Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Maat: px
Weergave met pagina beginnen:

Download "Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:"

Transcriptie

1 Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x + a 2 b y = a 2 c a a 2 x + a b 2 y = a c 2 De tweede vergelijking van de eerste aftrekken geeft: Mits a 2 b a b 2 is y = a2c ac2 a 2b a b 2 (a 2 b a b 2 y = a 2 c a c 2 Evenzo: { a b 2 x + b b 2 y = c b 2 a 2 b x + b b 2 y = c 2 b Weer de tweede vergelijking van de eerste aftrekken geeft: Mits a b 2 a 2 b is x = cb2 c2b a b 2 a 2b (a b 2 a 2 b x = c b 2 c 2 b Merk op dat de noemer (bijna dezelfde is Voer in als notatie: Dan staat er dus: a b a 2 b 2 = a b 2 a 2 b Dit is een (2 bij 2 determinant c b c 2 b 2 a c a x = a 2 c 2 b, y = a 2 b 2 a b a 2 b 2 We definiëren nu eerst een 3 3 determinant: a b c a 2 b 2 c 2 b = a 2 c 2 a 3 b 3 c 3 b 3 c 3 a 2 b c b 3 c 3 + a 3 b c b 2 c 2 a = b 2 c 2 a 3 c 3 + b 2 a c a 3 c 3 b 3 a c a 2 c 2 a = c 2 b 2 a 3 b 3 c 2 a b a 3 b 3 + c 3 a b a 2 b 2 Ga na dat de definitie inderdaad drie keer hetzelfde oplevert!

2 Hierbij heet b 2 c 2 b 3 c 3 de minor van a, b c b 3 c 3 de minor van a 2, enz Je kunt de determinant ontwikkelen naar elke kolom, de determinant is de som van: de elementen maal de minoren maal een teken Welk teken bepaal je met onderstaand schema; regeltje van alternerende tekens: Je kunt ook ontwikkelen naar een rij: a b c a 2 b 2 c 2 a 3 b 3 c 3 = a b 2 c 2 b 3 c 3 b a 2 c 2 a 3 c 3 + c a 2 b 2 a 3 b 3 Voorbeeld: = = ( ( ( 4 2 = = 2 Hier was er naar de eerste rij ontwikkeld Ontwikkelen we bijvoorbeeld naar de derde kolom, dan krijgen we: = = (4 2 3 (4 + 9 (2 = = 2 We voeren nu eerst voor een algemene determinant het begrip minor wat preciezer in Bekijk de determinant a a 2 a 3 a n a 2 a 22 a 23 a 2n a ij a n a n2 a n3 a nn De minor van a ij is de determinant die je krijgt door rij i en kolom j weg te laten 2

3 We definiëren nu de algemene n n determinant in termen van (n (n determinanten: a a 2 a n a 2 a 22 a 2n = a n a n2 a nn a (de minor van a a 2 (de minor van a ( n+ a n (de minor van a n Ook kun je weer ontwikkelen naar elke gewenste rij of kolom, het tekenschema is We komen straks terug op het oplossen van stelsels vergelijkingen met determinanten Eerst wat rekenregels en eigenschappen 2 Eigenschappen van determinanten a Bij spiegelen in de hoofddiagonaal behou de determinant dezelfde waarde Anders gezegd, voor een matrix A gel det A = det A T a a 2 a 3 b b 2 b 3 heeft dezelfde uitkomst (ontwikkel naar de eerste rij als c c 2 c 3 a b c a 2 b 2 c 2 (ontwikkel naar de eerste kolom a 3 b 3 c 3 Gevolg is: elke bewering over rijen is ook waar voor kolommen en vice versa b Bij verwisselen van twee rijen verandert het teken van de determinant a a 2 a 3 b b 2 b 3 c c 2 c 3 = b b 2 b 3 a a 2 a 3 c c 2 c 3 (ontwikkel de eerste determinant naar de eerste rij, de tweede determinant naar de tweede rij c Als twee rijen gelijk zijn, is de determinant nul (volgt uit b d Als je een rij vermenigvuldigt met een getal, dan vermenigvuldig je de 3

4 determinant met dat getal ka b c ka 2 b 2 c 2 ka 3 b 3 c 3 = ka α ka 2 α 2 + ka 3 α 3 = k(a α a 2 α 2 + a 3 α 3 a b c = k a 2 b 2 c 2 a 3 b 3 c 3 (hier is α i de minor van a i voor i=,2,3 e Als twee rijen evenredig zijn, dan is de determinant nul (volgt direkt uit c en d f Als een rij de som is van twee termen, dan is de determinant de som van de twee afzonderlijke determinanten a + x b c a 2 + x 2 b 2 c 2 = (a + x b 2 c 2 a 3 + x 3 b 3 c 3 b 3 c 3 (a 2 + x 2 b c b 3 c 3 + (a 3 + x 3 b c b 2 c 2 a b c = a 2 b 2 c 2 a 3 b 3 c 3 + x b c x 2 b 2 c 2 x 3 b 3 c 3 g Een determinant verandert niet als je een veelvoud van een rij optelt bij een andere rij (dit volgt uit e en f Deze laatste eigenschap kun je gebruiken om determinanten uit te rekenen: door het veegproces uit te voeren verandert een determinant niet (NB: Je mag nu ook met kolommen vegen, dit in tegenstelling tot wat we gezien hebben bij het oplossen van stelsels vergelijkingen Voorbeeld: Bereken p p keer de tweede kolom van de eerste af levert p 2 + 7p 7 4 ontwikkelen naar de eerste rij geeft dan p 2 + 7p 4 = 4 4p p = 3p 2 4

5 3 Nogmaals stelsels vergelijkingen Bekijk eerst eens het stelsel van drie vergelijkingen met drie onbekenden x, x 2, x 3 : ofwel Ax = b Noem D = det A = Dan is (i x D = (ii x 2 D = (iii x 3 D = als x = x x 2 x 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 b a 2 a 3 b 2 a 22 a 23 b 3 a 32 a 33 a b a 3 a 2 b 2 a 23 a 3 b 3 a 33 a a 2 b a 2 a 22 b 2 a 3 a 32 b 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33,,, x x 2 x 3 een oplossing is van Ax = b Dit staat bekend als de regel van Cramer = b b 2 b 3 BEWIJS: We laten alleen zien dat (i waar is, (ii en (iii bewijs je analoog Dus: neem aan dat x x 2 een oplossing is Dan is b a 2 a 3 b 2 a 22 a 23 b 3 a 32 a 33 x 3 = x a a 2 a 3 = x D + x 2 = x D + x 2 a 2 a 22 a 32 a 2 a 2 a 3 a 22 a 22 a 23 a 32 a 32 a 33 (een-na laatste stap wegens f, laatste stap wegens c + x 3 a 3 a 23 a 33 + x 3 NB: Hetzelfde bewijs werkt natuurlijk ook voor 4 4, 5 5, enz We formuleren de regel van Cramer nu in zijn algemene vorm a 2 a 3 a 22 a 23 a 32 a 33 a 3 a 2 a 3 a 23 a 22 a 23 a 33 a 32 a 33 5

6 STELLING 3 (Regel van Cramer Als det A = D, dan wor de oplossing voor Ax = b, waar a a n x b A =, x = b = gegeven door a n a nn x n b n x j = met j =,, n a a j b a j+ a n a n a nj b n a nj+ a nn D, Bewering: theoretisch is dit een fraaie stelling, je moet het alleen nooit zo uitrekenen Al die determinanten zijn heel veel rekenwerk, en vegen gaat sneller We geven nu nog enkele handige resultaten, zonder die te bewijzen STELLING 32 Een n n matrix A heeft een inverse als en alleen als det A Die inverse kun je ook met behulp van determinanten uitrekenen, maar vegen gaat weer veel sneller STELLING 33 Als det A =, dan heeft Ax = een oplossing x, en ook alleen dan De verzameling van al die vectoren noteer je met kera Tenslotte nog een stelling over de determinant van het produkt van matrices STELLING 34 det A B = det A det B Voorbeeld: ( A = 2, B = ( Dan is det A = 2 en det B = 9, en inderdaad ( AB = 2 ( = ( , zodat det AB = 8 = 2 9 6

7 2 Eigenwaarden en eigenvectoren 2 Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE 2 Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan heet x een eigenvector van A (bij eigenwaarde λ Voorbeelden: ( A = 2 A = Ax = ( Ax =, x = ( ( ( (, x = ( (, λ = 2, dan is = ( 2 2, λ =, dan is = ( ( = 2 ( = Interpretatie: A als afbeelding heeft in de richting van x een simpele vorm, namelijk oprekking met een factor λ Opmerking: als x een eigenvector is, dan is ook elk veelvoud van x een eigenvector bij dezelfde eigenwaarde, behalve de vector Om niet elke keer de uitzondering van mee te slepen, spreken we af dat we in de collectie van eigenvectoren bij een bepaalde eigenwaarde wel meenemen Voorbeeld: A = 2 3 A heeft drie eigenwaarden, te weten, 2 en 3 De eigenvectoren bij zijn alle vectoren van de vorm α (of α C, al naar gelang we A als reële of complexe matrix zien, α R De eigenvectoren bij 2 zijn alle vectoren van de vorm α, α R De eigenvectoren bij 3 zijn alle vectoren van de vorm α, α R 7

8 22 Hoe we eigenwaarden en eigenvectoren vinden Merk op, als x een eigenvector is, dan gel Ax = λx, ofwel dan is A λ x = dus (A λix = Volgens een stelling uit het vorige hoofdstuk is dan det(a λi =, omdat x Omgekeerd, als det(a λi =, dan is er ook een x zó dat (A λix = Voorbeeld: A = 2 2 λ 2 Dan is det(a λi = = 2 λ λ 3 = ( λ(λ 3(λ + = ( λ(λ 2 2λ De eigenwaarden zijn dan dus λ =, λ = en λ = 3 Eigenvectoren bij λ = krijg je door op te lossen: (A Ix =, dus 2 2 x = Oplossingen zijn de vectoren van de vorm α 2 Eigenvectoren bij -: los op (A ( I =, dus > waarvan de oplossingen zijn α 2, α R 2 Eigenvectoren bij 3: los op (A 3 Ix =, dus waarvan de oplossingen zijn α 2 2, α R, α R 2, 2, 8

9 De vergelijking det(a λi = heet de karakteristieke vergelijking van A Voorbeelden: Een voorbeeld met complexe oplossingen: A = λ λ Eigenvectoren bij i: ( i i ( met oplossingen α i Eigenvectoren bij -i: ( i i ( met oplossingen α i ( geeft = λ 2 + = geeft λ = ±i als eigenwaarden, met nu α C!, α C ( i ( i 2 Nu een 3 3 voorbeeld met complexe oplossingen: A = geeft λ 2 2 λ λ = ( λ λ2 2 λ ( λ{( λ 2 + 4} = geeft λ = of λ = ± 2i 2 2 = ( λ{( λ 2 +4} Eigenvectoren bij eigenwaarde : 2 oplossen geeft α 2 Eigenvectoren bij eigenwaarde + 2i: 2, α C 2i 2 2 2i 2i oplossen geeft α i Eigenvectoren bij 2i: α i, α C, α C 2 2i 2i 2 2i oplossen geeft 9

10 In al onze voorbeelden hierboven hadden we een n n matrix met n verschillende eigenwaarden Dat hoeft natuurlijk niet altijd zo te zijn Voorbeelden: ( A = ( 2 A = eigenvectoren heeft één eigenwaarde:, en elke vector is eigenvector ( heeft één eigenwaarde:, en alleen α, α R, zijn Laat nu A een n n matrix zijn met n verschillende eigenwaarden: λ, λ 2,, λ n Kies eigenvectoren x i met Ax i = λ i x i (i =,, n Vorm de matrix S die je krijgt door x i op de i-de kolom te zetten: S = (x x 2 x n Dan : A S = (Ax Ax 2 Ax n = (λ x λ 2 x 2 λ n x n = S Bovendien is S inverteerbaar (dat bewijzen we niet λ λ 2 λn λ n Een matrix die alleen maar niet-nul getallen op z n hoofddiagonaal heeft noemen we een diagonaalmatrix Voorbeeld: ( 4 A = 2 3 Eigenwaarden: 4 λ 2 3 λ = 2 7λ + λ 2 2 = λ 2 7λ + = (λ 5(λ 2 ( Dus 2 en 5 zijn eigenwaarden Eigenvectoren: is eigenvector bij 5, ( is eigenvector bij 2 2 ( Vorm S = 2 ( 4 Dan gel: AS = 2 3 ( 2 = ( 2 ( 2 5

11 Dus: S AS = ( 2 5 NB: S is inverteerbaar, want dets=-3 We merken nog het volgende op: A en A T hebben dezelfde eigenwaarden (maar niet dezelfde eigenvectoren natuurlijk Verder, als een complex getal λ een eigenwaarde is van de (complexe matrix A, dan is λ een eigenwaarde van A Tenslotte hebben we de volgende belangrijke stelling: STELLING 22 Als A een zelfgeadjungeerde n n matrix is dan zijn alle eigenwaarden van A reëel, en de eigenvectoren bij verschillende eigenwaarden staan loodrecht op elkaar Verder zijn er vectoren x,, x n die loodrecht op elkaar staan, en reele getallen λ,, λ n zo dat Ax i = λ i x i, en de matrix S = (x x n is inverteerbaar In dit geval hebben we dus AS = SD met D de diagonaalmatrix met λ tot en met λ n op de diagonaal Voorbeeld: ( 2 Neem als voorbeeld de matrix A = Ga na dat de eigenwaarden 3 en - zijn, met bijbehorende eigenvectoren en, re- 2 ( ( ( ( spectievelijk Het inproduct, is nul, dus staan deze vectoren inderdaad loodrecht op elkaar

12 3 Lineaire dv van orde 2 met constante coefficienten 3 Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, dwz dv s van de vorm a y + a y + a 2 y = Probeer eerst eens of y(x = e λx een oplossing kan zijn voor een of ander getal λ Invullen geeft voor alle x Dat kan alleen als a y + a y + a 2 y = (a λ 2 + a λ + a 2 e λx =, a λ 2 + a λ + a 2 = Deze kwadratische vergelijking in λ heet de karakteristieke vergelijking We weten dat deze vergelijking in het algemeen twee, eventueel complexe, oplossingen heeft Deze oplossingen zullen we voor nu even noteren met λ en λ 2 Een gevolg van een algemene stelling is dat als λ λ 2 dan is de algemene oplossing van de differentiaalvergelijking gegeven door y(x = c e λx + c 2 e λ2x, met c, c 2 willekeurige constanten Voorbeelden: y y = Probeer y = e λx De karakteristieke vergelijking wor λ 2 =, dus λ = ± De algemene oplossing is dus y(x = c e x +c 2 e x, met c, c 2 R 2 y + 3y + 2y = De karakteristieke vergelijking is λ 2 + 3λ + 2 = (λ + 2(λ + =, dus λ = 2 of λ = De algemene oplossing is dus y(x = c e 2x + c 2 e x, met c, c 2 R 3 y + y = De karakteristieke vergelijking is λ 2 + =, dus λ = ±i Alle complexe oplossingen worden dan gegeven door y(x = c e ix + c 2 e ix, met c, c 2 C Nu is e ix = cos x + i sin x en e ix = cos x i sin x Dus y(x = (c + c 2 cos x + i(c c 2 sin x Neem nu c + c 2 = a R èn i(c c 2 = b R Dat kan, bijvoorbeeld c = c 2 werkt Dan y(x = a cos x + b sin x met a, b R is de algemene reële oplossing 2

13 4 y +2y +y = De karakteristieke vergelijking is λ 2 +2λ+ =, dat geeft λ = Er is nu maar één oplossing van de vorm y(x = e λx, namelijk y = ce x Nu vinden we de andere oplossingen door variatie van constanten Stel y(x = c(xe x is een oplossing Dan Dus y = c e x ce x y = (c e x c e x (c e x ce x = c e x 2c e x + ce x y + 2y + y = (c 2c + c + 2c 2c + ce x = c e x =, zodat c = Dat betekent c(x = ax + b, met a, b R Dus y(x = axe x + be x met a, b R Dat is altijd zo: als er maar één oplossing van de karakteristieke vergelijking is, zeg λ, dan is naast e λx ook xe λx een oplossing 32 Inhomogene vergelijking We bekijken nu vergelijkingen van de vorm a y + a y + a 2 y = f(x Eerst doen we een algemene bewering: als y (x één oplossing van de inhomogene vergelijking is en c y (x+c 2 y 2 (x de algemene oplossing van de homogene vergelijking a y + a y + a 2 y = dan is de algemene oplossing van de inhomogene vergelijking gegeven door y (x + c y (x + c 2 y 2 (x met c, c 2 R Dat is leuk, omdat we nu maar één oplossing van de inhomogene vergelijking hoeven te vinden, maar hoe doe je dat dan? Voordat we daar wat over zeggen merken we op dat die ene oplossing van de inhomogene vergelijking een particuliere oplossing heet Hoe vind je zo n particuliere oplossing? Er is een algemene methode (ook nu weer variatie van constanten geheten, maar die is ingewikkeld Voor veel functies f werkt het volgende idee: probeer voor y lineaire combinaties van f, f, f, We illustreren dit met wat voorbeelden Voorbeelden: 3

14 Los op y y = x Probeer als particuliere oplossing y = ax + b Invullen geeft (omdat y = y y = ax b = x, dus b =, a = De algemene oplossing is dus y(x = x + c e x + c 2 e x 2 y +y = cos x Probeer voor y een functie van de vorm y = a cos x+b sin x Dan is y = a cos x b sin x, en y = a sin x + b cos x Dus y + y = ( a + b cos x (a + b sin x = cos x, wat geeft a + b =, a + b = Oplossen van dit stelsel geeft a = 2, b = 2 Dus is 2 cos x + 2 sin x een oplossing De oplossing van de homogene vergelijking krijg je zoals gewoonlijk door de karakteristieke vergelijking op te lossen: λ 2 + λ = λ(λ + = geeft λ = of λ = De algemene oplossing is dus y(x = 2 cos x + 2 sin x + c e x + c 2 met c, c 2 R 3 y y = e x Nu werkt ae x natuurlijk niet als particuliere oplossing omdat dit al een oplossing van de homogene vergelijking is Probeer in zulke gevallen echter axe x = y(x Dan y = axe x + ae x, y = axe x + 2ae x, dus y y = 2ae x = e x, geeft a = 2 Een particuliere oplossing is dus y(x = 2 xex, zodat de algemene oplossing wor y(x = 2 xex + c e x + c 2 e x met c, c 2 R Laten we het recept voor het oplossen van een inhomogene lineaire dv samenvatten Los de bijbehorende homogene dv op 2 Vind een particuliere oplossing bijvoorbeeld met de methode zoals boven beschreven 3 Los de constanten in de algemene oplossing op dmv rand- of beginvoorwaarden (indien die aanwezig zijn Van dat laatste geven we nog een voorbeeld: Los op y + y = cos x met y( = en y ( = We weten al dat de algemene oplossing is y(x = 2 cos x + 2 sin x + c e x + c 2 Invullen van y( = en y ( = geeft = 2 + c + c 2 en = 2 c Dus c = 2 en c 2 = De gezochte oplossing is dus y(x = 2 cos x + 2 sin x + 2 e x We merken tenslotte op dat de technieken die hier gebruikt zijn ook werken voor de algemenere situatie van een n-de orde lineaire differentiaalvergelijking met constante coëfficienten 4

15 4 Stelsels differentiaalvergelijkingen 4 Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x 2(t x n(t = A x (t x 2 (t x n (t, A een n n matrix ( Voorbeelden: { dx = 2x + y dy = 2y, dus hier is A = ( 2 2 Dit stelsel is simpel op te lossen: y(t = c e 2t invullen in x (t = 2x + y geeft x (t = 2x(t + ce 2t, een inhomogene differentiaalvergelijking Die los je eenvoudig op: x(t = c e 2t 4 ce 2t 2 Hoe nu te handelen met bijvoorbeeld { x (t = 2y 3x y (t = 2y 3x STELLING 4 Als λ een eigenwaarde is van A en x de bijbehorende eigenvector is, dan is x(t = e λt x een oplossing van (* BEWIJS: Ax = λx, dus Ae λt x = λe λt x = (e λt x QED In het tweede voorbeeld, waar A = 3 λ 3 dat 3 en -4 de eigenwaarden zijn Eigenvectoren bij 3: oplossen van α R Eigenvectoren bij -4: oplossen van R ( , volgt uit 2 2 λ = λ2 + λ 2 = (λ + 4(λ 3 = ( ( ( geeft α 3 ( 2 geeft α,, α 5

16 We zien dat voor elke c, c 2 uit R, c e 3t ( 3 ( 2 en c 2 e 4t oplossingen zijn Bewering: alle oplossingen zijn van de vorm ( ( ( x(t = c y(t e 3t + c 3 2 e 4t 2 met andere woorden met c, c 2 R { x(t = c e 3t + 2c 2 e 4t y(t = 3c e 3t + c 2 e 4t Dat is altijd zo: als λ,, λ n de eigenwaarden van A zijn met x,, x n de bijbehorende eigenvectoren, dan krijg je alle oplossingen van x (t = Ax(t via x(t = c e λt x + + c n e λnt x n, met c,, c n (eventueel complexe getallen Voorbeelden: x = 3x + y 3 Los op y = 2y + z z = z A = 3 2, Eigenwaarden zijn 3, 2 en Bijbehorende eigenvectoren,, 2 2 Oplossingen zijn dus x(t = c e 3t + c 2 e 2t + c 3 e t y(t = c 2 e 2t 2c 3 e t met c, c 2, c 3 R z(t = 2c 3 e t 4 Los op { x = x 2y y = 2x + y ( 2 A = Eigenwaarden: ( λ = geeft λ = ± 2i 2 ( ( 2i 2 Eigenvectoren bij +2i: oplossen geeft 2 2i i als eigenvector 6

17 ( 2i 2 Eigenvectoren bij 2i: 2 2i eigenvector ( oplossen geeft i als Dus: met c, c 2 C { x(t = (c + c 2 e t cos 2t + i(c c 2 e t sin 2t y(t = i(c c 2 e t cos 2t + (c + c 2 e t sin 2t Nu hebben we een probleem: we willen de reële oplossingen hebben Bedenk dat e (+2it = e t e 2it = e t cos 2t + ie t sin 2t Door nu c en c 2 zo te kiezen dat a = c + c 2 R èn b = i(c c 2 R krijgen we alle reële oplossingen { x(t = ae Dus: alle reële oplossingen zijn t cos 2t + be t sin 2t y(t = be t cos 2t + ae t sin 2t met a, b R 42 Stelsels inhomogene differentiaalvergelijkingen Ook voor stelsels inhomogene differentiaalvergelijkingen werkt het gebruikelijke proberen van een oplossing voor bepaalde soorten rechterlid Voorbeeld: { x = y + t 3 y = x + t Eerst het homogene stuk { ( ( x = y x y = x ofwel y = ( x y Eigenwaarden zijn ±i, alle oplossingen voor de homogene vergelijking zijn { x(t = a cos t + b sin t met a, b R y(t = b cos t + a sin t Nu moeten we nog ( één oplossing ( van de inhomogene ( ( vergelijking ( vinden x a c e g Probeer daartoe = t y 3 + t b 2 + t + met d f h a, b, c, d, e, f, g, h reële getallen Dan is ( x y = 3t 2 ( a b = t 3 ( b + a ( c + 2t d ( e + f + t 2 ( d c + t ( f e + ( h + g 7

18 Vergelijk coëfficienten, je krijgt het volgende stelsel van acht vergelijkingen met acht onbekenden: a = b = d = 3a c = 3b 2c = f e + = d e = h f = g Dit stelsel is eenvoudig op te lossen, je krijgt a = d =, b =, c = 3, e =, f = g = 6, h = Samenvattend: ( ( x = t 3 y +t 2 ( 3 ( +t 6 ( 6 + = ( 3t 2 t 6 t 3 6t + De algemene oplossing is dus: { x(t = a cos t + b sin t + 3t 2 t 6 y(t = b cos t + a sin t t 3 6t + 8

19 Opgaven Determinanten a Bereken de volgende determinanten: b Bewijs: a b c = (a b(b c(c a(a + b + c a 3 b 3 c 3 p q r c Bewijs: q r p r p q = p q + r λ d Los λ op uit 3 λ λ 3 =, met λ R λ 4 e Bereken : i 4 i 4 i 4 i x x f Los op : x 3 3 = x

20 2 Stelsels vergelijkingen a Bepaal de oplossing van { 2x y + 3z = 6 x + 2y z = 4 b Voor welke waarden(n van p is er een oplossing van het volgende stelsel? Geef de oplossing ook c Heeft het stelsel een oplossing? Zo ja, welke? x y + 3z = 3 2x + y z = 6 x + 2y + 2z = 3x 2y 2z = p x 4y + 3z = 9 3x 2y z = 3 4x 6y 8z = 6 2x + 2y 4z = 2 d Voor welke waarden van p heeft het volgende stelsel een oplossing? x + pz = y + pu = px + z = py + u = Bepaal ook de oplossing(en voor die waard(en van p waarvoor het stelsel oplosbaar is 3 Men zoekt een particuliere oplossing φ(x van de lineaire dv ay + by + cy = f(x Welke gedaante van φ(x (met onbepaalde coëfficienten probeert u, als: (a (b f(x = x 3 + sin 2x f(x = xe 2x (c f(x = (sin x + cos x 2 + (d f(x = e x sin 2x 4 Bepaal de algemene oplossing: (a y 2y 3y = (b y 4y + 3y = (c y + 2y + y = (d y + 2y = (e y + 2y 8y 4x 2 = (f y = 3e x + 4y sin x (h ẍ + ẋ = 2t sin t cos t [ ẋ = dx ] 2

21 5 Los de volgende beginwaardeproblemen op: (a (b { y 3y + 2y = y( = y ( = { ẍ x = 2 cos t 2t sin t x( = ẋ( = 6 Bepaal van de volgende stelsels differentiaalvergelijkingen de oplossing (e (a (c { dx = 2x + y dy = x + 2y dx = 3x + z dy = 3y + z dz = x + y + 2z (b (d { dx = x y dy = 4x + y dx = 2x + 3y + 3z dy = 3x y dz = 3x z Bepaal van het stelsel onder d die oplossingen die voldoen aan x( =, y( = 2, en z( = (f (h { dx = x + 2y + e t dy = 3x + 2y e t (g { dx = 2x + y + 3t 5 dy = x + 2y 2 (i { dx = 4x 3y + sin t dy = 2x y 2 cos t dx = 2x + 3y + 3z + 48t dy = 3x y + 2e t dz = 3x z 2e t 2

1 Eigenwaarden en eigenvectoren

1 Eigenwaarden en eigenvectoren Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan

Nadere informatie

1 Stelsels lineaire vergelijkingen.

1 Stelsels lineaire vergelijkingen. Stelsels lineaire vergelijkingen Ter herinnering: in de tweede klas Havo/Atheneum leer je twee vergelijkingen met twee onbekenden oplossen Voorbeeld: { x + y = 5 x + y = 0 Twee keer de eerste vergelijking

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Stelsels differentiaalvergelijkingen

Stelsels differentiaalvergelijkingen Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00

Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 2601 Maandag 11 januari 2010, 9.00-12.00 Technische Universiteit Delft Uitwerking Tentamen Analyse 3, WI 6 Maandag januari, 9- Faculteit EWI Dit tentamen bestaat uit 6 opgaven Alle antwoorden dienen beargumenteerd te worden Normering: punten

Nadere informatie

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006

Lineaire Afbeelding Stelsels differentiaalvergelijkingen. 6 juni 2006 Lineaire Afbeelding Stelsels differentiaalvergelijkingen 6 juni 6 i ii Inhoudsopgave Stelsels differentiaalvergelijkingen Opgaven Stelsels differentiaalvergelijkingen In deze paragraaf passen we onze kennis

Nadere informatie

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015,

Technische Universiteit Delft. ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW2030 Vrijdag 30 januari 2015, Technische Universiteit Delft Faculteit EWI ANTWOORDEN van Tentamen Gewone differentiaalvergelijkingen, TW23 Vrijdag 3 januari 25, 4.-7. Dit tentamen bestaat uit 6 opgaven. Alle antwoorden dienen beargumenteerd

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur.

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op 16-4-2012, 14.30-17.00 uur. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Wiskundige Technieken

Wiskundige Technieken 1ste Bachelor Ingenieurswetenschappen Academiejaar 009-010 1ste semester 7 oktober 009 Wiskundige Technieken 1. Integreer de volgende differentiaalvergelijkingen: (a) y + 3x y = 3x (b) y + 3y + y = xe

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

Wiskunde I voor Scheikunde en Medische Natuurwetenschappen

Wiskunde I voor Scheikunde en Medische Natuurwetenschappen Wiskunde I voor Scheikunde en Medische Natuurwetenschappen Dr. A.C.M. Ran najaar 00 (gewijzigde druk Voorwoord Dit dictaat is bedoeld voor twee groepen studenten: de eerstejaars studenten scheikunde en

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

3. Stelsels van vergelijkingen

3. Stelsels van vergelijkingen . Stelsels van vergelijkingen We gaan de theorie van de voorgaande hoofdstukken toepassen op stelsels van lineaire vergelijkingen. Een voorbeeld: bepaal alle oplossingen (x,, ) van het stelsel vergelijkingen

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

Determinanten. , dan is det A =

Determinanten. , dan is det A = Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen

Nadere informatie

Complexe e-macht en complexe polynomen

Complexe e-macht en complexe polynomen Aanvulling Complexe e-macht en complexe polynomen Dit stuk is een uitbreiding van Appendix I, Complex Numbers De complexe e-macht wordt ingevoerd en het onderwerp polynomen wordt in samenhang met nulpunten

Nadere informatie

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit

Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoofdstuk 9: Niet-lineaire differentiaalvergelijkingen en stabiliteit Hoewel we reeds vele methoden gezien hebben om allerlei typen differentiaalvergelijkingen op te lossen, zijn er toch nog veel differentiaalvergelijkingen

Nadere informatie

Lineaire differentiaalvergelijkingen met constante coëfficienten

Lineaire differentiaalvergelijkingen met constante coëfficienten Lineaire differentiaalvergelijkingen met constante coëfficienten 1 Differentiaalvergelijkingen Als we een functie y : t y(t) expliciet, in formulevorm, kennen, dan is het niet zo moeilijk hiervan de afgeleide

Nadere informatie

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i

4 + 3i 4 3i (7 + 24i)(4 3i) 4 + 3i COMPLEXE GETALLEN Invoering van de complexe getallen Definitie Optellen en vermenigvuldigen Delen De complexe getallen zijn al behoorlijk oud; in de zestiende eeuw doken ze op bij het oplossen van algebraïsche

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De

Nadere informatie

Lineaire Algebra (2DD12) Laatste nieuws in 2012

Lineaire Algebra (2DD12) Laatste nieuws in 2012 Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of

Nadere informatie

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α

x cos α y sin α . (1) x sin α + y cos α We kunnen dit iets anders opschrijven, namelijk als x x y sin α Lineaire afbeeldingen Rotatie in dimensie 2 Beschouw het platte vlak dat we identificeren met R 2 Kies een punt P in dit vlak met coördinaten (, y) Stel dat we het vlak roteren met de oorsprong (0, 0)

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Voorwaardelijke optimalisatie

Voorwaardelijke optimalisatie Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Vectorruimten met inproduct

Vectorruimten met inproduct Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij

Nadere informatie

4 Positieve en niet-negatieve lineaire algebra

4 Positieve en niet-negatieve lineaire algebra 4 Positieve en niet-negatieve lineaire algebra Positieve en niet-negatieve matrices komen veel voor binnen de stochastiek (zoals de PageRank matrix) en de mathematische fysica: temperatuur, dichtheid,

Nadere informatie

Het vinden van een particuliere oplossing

Het vinden van een particuliere oplossing Het vind van e particuliere oplossing Voor e lineaire differtiaalvergelijking met constante (reële) coëfficiënt a 0 y (n) (t) + a 1 y (n 1) (t) +... + a n 1 y (t) + a n y(t) = g(t), a 0 0 (1) geldt, dat

Nadere informatie

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008)

Zomercursus Wiskunde. Rechten en vlakken (versie 14 augustus 2008) Katholieke Universiteit Leuven September 2008 Rechten en vlakken (versie 14 augustus 2008) 2 Rechten en vlakken Inleiding In deze module behandelen we de theorie van rechten en vlakken in de driedimensionale

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

d τ (t) dt = 1 voor alle τ 0.

d τ (t) dt = 1 voor alle τ 0. 65 Impulfunctie In deze paragraaf kijken we naar verchijnelen waarbij in zeer korte tijd een (grote kracht op een yteem wordt uitgeoefend Zo n plotelinge kracht kunnen we bechrijven met behulp van een

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in

College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in College 1. Complexe getallen Tijd en Plaats: Het tijdstip waarop het college gegeven wordt is maandagochtend van 10.45 tot 12.30. De colleges zijn in de weken 37-42 in zaal S 209, in de weken 44-49 in

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 )

x(t + T ) = x(t) Voorbeeld 1. Beschouw het niet-lineaire autonome stelsel . (1) y x + y y(x 2 + y 2 ) 97 Periodieke oplossingen en limit ccles We beschouwen weer autonome stelsels van de vorm x (t) = f(x(t)), waarbij het rechterlid dus niet expliciet van t afhangt We gaan onderzoeken wanneer er periodieke

Nadere informatie

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN

HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN HERTENTAMEN WISKUNDIGE BEELDVERWERKINGSTECHNIEKEN Vakcode: 8D. Datum: Vrijdag juli 3. Tijd: 9.. uur. Plaats: AUD 5. Lees dit vóórdat je begint! Maak iedere opgave op een apart vel. Schrijf je naam en studentnummer

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

More points, lines, and planes

More points, lines, and planes More points, lines, and planes Make your own pictures! 1. Lengtes en hoeken In het vorige college hebben we het inwendig product (inproduct) gedefinieerd. Aan de hand daarvan hebben we ook de norm (lengte)

Nadere informatie

M1 Wiskundig taalgebruik en notaties

M1 Wiskundig taalgebruik en notaties M1 Wiskundig taalgebruik en notaties Verzamelingenleer Verzameling = aantal objecten samengebracht tot een geheel - Lege verzameling = verzameling die geen elementen bevat A = - Singleton verzameling =

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Opgaven Functies en Reeksen. E.P. van den Ban

Opgaven Functies en Reeksen. E.P. van den Ban Opgaven Functies en Reeksen E.P. van den Ban c Mathematisch Instituut Universiteit Utrecht Augustus 2014 1 Opgaven bij Hoofdstuk 1 Opgave 1.1 Zij f : R n R partieel differentieerbaar naar iedere variabele

Nadere informatie

Types differentiaal vergelijkingen

Types differentiaal vergelijkingen 1ste Bachelor Wiskunde/Natuurkunde Types differentiaal vergelijkingen Dit semester hebben we veel types differentiaalvergelijkingen gezien. In de WPO sessies was de rode draad: herken de type differentiaalvergelijking

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

De Laplace-transformatie

De Laplace-transformatie De Laplace-transformatie De Laplace-transformatie is een instrument dat functies omzet in andere functies. Deze omzetting, de transformatie, heeft nette wiskundige eigenschappen. Zowel in de kansrekening

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

Meetkunde en lineaire algebra

Meetkunde en lineaire algebra Meetkunde en lineaire algebra Daan Pape Universiteit Gent 7 juni 2012 1 1 Möbius transformaties De mobiustransformatie wordt gegeven door: z az + b cz + d (1) Als we weten dat het drietal (x 1, x 2, x

Nadere informatie

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,

TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines

Nadere informatie

Aanvulling bij de cursus Calculus 1. Complexe getallen

Aanvulling bij de cursus Calculus 1. Complexe getallen Aanvulling bij de cursus Calculus 1 Complexe getallen A.C.M. Ran In dit dictaat worden complexe getallen behandeld. Ook in het Calculusboek van Adams kun je iets over complexe getallen lezen, namelijk

Nadere informatie

Inleiding in de lineaire algebra

Inleiding in de lineaire algebra Inleiding in de lineaire algebra (SV.9) W.Oele P.J. den Brok 6 maart 4 Inleiding De cursus lineaire algebra bestaat uit een aantal colleges in de matrix- en de vectorrekening. De colleges over en de oefenopdrachten

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011

Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011 Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het

Nadere informatie

De n-dimensionale ruimte Arjen Stolk

De n-dimensionale ruimte Arjen Stolk De n-dimensionale ruimte Arjen Stolk In het vorige college hebben jullie gezien wat R 2 (het vlak) is. Een vector v R 2 is een paar v = (x,y) van reële getallen. Voor vectoren v = (a,b) en w = (c,d) in

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper

Nadere informatie

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes

Wiskunde D vwo Lineaire algebra. Presentatie Noordhoff wiskunde Tweede Fase congres 19 november 2015 Harm Houwing en John Romkes Wiskunde D vwo Lineaire algebra Presentatie Noordhoff wiskunde Tweede Fase congres 9 november 205 Harm Houwing en John Romkes Vwo D Lineaire algebra Harm Houwing John Romkes Hoofdstuk 4 Onderwerpen Rekenen

Nadere informatie

Lineaire afbeeldingen

Lineaire afbeeldingen Hoofdstuk 4 Lineaire afbeeldingen In de algebra spelen naast algebraïsche structuren zelf ook de afbeeldingen ertussen die (een deel van de structuur bewaren, een belangrijke rol Voor vectorruimten zijn

Nadere informatie

Lineaire programmering

Lineaire programmering Lineaire programmering Hans Maassen kort naar Inleiding Besliskunde van J. Potters [Pot]. en Methods of Mathematical Economics van J. Franklin [Fra]. Lineaire programmering is het bepalen van het maximum

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

Aanvullingen bij Hoofdstuk 6

Aanvullingen bij Hoofdstuk 6 Aanvullingen bij Hoofdstuk 6 We veralgemenen eerst Stelling 6.4 tot een willekeurige lineaire transformatie tussen twee vectorruimten en de overgang naar twee nieuwe basissen. Stelling 6.4. Zij A : V W

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Uitwerking Tentamen Calculus, 2DM10, maandag 22 januari 2007 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Uitwerking Tentamen Calculus, DM, maandag januari 7. (a) Gevraagd is het polynoom f() + f () (x ) + f (x ). Een eenvoudige rekenpartij

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0

OF (vermits y = dy. dx ) P (x, y) dy + Q(x, y) dx = 0 Algemeen kunnen we een eerste orde differentiaalvergelijking schrijven als: y = Φ(x, y) OF (vermits y = dy dx ) P (x, y) dy + Q(x, y) dx = 0 Indien we dan P (x, y) en Q(x, y) kunnen schrijven als P (x,

Nadere informatie

Tussentoets Analyse 2. Natuur- en sterrenkunde.

Tussentoets Analyse 2. Natuur- en sterrenkunde. Tussentoets Analyse 2. Natuur- en sterrenkunde. Dinsdag 9 maart 2010, 9.00-11.00. Het gebruik van een rekenmachine is toegestaan. Motiveer elk antwoord dat je geeft d.m.v. een berekening of redenering.

Nadere informatie

Tentamen Modellen en Simulatie (WISB134)

Tentamen Modellen en Simulatie (WISB134) Tentamen Modellen en Simulatie (WISB34) Woensdag, 7 juni 0, 3:30-6:30, Educatorium, Beta Zaal Schrijf op elk vel dat je inlevert je naam en op het eerste vel je studentnummer en het totaal aantal ingeleverde

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Hoofdstuk 4 Eigenwaarden en eigenvectoren 4.1 Inleiding Tot nu toe zijn al onze vectoren en matrices reëel geweest d.w.z. de theorie voor stelsels lineaire vergelijkingen en de theorie der matrices en

Nadere informatie

Zomercursus Wiskunde. Module 14 Rechten en vlakken (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 14 Rechten en vlakken (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 14 Rechten en vlakken (versie 22 augustus 2011) Inhoudsopgave 1 Parametervergelijking van rechten en vlakken door de oorsprong 1 2 Cartesiaanse vergelijking

Nadere informatie

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven

Lineaire Algebra 2. Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven Lineaire Algebra 2 Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven 2012-2013 ii Syllabus in wording bij Lineaire Algebra 2 (2WF30 Inhoudsopgave 1 Lineaire afbeeldingen 1 11 Lineaire

Nadere informatie