Determinanten. , dan is det A =

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Determinanten. , dan is det A ="

Transcriptie

1 Determinanten We hebben al gezien : ( a b Definitie Als A c d, dan is det A a c b d ad bc Als A een ( -matrix is, dan geldt : A is inverteerbaar det A 0 Definitie Als A (a ij een (m n-matrix is, dan is A ij de ((m (n -matrix die uit A ontstaat door de i e rij en de j e kolom te schrappen Zo n matrix die uit A ontstaat door (0 of meer rijen en (0 of meer kolommen te schrappen heet een ondermatrix van A We definiëren nu de determinant van een ( -matrix : a a a Definitie Als A a a a, dan geldt : a a a a a a det A a a a a a a a a a a a a a a a a + a a a a a a det A a det A + a det A Vervolgens generaliseren we dit tot : Definitie Als A (a ij een (n n-matrix is met n, dan geldt : n det A a det A a det A + + ( +n a n det A n ( +j a j det A j heet de determinant van de matrix A Notatie : det A of A j Definitie 5 Als A (a ij een (n n-matrix is met n, dan geldt : heet een cofactor van A C ij : ( i+j det A ij Dit is dus de determinant van de ondermatrix A ij (onderdeterminant voorzien van een (extra plus- of een minteken bepaald door het volgende schaakbordpatroon :

2 Hiermee hebben we nu : Stelling Als A (a ij een (n n-matrix is met n, dan geldt : det A a i C i + a i C i + + a in C in (ontwikkeling naar de i e rij a j C j + a j C j + + a nj C nj (ontwikkeling naar de j e kolom Bewijs Voor een ( -determinant volgt dit onmiddellijk uit definitie Voor een ( - determinant volgt dit uit definitie door alle mogelijkheden uit te schrijven In het algemeen is het bewijs erg lastig en wordt daarom buiten beschouwing gelaten Volgens definitie wordt een determinant berekend door te ontwikkelen naar de eerste rij Stelling zegt nu dat we de determinant kunnen berekenen door te ontwikkelen naar een willekeurige rij of door te ontwikkelen naar een willekeurige kolom Bij de cofactoren dienen we dan rekening te houden met het eerder genoemde schaakbordpatroon We bekijken nu eerst enkele voorbeelden Voorbeeld Door te ontwikkelen naar respectievelijk de e rij, de e kolom en de e rij vinden we : De laatste twee vergen minder rekenwerk vanwege de 0 die optreedt De bij die 0 behorende onderdeterminant hoeft niet uitgerekend te worden Voorbeeld Door handig te ontwikkelen naar een rij of een kolom met veel nullen vinden we dan : ( (5 ( ( Definitie 6 Een matrix A (a ij met a ij 0 voor alle i > j heet een bovendriehoeksmatrix Een matrix A (a ij met a ij 0 voor alle i < j heet een benedendriehoeksmatrix

3 Nu is eenvoudig in te zien : Stelling Als A een vierkante (boven- of benedendriehoeksmatrix is, dan is de determinant van A het product van de diagonaalelementen We hebben verder de volgende rekenregels : Stelling Als A een vierkante matrix is, dan geldt : als B de matrix is die uit A ontstaat door een veelvoud van een rij op te tellen bij een andere rij, dan is det B det A twee rijen van plaats te verwisselen, dan is det B det A een rij te vermenigvuldigen met een getal k, dan is det B k det A Deze stelling geeft de mogelijkheid om het berekenen van een determinant te vereenvoudigen door de matrix eerst te vegen tot een driehoeksvorm en vervolgens stelling te gebruiken Bij dat veegproces dient men dan rekening te houden met de rekenregels van stelling Het bewijs van stelling laten we achterwege Enkele voorbeelden : Voorbeeld Door te vegen vinden we nu : ( 7 7 Voorbeeld Door te vegen vinden we ook : ( ( Voorbeeld 5 Door te vegen vinden we bijvoorbeeld ook : ( 0 0

4 Elke matrix kan geveegd worden tot een echelonmatrix Een vierkante matrix is inverteerbaar dan en slechts dan als er in elke rij en in elke kolom een pivotpositie bestaat In de echelonvorm verschijnen de pivots dan op de hoofddiagonaal Er geldt dus : Stelling Als A een vierkante matrix is, dan geldt : A is inverteerbaar det A 0 Dit hadden we al gezien voor ( -matrices, maar geldt dus algemeen voor elke vierkante matrix Met behulp van stelling kan men bewijzen dat : Stelling 5 Als A een vierkante matrix is, dan geldt : det A T det A Dit betekent dat de rekenregels van stelling ook gelden voor kolommen in plaats van rijen Voorbeeld 6 We kunnen de determinant uit voorbeeld 5 nu bijvoorbeeld ook zo bepalen : Om een determinant handig te berekenen kunnen we dus het vegen met rijen, het vegen met kolommen en het ontwikkelen naar een rij of naar een kolom combineren Voorbeeld 7 Zo vinden we bijvoorbeeld : (6 + 5 Een andere belangrijke eigenschap van determinanten, die we niet zullen bewijzen, is : Stelling 6 Als A en B twee (n n-matrices zijn, dan geldt : det AB (det A(det B Deze stelling heeft veel belangrijke gevolgen Enkele voorbeelden : Gevolg Als A en B twee (n n-matrices zijn, dan geldt in het algemeen dat AB BA Toch geldt wel dat det AB det BA, immers : det AB (det A(det B (det B(det A det BA

5 Gevolg Als A inverteerbaar is, dan geldt : det A det A, immers : AA I det I det AA (det A(det A det A det A Gevolg Als A een (n n-matrix is, dan geldt : det(λa λ n det A, immers : λa (λia det(λa (det(λi(det A λ n det A Tenslotte gaan we nog even in op de meetkundige betekenis van de determinant van een ( -matrix en een ( -matrix Stelling 7 Er geldt : Als A een ( -matrix is, dan is det A de oppervlakte van het parallellogram opgespannen door de kolommen van A Als A een ( -matrix is, dan is det A de inhoud of het volume van het parallellepipedum opgespannen door de kolommen van A Bewijs Zie ook pag 00 en 0 van Lay ( a 0 Als A een diagonaalmatrix is, zeg A, dan is det A ad en dat is de 0 d ( ( a 0 oppervlakte van de rechthoek opgespannen door de vectoren en 0 d Stel nu dat A a a, dan geldt : det A det a a det a a + λa voor iedere λ R We kunnen vervolgens λ zo bepalen dat a en a +λa een rechthoek opspannen De determinant is dus gelijk aan de oppervlakte van deze rechthoek en die is gelijk aan de oppervlakte van het parallellogram opgespannen door a en a zoals blijkt uit figuur op pag 00 van Lay Het bewijs voor een ( -matrix gaat op dezelfde manier De inhoud of het volume van een parallellepipedum is gelijk aan de oppervlakte van het grondvlak maal de hoogte Door op dezelfde manier te schuiven kunnen we zo n parallellepipedum transformeren tot een rechthoekig blok waarvan de inhoud gelijk is aan de lengte maal de breedte maal de hoogte Zie figuur en figuur op pag 00 en pag 0 van Lay 5

6 Deze stelling geeft ons de mogelijkheid om allerlei oppervlakte- en inhoudsberekeningen uit te voeren in R en R die anders veel lastiger zijn We bekijken enkele voorbeelden : Voorbeeld 8 Stel P (,, Q (, 5 en R (, Vraag : Wat is dan de oppervlakte van driehoek P QR? Eerst verschuiven we de driehoek zodat het punt P in de oorsprong O terechtkomt Dan geldt dat de oppervlakte van driehoek P QR gelijk is aan de helft van de oppervlakte van het parallellogram opgespannen door de vectoren a ( 5 ( ( 7 en b ( ( ( Dus : opp(p QR ( det Voorbeeld 9 Stel A (,, B (,, C (,, D (, 5 en E (0, Vraag : Wat is de oppervlakte van vijfhoek ABCDE? Merk eerst op dat de oppervlakte van vijfhoek ABCDE gelijk is aan de som van de oppervlaktes van de driehoeken ABC, ACD en ADE Om die te berekenen verschuiven we de vijfhoek ABCDE zodanig dat hoekpunt A in de oorsprong O terechtkomt Voor de oppervlaktes van de drie driehoeken gebruiken we de vectoren b a d a ( ( 5 ( ( ( (, c a en e a ( ( 0 ( ( We vinden dus : opp(abcde ( ( ( ( 5 det + 5 det + det 7 ( ( 5 (, Voorbeeld 0 De inhoud van het parallellepipedum in R opgespannen door de vectoren a, b en c 0 is gelijk aan det 0 We vinden : Dus : de inhoud van het parallellepipedum is gelijk aan 6

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft

Lineaire Algebra (wi2142tn) Les 5: Determinanten. Joost de Groot Les 5. Faculteit EWI, Toegepaste Wiskunde. Technische Universiteit Delft Lineaire Algebra (wi2142tn) Les 5: Determinanten Joost de Groot Les 5 1 Technische Universiteit Delft Doel van deze les Determinanten ben je al tegengekomen bij de behandeling van het in en het uitwendig

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud

Ruimtewiskunde. college. De determinant en lineaire afbeeldingen. Vandaag. De determinant van een matrix. Toepassing: oppervlakte en inhoud college 6 en lineaire collegejaar college build slides Vandaag : : : : 6-7 6 9 juni 27 3 2 3 van een matrix Toepassing: oppervlakte en inhoud.6-7[6] vandaag van de 2 2-matrix a b c d is gelijk aan ad bc.

Nadere informatie

De inverse van een matrix

De inverse van een matrix De inverse van een matrix Laat A een n n matrix zijn. Veronderstel dat de matrixvergelijking A X = I n de oplossing X = C heeft. Merk op dat [ A I n ] rijoperaties [ I n C ] [ I n A] inverse rijoperaties

Nadere informatie

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b

Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen

Nadere informatie

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1.

Blokmatrices. , I 21 = ( 0 0 ) en I 22 = 1. Blokmatrices Soms kan het handig zijn een matrix in zogenaamde blokken op te delen, vooral als sommige van deze blokken uit louter nullen bestaan Berekeningen kunnen hierdoor soms aanzienlijk worden vereenvoudigd

Nadere informatie

Hoofdstuk 3 : Determinanten

Hoofdstuk 3 : Determinanten (A5D) Hoofdstuk 3 : Determinanten Les : Determinanten Definitie 3. De determinant van de [2 x 2]-matrix A = ( a c det(a) = ad bc. b ) is een getal met waarde d a b Notatie : det(a) = = ad bc c d Voorbeeld

Nadere informatie

Stelsels Vergelijkingen

Stelsels Vergelijkingen Hoofdstuk 5 Stelsels Vergelijkingen Eén van de motiverende toepassingen van de lineaire algebra is het bepalen van oplossingen van stelsels lineaire vergelijkingen. De belangrijkste techniek bestaat uit

Nadere informatie

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1

x = b 1 x 1 , b = x n b m i,j=1,1 en een vector [x j] n j=1 m n a i,j x j j=1 i=1 WIS9 9 Matrixrekening 9 Vergelijkingen Stelsels lineaire vergelijkingen Een stelsel van m lineaire vergelijkingen in de n onbekenden x, x 2,, x n is een stelsel vergelijkingen van de vorm We kunnen dit

Nadere informatie

3.2 Vectoren and matrices

3.2 Vectoren and matrices we c = 6 c 2 = 62966 c 3 = 32447966 c 4 = 72966 c 5 = 2632833 c 6 = 4947966 Sectie 32 VECTOREN AND MATRICES Maar het is a priori helemaal niet zeker dat het stelsel vergelijkingen dat opgelost moet worden,

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:

Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft: Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Toepassingen op differentievergelijkingen

Toepassingen op differentievergelijkingen Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij

Nadere informatie

4. Determinanten en eigenwaarden

4. Determinanten en eigenwaarden 4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:

Nadere informatie

Inwendig product, lengte en orthogonaliteit in R n

Inwendig product, lengte en orthogonaliteit in R n Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T

Nadere informatie

Symmetrische matrices

Symmetrische matrices Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie

Nadere informatie

Aanvullingen bij Hoofdstuk 8

Aanvullingen bij Hoofdstuk 8 Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los

Nadere informatie

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen

Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet

Nadere informatie

Complexe eigenwaarden

Complexe eigenwaarden Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde

Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Hints en antwoorden bij de vragen van de cursus Lineaire Algebra en Meetkunde Ik heb de vragen die in de nota s staan en de vragen van de samenvattingen samengebracht in deze tekst en voorzien van hints

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper

Nadere informatie

Inwendig product, lengte en orthogonaliteit

Inwendig product, lengte en orthogonaliteit Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig

Nadere informatie

vandaag is Annie twee jaar jonger dan Ben en Cees samen

vandaag is Annie twee jaar jonger dan Ben en Cees samen Hoofdstuk I Lineaire Algebra Les 1 Stelsels lineaire vergelijkingen Om te beginnen is hier een puzzeltje: vandaag is Annie twee jaar jonger dan Ben en Cees samen over vijf jaar is Annie twee keer zo oud

Nadere informatie

Toepassingen op discrete dynamische systemen

Toepassingen op discrete dynamische systemen Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch

Nadere informatie

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,

UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b, UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht

Nadere informatie

2. Transformaties en matrices

2. Transformaties en matrices Transformaties en matrices Lineaire afbeelding Onder een lineaire afbeelding van R n naar R m verstaan we een functie A die aan iedere vector uit R n een vector uit R m toevoegt en van het volgende type

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 4 J.Keijsper

Nadere informatie

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 3 Lineaire algebra A (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 3 Lineaire algebra A (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n 1 2 Lineaire combinaties 2 3 Matrices 7 31 Het begrip matrix 7 32 Som

Nadere informatie

Basiskennis lineaire algebra

Basiskennis lineaire algebra Basiskennis lineaire algebra Lineaire algebra is belangrijk als achtergrond voor lineaire programmering, omdat we het probleem kunnen tekenen in de n-dimensionale ruimte, waarbij n gelijk is aan het aantal

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen

Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

Stelsels lineaire vergelijkingen

Stelsels lineaire vergelijkingen Een matrix heeft een rij-echelon vorm als het de volgende eigenschappen heeft: 1. Alle nulrijen staan als laatste rijen in de matrix. 2. Het eerste element van een rij dat niet nul is, ligt links ten opzichte

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 Antwoorden

WISKUNDE-ESTAFETTE RU 2006 Antwoorden WISKUNDE-ESTAFETTE RU 2006 Antwoorden 1 V 1 8 en 12 V 2 7 en 11 V 3 6 en 10 V 4 5 en 9 2 5040 opstellingen 3 De zijde is 37 4 α = 100 5 10, 2 liter 6 De volgorde is 2, 5, 3, 4, 1 7 30 euro 8 De straal

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Eigenwaarden en eigenvectoren

Eigenwaarden en eigenvectoren Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

1. Vectoren in R n. y-as

1. Vectoren in R n. y-as 1. Vectoren in R n Vectoren en hun meetkundige voorstelling. Een vector in R n is een rijtje (a 1, a 2,..., a n ) van reële getallen. De getallen a i heten de coördinaten van de vector. In het speciale

Nadere informatie

Jordan normaalvorm. Hoofdstuk 7

Jordan normaalvorm. Hoofdstuk 7 Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer

Samenvatting. Lineaire Algebra 1 - Collegejaar Dictaat met verwijzing naar het boek. Disclaimer Samenvatting Lineaire Algebra 1 - Collegejaar 2013-2014 Dictaat met verwijzing naar het boek Disclaimer De informatie in dit document is afkomstig van derden. W.I.S.V. Christiaan Huygens betracht de grootst

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014

Lineaire Algebra TW1205TI. I.A.M. Goddijn, Faculteit EWI 12 februari 2014 Lineaire Algebra TW1205TI, 12 februari 2014 Contactgegevens Mekelweg 4, kamer 4.240 tel : (015 27)86408 e-mail : I.A.M.Goddijn@TUDelft.nl homepage : http: //fa.its.tudelft.nl/ goddijn blackboard : http:

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Samenvatting Lineaire Algebra, periode 4

Samenvatting Lineaire Algebra, periode 4 Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n.

a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. . Oefen opgaven Opgave... Gegeven zijn de lijnen l : 2 + λ m : 2 2 + λ 3 n : 3 6 4 + λ 3 6 4 a) Bepaal punten a l en b m zó dat de lijn door a en b parallel is met n. b) Bepaal de afstand tussen die lijn

Nadere informatie

Voorbeeld theorie examen

Voorbeeld theorie examen Vooreeld theorie examen Het schriftelijk examen over de theorie en de oefeningen heeft plaats op 27 juni van 8u3 t/m 13u. 1 uur en 3 minuten zijn voorzien voor het theorie examen. De vragen zijn gericht

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Antwoorden op de theoretische vragen in de examen voorbereiding

Antwoorden op de theoretische vragen in de examen voorbereiding Antwoorden op de theoretische vragen in de examen voorbereiding Theorie vraag Zij A een m n-matrix. Geef het verband tussen de formule voor de dimensie d van een niet-strijdig stelsel, d = n rang (A) (zie

Nadere informatie

3 Wat is een stelsel lineaire vergelijkingen?

3 Wat is een stelsel lineaire vergelijkingen? In deze les bekijken we de situatie waarin er mogelijk meerdere vergelijkingen zijn ( stelsels ) en meerdere variabelen, maar waarin elke vergelijking er relatief eenvoudig uitziet, namelijk lineair is.

Nadere informatie

Lineaire Algebra (2DD12)

Lineaire Algebra (2DD12) Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie

Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Lineaire Algebra en Vectorcalculus 2DN60 College 5.a Basis en dimensie Ruud Pellikaan g.r.pellikaan@tue.nl /k 205-206 Definitie opspansel 2/35 Stel S = {v,..., v n } is een deelverzameling van de vectorruimte

Nadere informatie

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA

Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Examenvragen Hogere Wiskunde I

Examenvragen Hogere Wiskunde I 1 Examenvragen Hogere Wiskunde I Vraag 1. Zij a R willekeurig. Gegeven is dat voor alle r, s Q geldt dat a r+s = a r a s. Bewijs dat voor alle x, y R geldt dat a x+y = a x a y. Vraag 2. Gegeven 2 functies

Nadere informatie

inhoudsopgave januari 2005 handleiding algebra 2

inhoudsopgave januari 2005 handleiding algebra 2 handleiding algebra inhoudsopgave Inhoudsopgave 2 De grote lijn 3 Bespreking per paragraaf 1 Routes in een rooster 4 2 Oppervlakte in een rooster 4 3 Producten 4 4 Onderzoek 5 Tijdpad 9 Materialen voor

Nadere informatie

Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33)

Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33) - 1- Hoofdstuk 1 : Hoeken ( Zie ook : boek pag 1 tot en met pag 33) Hoekeenheden (boek pag 1) Hoofdeenheid om hoeken te meten is de grootte van de rechte hoek de graad :...... notatie :... de minuut :...

Nadere informatie

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008)

Zomercursus Wiskunde. Lineaire algebra (versie 15 september 2008) Katholieke Universiteit Leuven September 2008 Lineaire algebra (versie 15 september 2008) 2 Lineaire algebra Deze module wordt zowel gegeven in het A-programma als in het B-programma van de zomercursus

Nadere informatie

1 DE STELLING VAN PYTHAGORAS

1 DE STELLING VAN PYTHAGORAS 1 DE STELLING VAN PYTHAGORAS 1.1 Verkennende opdrachten 1.1.1 Pythagoras puzzel (mozaïek van Henry Perigal 1801-1898) Open de link naar het bestand 1 Pythagoras_puzzel.htm Gegeven is een rechthoekige driehoek

Nadere informatie

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 16 Lineaire algebra B (versie 22 augustus 2011) Katholieke Universiteit Leuven September 2011 Module 16 Lineaire algebra B (versie 22 augustus 2011) Inhoudsopgave 1 Vectoren in R n en matrices 1 2 Lineaire stelsels 11 21 Formulering en interpretatie

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud

Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud Extra oefeningen hoofdstuk 12: Omtrek - Oppervlakte - Inhoud 1 Een optische illusie? Welk gebied heeft de grootste oppervlakte: het gele of het donkergroene? Doe eerst een schatting en maak daarna de nodige

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Functies van vectoren

Functies van vectoren Functies van vectoren Alexander Ly Psychological Methods University of Amsterdam 15 September 2014 Overview 1 Notatie 2 Overview 1 Notatie 2 Matrices Een matrix schrijven we vaak met een hoofdletter A.

Nadere informatie

De dimensie van een deelruimte

De dimensie van een deelruimte De dimensie van een deelruimte Een deelruimte van R n is een deelverzameling die op zichzelf ook een vectorruimte is. Ter herinnering : Definitie. Een deelverzameling H van R n heet een deelruimte van

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)

Nadere informatie

Inleiding in de lineaire algebra

Inleiding in de lineaire algebra Inleiding in de lineaire algebra (SV.9) W.Oele P.J. den Brok 6 maart 4 Inleiding De cursus lineaire algebra bestaat uit een aantal colleges in de matrix- en de vectorrekening. De colleges over en de oefenopdrachten

Nadere informatie

Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34)

Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34) - 39- Hoofdstuk 2 : Som Hoekgrootten van een veelhoek (boek pag 34) Som hoekgrootten van een driehoek ( boek pag 35) Stelling: Voor ABC geldt: A ˆ + Bˆ + Cˆ = 180 o Bewijs: Trek door het punt A een rechte

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper

Nadere informatie

Supplement Wiskunde 2017/2018. Inhoudsopgave

Supplement Wiskunde 2017/2018. Inhoudsopgave Inhoudsopgave Hoofdstuk 1: Missende stof in de verslagen... 2 Hoofdstuk 2: Overbodige stof in de verslagen... 7 Hoofdstuk 3: Fouten in de verslagen... 8 Tentamen halen? www.rekenmaarverslagen.nl 1 Hoofdstuk

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

Bilineaire Vormen. Hoofdstuk 9

Bilineaire Vormen. Hoofdstuk 9 Hoofdstuk 9 Bilineaire Vormen In dit hoofdstuk beschouwen we bilineaire vormen op een vectorruimte V nader. Dat doen we onder andere om in het volgende hoofdstuk de begrippen afstand en lengte in een vectorruimte

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec.

1. Lineaire Vergelijkingen in Lineaire Algebra 2. Matrix Algebra 3. Determinanten 4. Vectorruimten 5. Eigenwaarden en Eigenvec. LINEAIRE ALGEBRA Eric Jespers Vrije Universiteit Brussel Referentie: David C. Lay, Linear Algebra and Its Applications, Fourth edition, Pearson International Edition, 2012, ISBN: 9781408287859 verplicht

Nadere informatie

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen

Coëfficiënten matrix = matrix waarin de rechterkolom geen oplossing van de vergelijking is. 1. Lineair systeem = Stelsel van lineaire vergelijkingen Hoofdstuk 1 Vectoren dik gedrukt, scalairen normaal en Matrices in hoofdletters Vector = een pijl in R n. Een vector heeft een grootte en een richting. Dit in tegenstelling tot een coördinaat, dat slechts

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

Toepassingen op matrices - Opgave

Toepassingen op matrices - Opgave Toepassingen op matrices - Opgave Toepassing. Matrices en aantal verbindingen in grafen Op ontdekking. De onderstaande figuur is een voorbeeld van een graaf. Het toont het aantal dagelijkse internationale

Nadere informatie

Integratie voor meerdere variabelen

Integratie voor meerdere variabelen Wiskunde 2 voor kunstmatige intelligentie, 27/28 Les 4 Integratie voor meerdere variabelen In deze les bekijken we het omgekeerde van de afgeleide, de integratie, en gaan na hoe we een integraal voor functies

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Lineaire Algebra voor W 2Y650

Lineaire Algebra voor W 2Y650 Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

De wiskunde van de beeldherkenning

De wiskunde van de beeldherkenning De wiskunde van de beeldherkenning Op zoek naar wat er niet verandert! In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek c Faculteit Wiskunde en Informatica, TU/e Inhoudsopgave

Nadere informatie

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende.

Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Cabri-werkblad Rond het zwaartepunt van een driehoek Een bekende eigenschap van de middens van de zijden van een driehoek is de volgende. Stelling De verbindingslijn van de middens van twee zijden van

Nadere informatie

Eindtermen Lineaire Algebra voor E vor VKO (2DE01)

Eindtermen Lineaire Algebra voor E vor VKO (2DE01) Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale

Nadere informatie