kettingbreuken Frédéric Guffens 0 april 00 K + E + T + T + I + N + G + B + R + E + U + K + E + N 0 + A + P + R + I + L + 0 + + 0 Wat zijn Kettingbreuken? Een kettingbreuk is een wiskundige uitdrukking

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Uitwerkingen van de opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording,

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

5 Lineaire differentiaalvergelijkingen

5 Lineaire differentiaalvergelijkingen 5 Lineaire differentiaalvergelijkingen In veel toepassingen in de techniek en de exacte wetenschappen wordt gewerkt met differentiaalvergelijkingen om continue processen te modelleren. Het gaat dan meestal

Nadere informatie

Uitwerkingen toets 9 juni 2012

Uitwerkingen toets 9 juni 2012 Uitwerkingen toets 9 juni 0 Opgave. Voor positieve gehele getallen a en b definiëren we a b = a b ggd(a, b). Bewijs dat voor elk geheel getal n > geldt: n is een priemmacht (d.w.z. dat n te schrijven is

Nadere informatie

4.1 Negatieve getallen vermenigvuldigen [1]

4.1 Negatieve getallen vermenigvuldigen [1] 4.1 Negatieve getallen vermenigvuldigen [1] Voorbeeld 1: 5 x 3 = 15 (3 + 3 + 3 + 3 + 3 = 15) Voorbeeld 2: 5 x -3 = -15 (-3 +-3 +-3 +-3 +-3 = -3-3 -3-3 -3 = -15) Voorbeeld 3: -5 x 3 = -15 Afspraak: In plaats

Nadere informatie

Meetkundige ongelijkheden Groep A

Meetkundige ongelijkheden Groep A Meetkundige ongelijkheden Groep A Oppervlakteformules, sinus- & cosinusregel, de ongelijkheid van Euler Trainingsweek, juni 011 1 Oppervlakteformules We werken hier met ongeoriënteerde lengtes en voor

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

META-kaart vwo3 - domein Getallen en variabelen

META-kaart vwo3 - domein Getallen en variabelen META-kaart vwo3 - domein Getallen en variabelen In welke volgorde moet ik uitwerken? */@ Welke (reken)regels moet ik hier gebruiken? */@ Welke algemene vorm hoort erbij? ** Hoe ziet de bijbehorende grafiek

Nadere informatie

2 Recurrente betrekkingen

2 Recurrente betrekkingen WIS2 1 2 Recurrente betrekkingen 2.1 Fibonacci De getallen van Fibonacci Fibonacci (= Leonardo van Pisa), 1202: Bereken het aantal paren konijnen na één jaar, als 1. er na 1 maand 1 paar pasgeboren konijnen

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie, november 006 Deze module is ontwikkeld in opdracht van ctwo. Copyright 006 R.Dames en H. van Gendt Inhoud Inhoud...3

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

Oplossing van opgave 6 en van de kerstbonusopgave.

Oplossing van opgave 6 en van de kerstbonusopgave. Oplossing van opgave 6 en van de kerstbonusopgave. Opgave 6 Lesbrief, opgave 4.5 De getallen m en n zijn verschillende positieve gehele getallen zo, dat de laatste drie cijfers van 1978 m en 1978 n overeenstemmen.

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

Inleiding logica Inleveropgave 3

Inleiding logica Inleveropgave 3 Inleiding logica Inleveropgave 3 Lientje Maas 30 september 2013 Ik (Rijk) heb verbeteringen in rood vermeld. Deze verbeteringen meegenomen zijn dit correcte uitwerkingen van de derde inleveropgaven. 1

Nadere informatie

Krulgetallen en een heel langzaam stijgende rij. D. C. Gijswijt

Krulgetallen en een heel langzaam stijgende rij. D. C. Gijswijt krulgetal.tex 11 oktober 2015 ²J1 Krulgetallen en een heel langzaam stijgende rij. D. C. Gijswijt Krulgetallen Bekijk eens het volgende rijtje: 2, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3. Dit rijtje

Nadere informatie

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr.

Numerieke aspecten van de vergelijking van Cantor. Opgedragen aan Th. J. Dekker. H. W. Lenstra, Jr. Numerieke aspecten van de vergelijking van Cantor Opgedragen aan Th. J. Dekker H. W. Lenstra, Jr. Uit de lineaire algebra is bekend dat het aantal oplossingen van een systeem lineaire vergelijkingen gelijk

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

Opgave 3 - Uitwerking

Opgave 3 - Uitwerking Mathrace 2014 Opgave 3 - Uitwerking Teken de rode hulplijntjes, en noem de lengte van dit lijntje y. Noem verder de lengte van een zijde van de gelijkzijdige driehoek x. Door de hoek van 45 graden in de

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica

Bijzondere getallen. Oneindig (als getal) TomVerhoeff. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Bijzondere getallen Oneindig (als getal) TomVerhoeff Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica T.Verhoeff@TUE.NL http://www.win.tue.nl/~wstomv/ Oneindig ... Oneindig 2 Top tien

Nadere informatie

Finaletraining Nederlandse Wiskunde Olympiade

Finaletraining Nederlandse Wiskunde Olympiade NEDERLANDSE W I S K U N D E OLYMPIADE Finaletraining Nederlandse Wiskunde Olympiade Met uitwerkingen Birgit van Dalen, Julian Lyczak, Quintijn Puite Dit trainingsmateriaal is deels gebaseerd op materiaal

Nadere informatie

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint.

logaritmen WISNET-HBO update jan Zorg dat je het lijstje met rekenregels hebt klaarliggen als je met deze training begint. Training Vergelijkingen met logaritmen WISNET-HBO update jan. 0 Inleiding Voor deze training heb je nodig: de rekenregels van machten de rekenregels van de logaritmen Zorg dat je het lijstje met rekenregels

Nadere informatie

Opgave 1 - Uitwerking

Opgave 1 - Uitwerking Opgave 1 - Uitwerking Om dit probleem op te lossen moeten we een zogenaamd stelsel van vergelijkingen oplossen. We zetten eerst even de tips van de begeleider onder elkaar: 1. De zak snoep weegt precies

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Complexe getallen in context

Complexe getallen in context Complexe getallen in context voor wiskunde D ( 5 VWO) R.A.C. Dames H. van Gendt Versie 4, juni 0 In deze vierde versie zijn alleen een aantal zetfouten verbeterd. Inhoudelijk is deze versie geheel gelijk

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman

Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Opgaven bij het vormen van ruimte: van Poincaré tot Perelman Roland van der Veen Inleiding Deze reeks opgaven is bedoeld voor de werkcolleges van de vakantiecursus Wiskunde in Wording, Augustus 2013. 1

Nadere informatie