TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
|
|
- Nathan Thys
- 5 jaren geleden
- Aantal bezoeken:
Transcriptie
1 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op 6--,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops van tafel zijn wordt dit tentamen uitgedeeld. Tijdens dit tentamen mag geen ander materiaal gebruikt worden dan kladpapier, schrijfgerei, en eventueel een eenvoudige rekenmachine. Dus geen grafische rekenmachine of laptop. Bij elk antwoord is een uitwerking of uitleg vereist. Succes! Opgave Gegeven zijn de matrix A en de vector b. A = , b = 9 (a) Laat zien dat de vector x = een oplossing is van het stelsel Ax = b. Antwoord: reken het matrix-vector product Ax uit en ga na dat dit de vector b oplevert. (b) Bepaal een matrix in gereduceerde trapvorm die rij-equivalent is met A. Antwoord: R = rref(a) = (c) Geef een basis van de nulruimte van A. 6 Antwoord: Los op Ax =. Equivalent is het stelsel: Rx =. We kiezen dus vrije variabelen voor de kolommen zonder leidende enen in R: x = r, x = s en x = t, met r, s, t R. De overige variabelen liggen dan vast door Rx = : x +x +x +x = dus x = r s t, en x + x = dus x = s, en x 6 =. Een parametervoorstelling in vectornotatie van de nulruimte (i.e. van de algemene oplossing van Ax = ) is dus x = x x x x x x 6 + r + s + t., r, s, t R
2 Een basis voor de nulruimte is,,. (d) Bepaal de algemene oplossing van het stelsel Ax = b. Antwoord: een particuliere oplossing x p van Ax = b is gegeven bij (a), de algemene oplossing x h van Ax = is gevonden bij (b). De algemene oplossing van Ax = b kan dan geschreven worden als x = x p + x h, ofwel x = 9 + r (e) Geef een basis van de rijruimte van A. + s + t Antwoord: de niet-nul rijen van de geveegde matrix R vormen een basis van de rijruimte van A. Dus een basis is { [ ], [ ], [ ] }. NB: de eerste drie rijen van A zijn afhankelijk dus vormen geen basis van de rijruimte. Opgave B = 6 (a) Bepaal de inverse van bovenstaande matrix B. Antwoord: dus 6 B = (c) B = P T S is de overgangsmatrix van de standaardbasis S = naar een andere basis T van R. Bepaal die basis T.,,
3 Antwoord: als B = P T S dan B = P S T, dus in de kolommen van de matrix B staan de coördinaatvectoren ten opzichte van de standaardbasis S van de basisvectoren van T. Kortom T =,, Opgave Gegeven zijn de volgende drie vectoren in R. u =, u = (a) Laat zien dat {u, u, u } lineair onafhankelijk is., u = Antwoord: los op c u + c u + c u =. Vanwege. heeft dit stelsel alleen de oplossing c = c = c =. vectoren lineair onafhankelijk zijn. Maar dat betekent dat de drie (b) Bepaal een orthogonale basis S voor de deelruimte U van R die opgespannen wordt door u en u. Antwoord: Gram-Schmidt geeft v = u v = u (u,v ) (v,v ) v = 6 Nemen we voor v de geheeltallige vector = / / / te vereenvoudigen), dan is een orthogonale basis voor span{u, u } {v, v } =,.. in dezelfde richting (om het rekenwerk
4 (c) Bepaal de loodrechte projectie van u op de deelruimte U. Antwoord: aangezien {v, v } een orthogonale basis van U is, kan de projectie geschreven worden als proj U (u ) = (u, v ) (v, v ) v + (u, v ) (v, v ) v = 6 + = (d) Bepaal een orthonormale basis T voor de deelruimte van R die opgespannen wordt door u, u en u. Antwoord: we vervolgen het Gram-Schmidt orthogonalisatieproces met de vector u en gebruiken ook het resultaat van (c). v = u (u, v ) (v, v ) v (u, v ) (v, v ) v = u proj U (u ) = Vervangen we v door de geheeltallige vector = / / / /., dan is {v, v, v } een orthogonale basis voor span{u, u, u } en een orthonormale basis bestaat uit de genormaliseerde vectoren: T = 6,,. Opgave Gegeven is de matrix A. A = (a) Bepaal de eigenwaarden van A. Antwoord: De eigenwaarden zijn de nulpunten van het karakteristiek polynoom λ det(λi A) = λ = (λ ) λ λ λ λ = (λ )(λ λ + 6 ) (λ ) = (λ )(λ λ + ) = (λ )(λ )(λ ) De eigenwaarden zijn dus λ =, λ =, λ =.
5 (b) Bepaal bij elke eigenwaarde een basis voor de eigenruimte. Antwoord: De eigenruimte bij eigenwaarde λ is de nulruimte van de matrix λi A. Los dus het stelsel (λi A)x = op voor elk van de drie gevonden waarden voor λ. Voor λ = vinden we I A = Dus (I A)x = als x + x = en x =. Kies x = r vrij in R dan volgt x = r dus x = r Een basis van de eigenruimte bij eigenwaarde is dus. Evenzo vinden we de basis. van de eigenruimte bij eigenwaarde en basis van de eigenruimte bij eigenwaarde. (c) Geef een inverteerbare matrix P en een diagonaalmatrix D zodat P AP = D. Antwoord: P =, D = (d) Bestaat er ook een orthogonale matrix Q zodanig dat Q T AQ = D? Geef zo n orthogonale matrix Q of leg uit waarom deze niet bestaat. Antwoord: jazeker, zo n Q bestaat want A is een symmetrische matrix (A T = A). De eigenvectoren zijn paarsgewijs orthogonaal, en daarom verkrijgt men een orthogonale matrix (waarvan de kolommen een orthonormale basis van R vormen) door de kolommen van P te normaliseren: Q = 6 6 6
6 (e) Bepaal de oplossing x(t) = x (t) x (t) x (t) van het beginwaardeprobleem gegeven door x (t) = Ax(t) en x() = Antwoord: de algemene oplossing van het stelsel differentiaalvergelijkingen zonder rekening te houden met de beginconditie is x(t) = c p e λ t + c p e λ t + c p e λ t, met λ, λ, λ de eigenwaarden en p, p, p de bijbehorende eigenvectoren van de matrix en c, c, c willekeurige constanten in R. Dus in dit geval x(t) = c e t + c e t + c e t, c, c, c R. De oplossing van het beginwaardenprobleem geeft een invulling aan de constanten c, c, c. De goede waarden vind je door t = in te vullen in de algemene oplossing, en deze gelijk te stellen aan de gegeven x(). Het stelsel c + c c = / / geeft de oplossing c =, c = /, c = /, dus de oplossing van het beginwaarde probleem is x(t) = e t + / e t + / e t. (f) Bepaal de eigenwaarden van de matrix A. Antwoord: Als x een eigenvector is van A bij eigenwaarde λ, dan is A x = A Ax = A λx = λa x = Aλ x = λ Ax = λ x, dus x is ook een eigenvector van A bij eigenwaarde λ. In dit geval vinden we de eigenwaarden = 8, = 6 en = van A. Een andere manier om dit alles in te zien gaat als volgt: omdat A = P DP is A = P DP P DP P DP P DP = P D P A is dus diagonaliseerbaar en de eigenwaarden van A staan in de diagonaal van de diagonaalmatrix D (de eigenvectoren staan in de kolommen van P, dit zijn dus dezelfde als de eigenvectoren van A). Met andere woorden, als λ, λ, λ eigenwaarden van A zijn, dan zijn λ, λ, λ eigenwaarden van A. In dit geval vinden we de eigenwaarden = 8, = 6 en = van A. 6
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Lineaire Algebra voor ST (2DS06) op , uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS) op --9,.-7. uur. Aan dit tentamen gaat een MATLAB-toets van een half uur vooraf. Pas als de laptops
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor ST (DS6) op -4-, 4.-7. uur. Opgave Gegeven is het volgende stelsel lineaire vergelijkingen met parameters
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 93 email: JCMKeijsper@tuenl studiewijzer: http://wwwwintuenl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 3 JKeijsper (TUE) Lineaire
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT (2DM20) op vrijdag 12 juni 2009, 9.00 Dit tentamen bestaat uit 5 open vragen, en 4 kort-antwoord vragen.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 11 J.Keijsper
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op dinsdag 9 april 8, 9.. uur. Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op maandag juni Dit tentamen bestaat uit 6 open vragen, en 4 kort-antwoord vragen. De
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Dit tentamen bestaat uit 4 open vragen, en kort-antwoord vragen. De uitwerkingen van de open vragen dienen volledig, duidelijk geformuleerd
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra en Lineaire Analyse (Y550/Y530), op donderdag 5 november 00, 9:00 :00 uur. De uitwerkingen van de opgaven dienen
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y65 Docent: L Habets HG 89, Tel: 4-247423, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y65 1 Herhaling: bepaling van eigenwaarden en eigenvectoren (1) Bepaal het
Tentamen lineaire algebra voor BWI dinsdag 17 februari 2009, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI dinsdag 7 februari 9, 8.-.5 uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
Tentamen Lineaire Algebra UITWERKINGEN
Tentamen Lineaire Algebra 29 januari 29, 3:3-6:3 uur UITWERKINGEN Gegeven een drietal lijnen in R 3 in parametervoorstelling, l : 2, m : n : ν (a (/2 pt Laat zien dat l en m elkaar kruisen (dat wil zeggen
Tentamen lineaire algebra voor BWI maandag 15 december 2008, uur.
Vrije Universiteit Amsterdam Faculteit der Exacte Wetenschappen Afdeling Wiskunde Tentamen lineaire algebra voor BWI maandag 5 december 8, 5.5-8. uur. ELK ANTWOORD DIENT TE WORDEN BEARGUMENTEERD. Er mogen
TENTAMEN LINEAIRE ALGEBRA 1 donderdag 23 december 2004,
TENTAMEN LINEAIRE ALGEBRA donderdag december 004, 0.00-.00 Bij elke vraag dient een berekening of motivering worden opgeschreven. Het tentamen bestaat uit twee gedeelten: de eerste drie opgaven betreffen
Tentamen Lineaire Algebra
Tentamen Lineaire Algebra 3 januari 214, 8:3-11:3 uur - Bij dit tentamen mogen dictaten en boeken niet gebruikt worden - Een eenvoudige rekenmachine, hoewel niet nodig, is toegestaan, maar geen grafische
Eindtermen Lineaire Algebra voor E vor VKO (2DE01)
Eindtermen Lineaire Algebra voor E vor VKO (2DE01) dr. G.R. Pellikaan 1 Voorkennis Middelbare school stof van wiskunde en natuurkunde. Eerste gedeelte (Blok A) van Lineaire Algebra voor E (2DE04). 2 Globale
Tentamen Lineaire Algebra voor BMT en TIW (2DM20) op vrijdag 11 mei 2007, 9:00 12:00 uur.
TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Lineaire Algebra voor BMT en TIW (DM) op vrijdag mei 7, 9: : uur. U mag bij het tentamen geen computer (notebook, laptop), boeken
UITWERKINGEN 1 2 C : 2 =
UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 8 J.Keijsper
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 6 J.Keijsper (TUE)
TENTAMEN LINEAIRE ALGEBRA 1A. maandag 16 december 2002, b. Bepaal een basis voor de rijruimte en voor de kolomruimte van A.
TENTAMEN LINEAIRE ALGEBRA 1A maandag 16 december 2002, 1000-1200 Coördinaten zijn gegeven tov een standaardbasis in R n 1 De matrix A en de vector b R 4 zijn gegeven door 1 0 1 2 0 1 1 4 3 2 A =, b = 0
Tentamen Lineaire Algebra B
Tentamen Lineaire Algebra B 29 juni 2012, 9-12 uur OPGAVEN Uitwerkingen volgen na de opgaven 1. Gegeven is de vectorruimte V = R[x] 2 van polynomen met reële coefficienten en graad 2. Op V hebben we een
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Eigenwaarden en eigenvectoren Zij A een n n matrix.
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 7 J.Keijsper
Tentamen Lineaire Algebra 1 (Wiskundigen)
Tentamen Lineaire Algebra Wiskundigen Donderdag, 23 januari 24,.-3. Geen rekenmachines. Motiveer elk antwoord.. Voor alle reële getallen a definiëren we de matrix C a als a C a = a 2. a Verder definiëren
Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam. Schrijf je naam en studentnummer op alles dat je inlevert.
Kwantitatieve Economie / Faculteit Economie en Bedrijfskunde / Universiteit van Amsterdam Tentamen Lineaire Algebra A (met uitwerking) Maandag juni 00, van 9:00 tot :00 (4 opgaven) Schrijf je naam en studentnummer
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra maandag 3--27, 3.3-6.3 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken. Schrijf op elk
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2
Definities, stellingen en methoden uit David Poole s Linear Algebra A Modern Introduction - Second Edtion benodigd voor het tentamen Matrix Algebra 2 Bob Jansen Inhoudsopgave 1 Vectoren 3 2 Stelsels Lineaire
Eigenwaarden en eigenvectoren in R n
Eigenwaarden en eigenvectoren in R n Als Ax λx voor zekere x in R n met x 0, dan is λ een eigenwaarde van A en x een eigenvector van A behorende bij λ. Een eigenvector is op een multiplicatieve constante
Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, ( )
Faculteit der Wiskunde en Informatica Tentamen (2DE04) van Lineaire Algebra voor E, op vrijdag 27 januari 2012, (9.00-12.00) Zoals beschreven in de studiehandleiding 2DE04 bestaat dit tentamen uit drie
Samenvatting Lineaire Algebra, periode 4
Samenvatting Lineaire Algebra, periode 4 Hoofdstuk 5, Eigenwaarden en eigenvectoren 5.1; Eigenvectoren en eigenwaarden Definitie: Een eigenvector van een n x n matrix A is een niet nulvector x zodat Ax
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper
Lineaire Algebra Een Samenvatting
Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L Habets HG 809, Tel: 040-2474230, Email: lcgjmhabets@tuenl http://wwwwintuenl/wsk/onderwijs/2y650 1 Herhaling: Oplossing homogene DV ẋ = Ax Aanname: A is diagonaliseerbaar
Complexe eigenwaarden
Complexe eigenwaarden Tot nu toe hebben we alleen reële getallen toegelaten als eigenwaarden van een matrix Het is echter vrij eenvoudig om de definitie uit te breiden tot de complexe getallen Een consequentie
Lineaire Algebra (2DD12) Laatste nieuws in 2012
Lineaire Algebra (2DD12) Laatste nieuws in 2012 Kwartiel 3, week 1 Het eerste college zal op maandagmiddag 6 februari 2012 beginnen om 13:45 uur in Auditorium 8. Zie de desbetreffende pagina van OASE of
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie
FACULTEIT ECONOMIE EN BEDRIJFSKUNDE Afdeling Kwantitatieve Economie Lineaire Algebra, tentamen Uitwerkingen vrijdag 4 januari 0, 9 uur Gebruik van een formuleblad of rekenmachine is niet toegestaan. De
Uitwerkingen tentamen lineaire algebra 2 13 januari 2017, 10:00 13:00
Uitwerkingen tentamen lineaire algebra 3 januari 07, 0:00 3:00 Hint: Alle karakteristiek polynomen die je nodig zou kunnen hebben, hebben gehele nulpunten. Als dat niet het geval lijkt, dan heb je dus
Geadjungeerde en normaliteit
Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of
Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b
Het oplossen van stelsels lineaire vergelijkingen Wiskunde 2, 2DM60 College 2b Ruud Pellikaan g.r.pellikaan@tue.nl /k 2014-2015 Lineaire vergelijking 2/64 DEFINITIE: Een lineaire vergelijking in de variabelen
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.
ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding
Tentamen lineaire algebra 2 18 januari 2019, 10:00 13:00 Uitwerkingen (schets)
Tentamen lineaire algebra 8 januari 9, : : Uitwerkingen (schets) Opgave. ( + punten) Gegeven is de matrix ( ) A =. (a) Bepaal een diagonaliseerbare matrix D en een nilpotente matrix N zodanig dat A = N
CTB1002-D2 Lineaire Algebra 2
CTB00-D Lineaire Algebra Juli 03 Augustus 03 Juli 0 Augustus 0 Juli 0 Augustus 0 Juli 00 Augustus 00 Tentamenbundel Civiele Techniek Het Gezelschap "Practische Studie" Technische Universiteit Delft Faculteit
Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { De tweede vergelijking van de eerste aftrekken geeft:
Determinanten Invoeren van het begrip determinant Bekijk nog een keer het stelsel van twee vergelijkingen met twee onbekenden x en y: { a x + b y = c a 2 a 2 x + b 2 y = c 2 a Dit levert op: { a a 2 x
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 9 J.Keijsper (TUE)
Matrices en Stelsel Lineaire Vergelijkingen
Complexe Getallen Wat is de modulus van een complex getal? Hoe deel je twee complexe getallen? Wat is de geconjugeerde van een complex getal? Hoe kan je z z ook schrijven? Wat is de vergelijking van een
UITWERKINGEN d. Eliminatie van a geeft d. Eliminatie van b,
UITWERKINGEN 1. Gegeven in R 3 zijn de punten P = (1, 1, ) t en Q = ( 2,, 1) t en het vlak V gegeven door de vergelijking 2x 1 x 2 + x 3 = 1. Zij l de lijn door P loodrecht op V en m de lijn door Q loodrecht
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 2 J.Keijsper
Wiskundigen. Tentamen Lineaire Algebra 1. Donderdag 18 december 2008, a ( )
Wiskundigen Tentamen Lineaire Algebra Donderdag 8 december 8,.-3. Naam: () Bepaal voor alle reële waarden van a de rang van de matrix a C a = a. 4a () Zij n een geheel getal en laat P n de vectorruimte
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9. email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/ds6 Technische Universiteit Eindhoven college 8 J.Keijsper (TUE)
Jordan normaalvorm. Hoofdstuk 7
Hoofdstuk 7 Jordan normaalvorm Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit hoofdstuk buigen we ons over de vraag of er
Kies voor i een willekeurige index tussen 1 en r. Neem het inproduct van v i met de relatie. We krijgen
Hoofdstuk 95 Orthogonaliteit 95. Orthonormale basis Definitie 95.. Een r-tal niet-triviale vectoren v,..., v r R n heet een orthogonaal stelsel als v i v j = 0 voor elk paar i, j met i j. Het stelsel heet
x 1 (t) = ve rt = (a + ib) e (λ+iµ)t = (a + ib) e λt (cos µt + i sin µt) x 2 (t) = ve rt = e λt (a cos µt b sin µt) ie λt (a sin µt + b cos µt).
76 Complexe eigenwaarden Ook dit hebben we reeds gezien bij Lineaire Algebra Zie: Lay, 57 Als xt ve rt een oplossing is van de homogene differentiaalvergelijking x t Axt, dan moet r een eigenwaarde van
Symmetrische matrices
Symmetrische matrices We beginnen met een eenvoudige definitie : Definitie Een matrix A heet symmetrisch als A T = A NB Een symmetrische matrix is dus altijd vierkant Symmetrische matrices hebben fraaie
1 Eigenwaarden en eigenvectoren
Eigenwaarden en eigenvectoren Invoeren van de begrippen eigenwaarde en eigenvector DEFINITIE Een complex (of reëel getal λ heet een eigenwaarde van de n n matrix A als er een vector x is met Ax = λx Dan
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 2015 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
Geef niet alleen antwoorden, maar bewijs al je beweringen.
Tentamen Lineaire Algebra donderdag 29 januari 205, 9.00-2.00 uur Het is niet toegestaan telefoons, computers, grafische rekenmachines (wel een gewone), dictaten, boeken of aantekeningen te gebruiken.
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent:
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica en Economie 2 e jaar Voorjaar semester 2013 Docent: D.P. Huijsmans LIACS Universiteit Leiden College Lineaire
1.1 Oefen opgaven. Opgave Van de lineaire afbeelding A : R 3 R 3 is gegeven dat 6 2, 5 4, A 1 1 = A = Bepaal de matrix van A.
. Oefen opgaven Opgave... Van de lineaire afbeelding A : R 3 R 3 is gegeven dat A = Bepaal de matrix van A. 4, 4 A =, A = 3 4. In de volgende opgave wordt het begrip injectiviteit en surjectiviteit van
Eigenwaarden en Diagonaliseerbaarheid
Hoofdstuk 3 Eigenwaarden en Diagonaliseerbaarheid 31 Diagonaliseerbaarheid Zoals we zagen hangt de matrix die behoort bij een lineaire transformatie af van de keuze van een basis voor de ruimte In dit
Lineaire Algebra (2DD12)
Lineaire Algebra (2DD12) docent: Ruud Pellikaan - Judith Keijsper email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/ ruudp/2dd12.html Technische Universiteit Eindhoven college 1 J.Keijsper
Praktische informatie. m.b.t. College. Lineaire Algebra en Beeldverwerking. Bachelor Informatica. 1e jaar. Voorjaar semester 2012
Praktische informatie m.b.t. College Lineaire Algebra en Beeldverwerking Bachelor Informatica 1e jaar Voorjaar semester 2012 Docenten: Jesse Goodman en Charlene Kalle Universiteit Leiden Praktische informatie
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, en B =
Uitwerkingen tentamen Lineaire Algebra 2 16 januari, 215 Deze uitwerkingen zijn niet volledig, maar geven het idee van elke opgave aan. Voor een volledige oplossing moet alles ook nog duidelijk uitgewerkt
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007,
TENTAMEN LINEAIRE ALGEBRA 2 dinsdag 3 april 2007, 000-300 Bij elke vraag dient een berekening of mo- Dit tentamen bestaat uit vijf opgaven tivering te worden opgeschreven Grafische en programmeerbare rekenmachines
Examen Lineaire Algebra en Meetkunde Tweede zit (13:30-17:30)
Examen Lineaire Algebra en Meetkunde Tweede zit 2016-2017 (13:30-17:30) 1 Deel gesloten boek (theorie) (5.5pt) - indienen voor 14u30 (0.5pt) Geef de kleinste kwadratenoplossing van het stelsel AX = d,
Uitwerkingen Lineaire Algebra I (wiskundigen) 22 januari, 2015
Uitwerkingen Lineaire Algebra I (wiskundigen) januari, 5 In deze uitwerkingen is hier en daar een berekening weggelaten (bijvoorbeeld het bepalen van de kern van een matrix) die uiteraard op het tentamen
Toepassingen op differentievergelijkingen
Toepassingen op differentievergelijkingen We beschouwen lineaire differentievergelijkingen of lineaire recurrente betrekkingen van de vorm a 0 y k+n + a y k+n + + a n y k+ + a n y k = z k, k = 0,,, Hierbij
Lineaire Algebra voor W 2Y650
Lineaire Algebra voor W 2Y650 Docent: L. Habets HG 8.09, Tel: 040-2474230, Email: l.c.g.j.m.habets@tue.nl http://www.win.tue.nl/wsk/onderwijs/2y650 1 Herhaling: opspansel De vectoren v 1,..., v k V spannen
Tussentijdse Toets Wiskunde 2 1ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april 2011
Tussentijdse Toets Wiskunde ste bachelor Biochemie & Biotechnologie, Chemie, Geografie, Geologie en Informatica april Deze toets is bedoeld om u vertrouwd te maken met de wijze van ondervraging op het
Uitwerking Proeftentamen Lineaire Algebra 1, najaar y y = 2x. P x. L(P ) y = x. 2/3 1/3 en L wordt t.o.v de standaardbasis gegeven door
Uitwerking Proeftentamen Lineaire Algebra, najaar 007. Gegeven is de lineaire afbeelding L : R R, die een punt P = (x, y) langs de lijn y = x projecteert op de lijn y = x: y y = x P x L(P ) y = x Bepaal
Uitwerkingen tentamen Lineaire Algebra 2
Uitwerkingen tentamen Lineaire Algebra 2 15 januari, 2016 Opgave 2 (10 punten (a Het karakteristiek polynoom van A is det(ti A = (t 1 5, dus er is maar één eigenwaarde, namelijk λ = 1 Er geldt (A I 2 =
Oefensommen tentamen Lineaire algebra 2 - december A =
Oefensommen tentamen Lineaire algebra 2 - december 2012 Opg 1 De schaakbordmatrix A is de 8 bij 8 matrix 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 A = 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1
11.0 Voorkennis V
11.0 Voorkennis V 8 6 4 3 6 3 0 5 W 8 1 1 12 2 1 16 4 3 20 5 4 V is een 2 x 4 matrix. W is een 4 x 3 matrix. Deze twee matrices kunnen met elkaar vermenigvuldigd worden. Want het aantal kolommen van matrix
Toepassingen op discrete dynamische systemen
Toepassingen op discrete dynamische systemen Een discreet dynamisch systeem is een proces van de vorm x k+ Ax k k met A een vierkante matrix Een Markov-proces is een speciaal geval van een discreet dynamisch
Uitwerking opgaven 17 december. Spoilers!!
Uitwerking opgaven 7 december Spoilers!! (duh... 8 januari 206 Inhoudsopgave Complex diagonaliseren matrix 2. Opgave................................................ 2.2 Oplossing...............................................
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Toets, donderdag 22 oktober, 2009 Oplossingen (1) Zij V het vlak in R 3 door de punten P 1 = (1, 2, 1), P 2 = (0, 1, 1) en P 3 = ( 1, 1, 3). (a) Geef een parametrisatie
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I. 1. Theorie
EXAMEN LINEAIRE ALGEBRA EN ANALYTISCHE MEETKUNDE I MAANDAG 17 JANUARI 2011 1. Theorie Opgave 1. (a) In Voorbeelden 2.1.17 (7) wordt gesteld dat de maximale lineair onafhankelijke deelverzamelingen van
Lineaire Algebra. Bovendriehoeks- en onderdriehoeks vorm: onder (boven) elke leidende term staan enkel nullen
Lineaire Algebra Hoofdstuk 1: Stelsels Gelijkwaardige stelsels: stelsels met gelijke oplv Elementaire rijbewerkingen: 1. van plaats wisselen 2. externe vermenigvuldiging 3. interne optelling (2. en 3.:
Eigenwaarden en eigenvectoren
Eigwaard eigvector Als A e vierkante matrix is, dan heet e vector x e eigvector van A als Ax e veelvoud van x is : Definitie Stel dat A e (n n-matrix is E vector x R n met x o heet e eigvector van A als
Vragen, samenvattingen en uitwerkingen Lineaire algebra 1 - UvA
Vragen, samenvattingen en uitwerkingen 2013 - Lineaire algebra 1 - UvA Rocco van Vreumingen 28 juli 2016 1 Inhoudsopgave 1 Samenvattingen 3 1.1 Samenvatting stof college 1................... 3 1.2 Samenvatting
Unitaire en Hermitese transformaties
Hoofdstuk 11 Unitaire en Hermitese transformaties We beschouwen vervolgens lineaire transformaties van reële en complexe inproductruimten die aan extra eigenschappen voldoen die betrekking hebben op het
4. Determinanten en eigenwaarden
4. Determinanten en eigenwaarden In dit hoofdstuk bestuderen we vierkante matrices. We kunnen zo n n n matrix opvatten als een lineaire transformatie van R n. We onderscheiden deze matrices in twee typen:
6. Lineaire operatoren
6. Lineaire operatoren Dit hoofdstukje is een generalisatie van hoofdstuk 2. De meeste dingen die we in hoofdstuk 2 met de R n deden, gaan we nu uitbreiden tot andere lineaire ruimten Definitie. Een lineaire
Inwendig product, lengte en orthogonaliteit in R n
Inwendig product, lengte en orthogonaliteit in R n Het inwendig product kan eenvoudig worden gegeneraliseerd tot : u v u v Definitie Als u = u n en v = v n twee vectoren in Rn zijn, dan heet u v := u T
Vierde huiswerkopdracht Lineaire algebra 1
Vierde huiswerkopdracht Lineaire algebra December, 00 Opgave : Voor positieve gehele getallen m, n schrijven we Mat(m n, R) voor de vectorruimte van alle m n matrices, met de gebruikelijke optelling en
Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen
Hoofdstuk 7: Stelsels eerste orde lineaire differentiaalvergelijkingen Bij het vak Lineaire Algebra hebben we reeds kennis gemaakt met stelsels eerste orde lineaire differentiaalvergelijkingen We hebben
WI1808TH1/CiTG - Lineaire algebra deel 1
WI1808TH1/CiTG - Lineaire algebra deel 1 College 10 13 oktober 2016 1 Samenvatting Hoofdstuk 4.1 Een constante λ is een eigenwaarde van een n n matrix A als er een niet-nul vector x bestaat, zodat Ax =
Voorwaardelijke optimalisatie
Voorwaardelijke optimalisatie We zoek naar maximale minimale waard van e kwadratische vorm Q(x op R n onder bepaalde voorwaard Zo n voorwaarde is bijvoorbeeld dat x R n e eheidsvector is, dat wil zegg
Stelsels differentiaalvergelijkingen
Stelsels differentiaalvergelijkingen Stelsels homogene differentiaalvergelijkingen We bekijken in deze paragraaf stelsels homogene differentiaalvergelijkingen: x (t x (t x (t x (t x n(t A Voorbeeld x +
Tentamen lineaire algebra 2 17 januari 2014, 10:00 13:00 zalen 174, 312, 412, 401, 402
Tentamen lineaire algebra 2 17 januari 214, 1: 13: zalen 174, 312, 412, 41, 42 Dit zijn geen complete uitwerkingen. Er is dus geen garantie dat het overschrijven met andere getallen voldoende is voor huiswerk
CTB1002 deel 1 - Lineaire algebra 1
CTB100 deel 1 - Lineaire algebra 1 College 5 5 februari 014 1 Opbouw college Vandaag behandelen we hoofdstuk 1.7 en deel van 1.8 Voor de pauze: hoofdstuk 1.7 Na de pauze: hoofdstuk 1.8 Verschillende notaties
Lineaire Algebra voor ST
Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 5 J.Keijsper (TUE)
Aanvullingen bij Hoofdstuk 8
Aanvullingen bij Hoofdstuk 8 8.5 Definities voor matrices De begrippen eigenwaarde eigenvector eigenruimte karakteristieke veelterm en diagonaliseerbaar worden ook gebruikt voor vierkante matrices los
Lineaire algebra I (wiskundigen)
Lineaire algebra I (wiskundigen) Voorbeelden van toetsopgaven, 011 en (1) (a) Bepaal de afstand van het punt Q = (1,, ) R 3 tot het vlak gegeven door x + y z = 1. (b) Bepaal de hoek tussen de vectoren
Inwendig product, lengte en orthogonaliteit
Inwendig product, lengte en orthogonaliteit We beginnen met een definitie : u u Definitie. Als u =. en v = u n v v. v n twee vectoren in Rn zijn, dan heet u v := u T v = u v + u v +... + u n v n het inwendig
Tentamina Lineaire Algebra Cursussen. Uitgangspunten, aanbevelingen en opmerkingen
Tentamina Lineaire Algebra Cursussen Fons Daalderop, Joost de Groot, Roelof Koekoek Mei 4 Uitgangspunten, aanbevelingen en opmerkingen De inhoud van de cursus Lineaire Algebra is voor wat betreft de basisstof
Vectorruimten met inproduct
Hoofdstuk 3 Vectorruimten met inproduct 3. Inleiding In R 2 en R 3 hebben we behalve de optelling en scalairvermenigvuldiging nog meer structuur ; bij een vector kun je spreken over zijn lengte en bij
Uitwerking 1 Uitwerkingen eerste deeltentamen Lineaire Algebra (WISB121) 3 november 2009
Departement Wiskunde, Faculteit Bètawetenschappen, UU. In elektronische vorm beschikbaar gemaakt door de TBC van A Eskwadraat. Het college WISB werd in 9- gegeven door Prof. Dr. F. Beukers. Uitwerking
Examenvragen Meetkunde en lineaire algebra Tweede examenperiode
Examenvragen Meetkunde en lineaire algebra Tweede examenperiode 2008-2009 Een rechte conoïde met als richtrechte de X-as, en als richtoppervlak de sfeer met middelpunt in (0, 16, 0) en straal 9. (1) Stel